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Chapter �

Invitation� Pair Production

in e
�
e
� Annihilation

The main purpose of Part I of this book is to develop the basic calculational
method of quantum �eld theory� the formalism of Feynman diagrams� We will
then apply this formalism to computations in Quantum Electrodynamics� the
quantum theory of electrons and photons�

Quantum Electrodynamics �QED� is perhaps the best fundamental phys�
ical theory we have� The theory is formulated as a set of simple equations
�Maxwell�s equations and the Dirac equation� whose form is essentially deter�
mined by relativistic invariance� The quantum�mechanical solutions of these
equations give detailed predictions of electromagnetic phenomena from macro�
scopic distances down to regions several hundred times smaller than the pro�
ton�

Feynman diagrams provide for this elegant theory an equally elegant pro�
cedure for calculation� Imagine a process that can be carried out by electrons
and photons� draw a diagram� and then use the diagram to write the mathe�
matical form of the quantum�mechanical amplitude for that process to occur�

In this �rst part of the book we will develop both the theory of QED
and the method of Feynman diagrams from the basic principles of quantum
mechanics and relativity� Eventually� we will arrive at a point where we can
calculate observable quantities that are of great interest in the study of ele�
mentary particles� But to reach our goal of deriving this simple calculational
method� we must �rst� unfortunately� make a serious detour into formalism�
The three chapters that follow this one are almost completely formal� and
the reader might wonder� in the course of this development� where we are go�
ing� We would like to partially answer that question in advance by discussing
the physics of an especially simple QED process�one su	ciently simple that
many of its features follow directly from physical intuition� Of course� this
intuitive� bottom�up approach will contain many gaps� In Chapter 
 we will
return to this process with the full power of the Feynman diagram formalism�
Working from the top down� we will then see all of these di	culties swept
away�

�
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Figure ���� The annihilation reaction e�e� � ����� shown in the center�
of�mass frame�

The Simplest Situation

Since most particle physics experiments involve scattering� the most com�
monly calculated quantities in quantum �eld theory are scattering cross sec�
tions� We will now calculate the cross section for the simplest of all QED
processes� the annihilation of an electron with its antiparticle� a positron� to
form a pair of heavier leptons �such as muons�� The existence of antiparticles
is actually a prediction of quantum �eld theory� as we will discuss in Chapters
� and �� For the moment� though� we take their existence as given�

An experiment to measure this annihilation probability would proceed by
�ring a beam of electrons at a beam of positrons� The measurable quantity is
the cross section for the reaction e�e� � ���� as a function of the center�of�
mass energy and the relative angle � between the incoming electrons and the
outgoing muons� The process is illustrated in Fig� �� For simplicity� we work
in the center�of�mass �CM� frame where the momenta satisfy p� � �p and
k� � �k� We also assume that the beam energy E is much greater than either
the electron or the muon mass� so that jpj � jp�j � jkj � jk�j � E � Ecm���
�We use boldface type to denote ��vectors and ordinary italic type to denote
��vectors��

Since both the electron and the muon have spin ��� we must specify their
spin orientations� It is useful to take the axis that de�nes the spin quantization
of each particle to be in the direction of its motion� each particle can then
have its spin polarized parallel or antiparallel to this axis� In practice� electron
and positron beams are often unpolarized� and muon detectors are normally
blind to the muon polarization� Hence we should average the cross section
over electron and positron spin orientations� and sum the cross section over
muon spin orientations�

For any given set of spin orientations� it is conventional to write the
di�erential cross section for our process� with the �� produced into a solid
angle d�� as

d�

d�
�



����E�
cm

� ��M��� � ���
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The factor E��cm provides the correct dimensions for a cross section� since in
our units �energy��� � �length��� The quantityM is therefore dimensionless�
it is the quantum�mechanical amplitude for the process to occur �analogous
to the scattering amplitude f in nonrelativistic quantum mechanics�� and
we must now address the question of how to compute it from fundamental
theory� The other factors in the expression are purely a matter of convention�
Equation ��� is actually a special case� valid for CM scattering when the
�nal state contains two massless particles� of a more general formula �whose
form cannot be deduced from dimensional analysis� which we will derive in
Section ��
�

Now comes some bad news and some good news�
The bad news is that even for this simplest of QED processes� the exact

expression for M is not known� Actually this fact should come as no sur�
prise� since even in nonrelativistic quantum mechanics� scattering problems
can rarely be solved exactly� The best we can do is obtain a formal expres�
sion for M as a perturbation series in the strength of the electromagnetic
interaction� and evaluate the �rst few terms in this series�

The good news is that Feynman has invented a beautiful way to orga�
nize and visualize the perturbation series� the method of Feynman diagrams�
Roughly speaking� the diagrams display the �ow of electrons and photons dur�
ing the scattering process� For our particular calculation� the lowest�order term
in the perturbation series can be represented by a single diagram� shown in
Fig� ��� The diagram is made up of three types of components� external lines
�representing the four incoming and outgoing particles�� internal lines �repre�
senting �virtual� particles� in this case one virtual photon�� and vertices� It is
conventional to use straight lines for fermions and wavy lines for photons� The
arrows on the straight lines denote the direction of negative charge �ow� not
momentum� We assign a ��momentum vector to each external line� as shown�
In this diagram� the momentum q of the one internal line is determined by
momentum conservation at either of the vertices� q � p � p� � k � k�� We
must also associate a spin state �either �up� or �down�� with each external
fermion�

According to the Feynman rules� each diagram can be translated directly
into a contribution toM� The rules assign a short algebraic factor to each el�
ement of a diagram� and the product of these factors gives the value of the
corresponding term in the perturbation series� Getting the resulting expres�
sion for M into a form that is usable� however� can still be nontrivial� We
will develop much useful technology for doing such calculations in subsequent
chapters� But we do not have that technology yet� so to get an answer to our
particular problem we will use some heuristic arguments instead of the actual
Feynman rules�

Recall that in quantum�mechanical perturbation theory� a transition am�
plitude can be computed� to �rst order� as an expression of the form

h�nal statejHI jinitial statei � ����
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Figure ���� Feynman diagram for the lowest�order term in the e�e� �
���� cross section� At this order the only possible intermediate state is a
photon ����

where HI is the �interaction� part of the Hamiltonian� In our case the initial
state is je�e�i and the �nal state is h����j� But our interaction Hamiltonian
couples electrons to muons only through the electromagnetic �eld �that is�
photons�� not directly� So the �rst�order result ���� vanishes� and we must go
to the second�order expression

M� �������HI

����� ����HI

��e�e��
�
� ����

This is a heuristic way of writing the contribution to M from the diagram in
Fig� ��� The external electron lines correspond to the factor je�e�i� the ex�
ternal muon lines correspond to h����j� The vertices correspond to HI � and
the internal photon line corresponds to the operator j�i h�j� We have added
vector indices ��� because the photon is a vector particle with four compo�
nents� There are four possible intermediate states� one for each component�
and according to the rules of perturbation theory we must sum over interme�
diate states� Note that since the sum in ���� takes the form of a ��vector dot
product� the amplitude M will be a Lorentz�invariant scalar as long as each
half of ���� is a ��vector�

Let us try to guess the form of the vector h�jHI je�e�i�� Since HI cou�
ples electrons to photons with a strength e �the electron charge�� the matrix
element should be proportional to e� Now consider one particular set of initial
and �nal spin orientations� shown in Fig� ��� The electron and muon have
spins parallel to their directions of motion� they are �right�handed�� The an�
tiparticles� similarly� are �left�handed�� The electron and positron spins add
up to one unit of angular momentum in the �z direction� Since HI should
conserve angular momentum� the photon to which these particles couple must
have the correct polarization vector to give it this same angular momentum�
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Figure ���� One possible set of spin orientations� The electron and the neg�
ative muon are right�handed� while the positron and the positive muon are
left�handed�

�� � ��� � i� ��� Thus we have�
�
��HI

��e�e��� � e ��� � i� ��� ����

The muon matrix element should� similarly� have a polarization corre�
sponding to one unit of angular momentum along the direction of the ��

momentum k� To obtain the correct vector� rotate ���� through an angle �
in the xz�plane� �

�
��HI

�������� � e ��� cos �� i��sin ��� ��
�

To compute the amplitude M� we complex�conjugate this vector and dot it
into ����� Thus we �nd� for this set of spin orientations�

M�RL� RL� � �e� � � cos �� � ����

Of course we cannot determine the overall factor by this method� but in ����
it happens to be correct� thanks to the conventions adopted in ���� Note
that the amplitude vanishes for � � ���� just as one would expect� A state
whose angular momentum is in the �z direction has no overlap with a state
whose angular momentum is in the �z direction�

Next consider the case in which the electron and positron are both right�
handed� Now their total spin angular momentum is zero� and the argument is
more subtle� We might expect to obtain a longitudinally polarized photon with
a Clebsch�Gordan coe	cient of �

p
�� just as when we add angular momenta

in three dimensions� j��i � ��
p
��
�jj � �m � �i� jj � ��m � �i�� But we

are really adding angular momenta in the four�dimensional Lorentz group�
so we must take into account not only spin �the transformation properties of
states under rotations�� but also the transformation properties of states under
boosts� It turns out� as we shall discuss in Chapter �� that the Clebsch�Gordan
coe	cient that couples a ��vector to the state je�Re�Ri of massless fermions is
zero� �For the record� the state is a superposition of scalar and antisymmetric
tensor pieces�� Thus the amplitude M�RR � RL� is zero� as are the eleven
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other amplitudes in which either the initial or �nal state has zero total angular
momentum�

The remaining nonzero amplitudes can be found in the same way that we
found the �rst one� They are

M�RL� LR� � �e� �� cos ���

M�LR� RL� � �e� �� cos ���

M�LR� LR� � �e� � � cos ���

����

Inserting these expressions into ���� averaging over the four initial�state spin
orientations� and summing over the four �nal�state spin orientations� we �nd

d�

d�
�

	�

�E�
cm

�
 � cos� �

�
� ����

where 	 � e���� � ���� Integrating over the angular variables � and 

gives the total cross section�

�total �
��	�

�E�
cm

� ����

Results ���� and ���� agree with experiments to about ��� almost all of
the discrepancy is accounted for by the next term in the perturbation series�
corresponding to the diagrams shown in Fig� ��� The qualitative features
of these expressions�the angular dependence and the sharp decrease with
energy�are obvious in the actual data� �The properties of these results are
discussed in detail in Section 
���

Embellishments and Questions

We obtained the angular distribution predicted by Quantum Electrodynamics
for the reaction e�e� � ���� by applying angular momentum arguments�
with little appeal to the underlying formalism� However� we used the simpli�
fying features of the high�energy limit and the center�of�mass frame in a very
strong way� The analysis we have presented will break down when we relax
any of our simplifying assumptions� So how does one perform general QED
calculations� To answer that question we must return to the Feynman rules�

As mentioned above� the Feynman rules tell us to draw the diagram�s� for
the process we are considering� and to associate a short algebraic factor with
each piece of each diagram� Figure �
 shows the diagram for our reaction�
with the various assignments indicated�

For the internal photon line we write �ig���q�� where g�� is the usual
Minkowski metric tensor and q is the ��momentum of the virtual photon� This
factor corresponds to the operator j�i h�j in our heuristic expression �����

For each vertex we write �ie��� corresponding to HI in ����� The objects
�� are a set of four �	 � constant matrices� They do the �addition of angular
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Figure ���� Feynman diagrams that contribute to the �� term in the
e�e� � ���� cross section�

Figure ���� Diagram of Fig� ���� with expressions corresponding to each
vertex� internal line� and external line�

momentum� for us� coupling a state of two spin��� particles to a vector
particle�

The external lines carry expressions for four�component column�spinors
u� v� or row�spinors u� v� These are essentially the momentum�space wavefunc�
tions of the initial and �nal particles� and correspond to je�e�i and h����j
in ����� The indices s� s�� r� and r� denote the spin state� either up or down�
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We can now write down an expression forM� reading everything straight
o� the diagram�

M � vs
�

�p��
��ie���us�p���ig��

q�

�
ur�k�

��ie���vr��k��
�

ie�

q�
�
vs
�

�p����us�p�
��
ur�k���v

r��k��
�
�

����

It is instructive to compare this in detail with Eq� �����
To derive the cross section ���� from ����� we could return to the an�

gular momentum arguments used above� supplemented with some concrete
knowledge about � matrices and Dirac spinors� We will do the calculation
in this manner in Section 
��� There are� however� a number of useful tricks
that can be employed to manipulate expressions like ����� especially when
one wants to compute only the unpolarized cross section� Using this �Feyn�
man trace technology� �so�called because one must evaluate traces of prod�
ucts of ��matrices�� it isn�t even necessary to have explicit expressions for
the ��matrices and Dirac spinors� The calculation becomes almost completely
mindless� and the answer ���� is obtained after less than a page of algebra�
But since the Feynman rules and trace technology are so powerful� we can
also relax some of our simplifying assumptions� To conclude this section� let
us discuss several ways in which our calculation could have been more di	cult�

The easiest restriction to relax is that the muons be massless� If the beam
energy is not much greater than the mass of the muon� all of our predic�
tions should depend on the ratio m��Ecm� �Since the electron is ��� times
lighter than the muon� it can be considered massless whenever the beam en�
ergy is large enough to create muons�� Using Feynman trace technology� it is
extremely easy to restore the muon mass to our calculation� The amount of
algebra is increased by about �fty percent� and the relation ��� between the
amplitude and the cross section must be modi�ed slightly� but the answer is
worth the e�ort� We do this calculation in detail in Section 
��

Working in a di�erent reference frame is also easy� the only modi�cation
is in the relation ��� between the amplitude and the cross section� Or one
can simply perform a Lorentz transformation on the CM result� boosting it
to a di�erent frame�

When the spin states of the initial and�or �nal particles are known and
we still wish to retain the muon mass� the calculation becomes somewhat
cumbersome but no more di	cult in principle� The trace technology can be
generalized to this case� but it is often easier to evaluate expression ����
directly� using the explicit values of the spinors u and v�

Next one could compute cross sections for di�erent processes� The process
e�e� � e�e�� known as Bhabha scattering� is more di	cult because there is
a second allowed diagram �see Fig� ���� The amplitudes for the two diagrams
must �rst be added� then squared�

Other processes contain photons in the initial and�or �nal states� The
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Figure ���� The two lowest�order diagrams for Bhabha scattering� e�e� �
e�e��

Figure ���� The two lowest�order diagrams for Compton scattering�

paradigm example is Compton scattering� for which the two lowest�order di�
agrams are shown in Fig� ��� The Feynman rules for external photon lines
and for internal electron lines are no more complicated than those we have
already seen� We discuss Compton scattering in detail in Section 
�
�

Finally we could compute higher�order terms in the perturbation series�
Thanks to Feynman� the diagrams are at least easy to draw� we have seen
those that contribute to the next term in the e�e� � ���� cross section in
Fig� ��� Remarkably� the algorithm that assigns algebraic factors to pieces
of the diagrams holds for all higher�order contributions� and allows one to
evaluate such diagrams in a straightforward� if tedious� way� The computation
of the full set of nine diagrams is a serious chore� at the level of a research
paper�

In this book� starting in Chapter �� we will analyze much of the physics
that arises from higher�order Feynman diagrams such as those in Fig� ���
We will see that the last four of these diagrams� which involve an additional
photon in the �nal state� are necessary because no detector is sensitive enough
to notice the presence of extremely low�energy photons� Thus a �nal state
containing such a photon cannot be distinguished from our desired �nal state
of just a muon pair�
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The other �ve diagrams in Fig� �� involve intermediate states of several
virtual particles rather than just a single virtual photon� In each of these di�
agrams there will be one virtual particle whose momentum is not determined
by conservation of momentum at the vertices� Since perturbation theory re�
quires us to sum over all possible intermediate states� we must integrate over
all possible values of this momentum� At this step� however� a new di	culty
appears� The loop�momentum integrals in the �rst three diagrams� when per�
formed naively� turn out to be in�nite� We will provide a �x for this problem�
so that we get �nite results� by the end of Part I� But the question of the
physical origin of these divergences cannot be dismissed so lightly� that will
be the main subject of Part II of this book�

We have discussed Feynman diagrams as an algorithm for performing
computations� The chapters that follow should amply illustrate the power of
this tool� As we expose more applications of the diagrams� though� they be�
gin to take on a life and signi�cance of their own� They indicate unsuspected
relations between di�erent physical processes� and they suggest intuitive ar�
guments that might later be veri�ed by calculation� We hope that this book
will enable you� the reader� to take up this tool and apply it in novel and
enlightening ways�
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The Klein�Gordon Field

��� The Necessity of the Field Viewpoint

Quantum �eld theory is the application of quantum mechanics to dynamical
systems of �elds� in the same sense that the basic course in quantum mechanics
is concerned mainly with the quantization of dynamical systems of particles�
It is a subject that is absolutely essential for understanding the current state
of elementary particle physics� With some modi�cation� the methods we will
discuss also play a crucial role in the most active areas of atomic� nuclear�
and condensed�matter physics� In Part I of this book� however� our primary
concern will be with elementary particles� and hence relativistic �elds�

Given that we wish to understand processes that occur at very small
�quantum�mechanical� scales and very large �relativistic� energies� one might
still ask why we must study the quantization of �elds� Why can�t we just
quantize relativistic particles the way we quantized nonrelativistic particles�

This question can be answered on a number of levels� Perhaps the best
approach is to write down a single�particle relativistic wave equation �such as
the Klein�Gordon equation or the Dirac equation� and see that it gives rise to
negative�energy states and other inconsistencies� Since this discussion usually
takes place near the end of a graduate�level quantum mechanics course� we will
not repeat it here� It is easy� however� to understand why such an approach
cannot work� We have no right to assume that any relativistic process can be
explained in terms of a single particle� since the Einstein relation E � mc�

allows for the creation of particle�antiparticle pairs� Even when there is not
enough energy for pair creation� multiparticle states appear� for example� as
intermediate states in second�order perturbation theory� We can think of such
states as existing only for a very short time� according to the uncertainty
principle �E � �t �  h� As we go to higher orders in perturbation theory�
arbitrarily many such �virtual� particles can be created�

The necessity of having a multiparticle theory also arises in a less obvious
way� from considerations of causality� Consider the amplitude for a free particle
to propagate from x� to x�

U�t� � hxj e�iHt jx�i �

��
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In nonrelativistic quantum mechanics we have E � p���m� so

U�t� � hxj e�i�p���m�t jx�i

�

Z
d�p

�����
hxj e�i�p���m�t jpi hpjx�i

�


�����

Z
d�p e�i�p

���m�t � eip��x�x��

�
� m

��it

����
eim�x�x�����t�

This expression is nonzero for all x and t� indicating that a particle can prop�
agate between any two points in an arbitrarily short time� In a relativistic
theory� this conclusion would signal a violation of causality� One might hope
that using the relativistic expression E �

p
p� �m� would help� but it does

not� In analogy with the nonrelativistic case� we have

U�t� � hxj e�it
p
p��m� jx�i

�


�����

Z
d�p e�it

p
p��m� � eip��x�x��

�


���jx� x�j

�Z
�

dp p sin�pjx� x�j�e�it
p
p��m�

�

This integral can be evaluated explicitly in terms of Bessel functions�! We
will content ourselves with looking at its asymptotic behavior for x� 
 t�

�well outside the light�cone�� using the method of stationary phase� The phase

function px�t
p
p� �m� has a stationary point at p � imx�

p
x� � t�� We may

freely push the contour upward so that it goes through this point� Plugging
in this value for p� we �nd that� up to a rational function of x and t�

U�t� � e�m
p
x��t� �

Thus the propagation amplitude is small but nonzero outside the light�cone�
and causality is still violated�

Quantum �eld theory solves the causality problem in a miraculous way�
which we will discuss in Section ���� We will �nd that� in the multiparticle
�eld theory� the propagation of a particle across a spacelike interval is indis�
tinguishable from the propagation of an antiparticle in the opposite direction
�see Fig� ���� When we ask whether an observation made at point x� can
a�ect an observation made at point x� we will �nd that the amplitudes for
particle and antiparticle propagation exactly cancel�so causality is preserved�

Quantum �eld theory provides a natural way to handle not only multipar�
ticle states� but also transitions between states of di�erent particle number�
It solves the causality problem by introducing antiparticles� then goes on to

�See Gradshteyn and Ryzhik ��	
��� ��	���
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Figure ���� Propagation from x� to x in one frame looks like propagation
from x to x� in another frame�

explain the relation between spin and statistics� But most important� it pro�
vides the tools necessary to calculate innumerable scattering cross sections�
particle lifetimes� and other observable quantities� The experimental con�r�
mation of these predictions� often to an unprecedented level of accuracy� is
our real reason for studying quantum �eld theory�

��� Elements of Classical Field Theory

In this section we review some of the formalism of classical �eld theory that
will be necessary in our subsequent discussion of quantum �eld theory�

Lagrangian Field Theory

The fundamental quantity of classical mechanics is the action� S� the time
integral of the Lagrangian� L� In a local �eld theory the Lagrangian can be
written as the spatial integral of a Lagrangian density� denoted by L� which is
a function of one or more �elds 
�x� and their derivatives ��
� Thus we have

S �

Z
Ldt �

Z
L�
� ��
� d�x� ����

Since this is a book on �eld theory� we will refer to L simply as the Lagrangian�
The principle of least action states that when a system evolves from one

given con�guration to another between times t� and t�� it does so along the
�path� in con�guration space for which S is an extremum �normally a mini�
mum�� We can write this condition as

� � �S

�

Z
d�x

	
�L
�


�
�
�L

����
�
����
�



�

Z
d�x

	
�L
�


�
� ��

�
�L

����
�

�
�
� ��

�
�L

����
�
�


�

� �����

The last term can be turned into a surface integral over the boundary of the
four�dimensional spacetime region of integration� Since the initial and �nal
�eld con�gurations are assumed given� �
 is zero at the temporal beginning
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and end of this region� If we restrict our consideration to deformations �
 that
vanish on the spatial boundary of the region as well� then the surface term is
zero� Factoring out the �
 from the �rst two terms� we note that� since the
integral must vanish for arbitrary �
� the quantity that multiplies �
 must
vanish at all points� Thus we arrive at the Euler�Lagrange equation of motion
for a �eld�

��

�
�L

����
�

�
� �L
�


� �� �����

If the Lagrangian contains more than one �eld� there is one such equation for
each�

Hamiltonian Field Theory

The Lagrangian formulation of �eld theory is particularly suited to relativistic
dynamics because all expressions are explicitly Lorentz invariant� Nevertheless
we will use the Hamiltonian formulation throughout the �rst part of this
book� since it will make the transition to quantum mechanics easier� Recall
that for a discrete system one can de�ne a conjugate momentum p � �L�� "q
�where "q � �q��t� for each dynamical variable q� The Hamiltonian is then
H �P p "q�L� The generalization to a continuous system is best understood
by pretending that the spatial points x are discretely spaced� We can de�ne

p�x� � �L

� "
�x�
�

�

� "
�x�

Z
L�
�y�� "
�y�� d�y

� �

� "
�x�

X
y

L�
�y�� "
�y��d�y
� ��x�d�x�

where

��x� � �L
� "
�x�

�����

is called the momentum density conjugate to 
�x�� Thus the Hamiltonian can
be written

H �
X
x

p�x� "
�x�� L�

Passing to the continuum� this becomes

H �

Z
d�x
�
��x� "
�x� �L� � Z d�xH� ���
�

We will rederive this expression for the Hamiltonian density H near the end
of this section� using a di�erent method�

As a simple example� consider the theory of a single �eld 
�x�� governed
by the Lagrangian

L � �
�
"
� � �

� �r
�� � �
�m

�
�

� �
� ���
�

� � �
�m

�
��
�����
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For now we take 
 to be a real�valued �eld� The quantitym will be interpreted
as a mass in Section ���� but for now just think of it as a parameter� From
this Lagrangian the usual procedure gives the equation of motion�

��

�t�
�r� �m�

�

 � � or

�
���� �m�

�

 � �� �����

which is the well�known Klein�Gordon equation� �In this context it is a classi�
cal �eld equation� like Maxwell�s equations�not a quantum�mechanical wave
equation�� Noting that the canonical momentum density conjugate to 
�x� is
��x� � "
�x�� we can also construct the Hamiltonian�

H �

Z
d�xH �

Z
d�x
�
�
��

� � �
� �r
�� � �

�m
�
�
�
� �����

We can think of the three terms� respectively� as the energy cost of �moving�
in time� the energy cost of �shearing� in space� and the energy cost of having
the �eld around at all� We will investigate this Hamiltonian much further in
Sections ��� and ����

Noether�s Theorem

Next let us discuss the relationship between symmetries and conservation
laws in classical �eld theory� summarized in Noether�s theorem� This theorem
concerns continuous transformations on the �elds 
� which in in�nitesimal
form can be written


�x�� 
��x� � 
�x� � 	�
�x�� �����

where 	 is an in�nitesimal parameter and �
 is some deformation of the �eld
con�guration� We call this transformation a symmetry if it leaves the equa�
tions of motion invariant� This is insured if the action is invariant under ������
More generally� we can allow the action to change by a surface term� since the
presence of such a term would not a�ect our derivation of the Euler�Lagrange
equations of motion ������ The Lagrangian� therefore� must be invariant un�
der ����� up to a ��divergence�

L�x�� L�x� � 	��J ��x�� �����

for some J �� Let us compare this expectation for �L to the result obtained
by varying the �elds�

	�L �
�L
�


�	�
� �

�
�L

����
�

�
���	�
�

� 	��

�
�L

����
�
�


�
� 	
h�L
�


� ��

�
�L

����
�

�i
�
�

����
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The second term vanishes by the Euler�Lagrange equation ������ We set the
remaining term equal to 	��J � and �nd

��j
��x� � �� for j��x� �

�L
����
�

�
�J �� �����

�If the symmetry involves more than one �eld� the �rst term of this expression
for j��x� should be replaced by a sum of such terms� one for each �eld��
This result states that the current j��x� is conserved� For each continuous
symmetry of L� we have such a conservation law�

The conservation law can also be expressed by saying that the charge

Q �
Z

all space

j� d�x �����

is a constant in time� Note� however� that the formulation of �eld theory in
terms of a local Lagrangian density leads directly to the local form of the
conservation law� Eq� ������

The easiest example of such a conservation law arises from a Lagrangian
with only a kinetic term� L � �

� ���
�
�� The transformation 
� 
�	� where

	 is a constant� leaves L unchanged� so we conclude that the current j� � ��

is conserved� As a less trivial example� consider the Lagrangian

L � j��
j� �m�j
j�� �����

where 
 is now a complex �valued �eld� You can easily show that the equation
of motion for this Lagrangian is again the Klein�Gordon equation� ������ This
Lagrangian is invariant under the transformation 
 � ei�
� for an in�nitesi�
mal transformation we have

	�
 � i	
� 	�
� � �i	
�� ���
�

�We treat 
 and 
� as independent �elds� Alternatively� we could work with
the real and imaginary parts of 
�� It is now a simple matter to show that the
conserved Noether current is

j� � i
�
���
��
� 
����
�

�
� �����

�The overall constant has been chosen arbitrarily�� You can check directly that
the divergence of this current vanishes by using the Klein�Gordon equation�
Later we will add terms to this Lagrangian that couple 
 to an electromagnetic
�eld� We will then interpret j� as the electromagnetic current density carried
by the �eld� and the spatial integral of j� as its electric charge�

Noether�s theorem can also be applied to spacetime transformations such
as translations and rotations� We can describe the in�nitesimal translation

x� � x� � a�

alternatively as a transformation of the �eld con�guration


�x� � 
�x � a� � 
�x� � a���
�x��
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The Lagrangian is also a scalar� so it must transform in the same way�

L � L� a���L � L� a���
�
���L
�
�

Comparing this equation to ������ we see that we now have a nonzero J ��
Taking this into account� we can apply the theorem to obtain four separately
conserved currents�

T�
� � �L

����
�
��
�L��� � �����

This is precisely the stress�energy tensor � also called the energy�momentum

tensor� of the �eld 
� The conserved charge associated with time translations
is the Hamiltonian�

H �

Z
T �� d�x �

Z
H d�x� �����

By computing this quantity for the Klein�Gordon �eld� one can recover the
result ������ The conserved charges associated with spatial translations are

P i �

Z
T �i d�x � �

Z
��i
 d�x� �����

and we naturally interpret this as the �physical� momentum carried by the
�eld �not to be confused with the canonical momentum��

��� The Klein�Gordon Field as Harmonic Oscillators

We begin our discussion of quantum �eld theory with a rather formal treat�
ment of the simplest type of �eld� the real Klein�Gordon �eld� The idea is to
start with a classical �eld theory �the theory of a classical scalar �eld gov�
erned by the Lagrangian ������ and then �quantize� it� that is� reinterpret the
dynamical variables as operators that obey canonical commutation relations�y

We will then �solve� the theory by �nding the eigenvalues and eigenstates of
the Hamiltonian� using the harmonic oscillator as an analogy�

The classical theory of the real Klein�Gordon �eld was discussed brie�y
�but su	ciently� in the previous section� the relevant expressions are given in
Eqs� ������ ������ and ������ To quantize the theory� we follow the same pro�
cedure as for any other dynamical system� We promote 
 and � to operators�
and impose suitable commutation relations� Recall that for a discrete system
of one or more particles the commutation relations are�

qi� pj
�
� i�ij ��

qi� qj
�
�
�
pi� pj

�
� ��

yThis procedure is sometimes called second quantization� to distinguish the re�
sulting Klein�Gordon equation �in which � is an operator� from the old one�particle
Klein�Gordon equation �in which � was a wavefunction�� In this book we never adopt
the latter point of view� we start with a classical equation �in which � is a classical
�eld� and quantize it exactly once�
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For a continuous system the generalization is quite natural� since ��x� is the
momentum density� we get a Dirac delta function instead of a Kronecker delta��


�x�� ��y�
�
� i�����x� y���


�x�� 
�y�
�
�
�
��x�� ��y�

�
� ��

������

�For now we work in the Schr#odinger picture where 
 and � do not depend
on time� When we switch to the Heisenberg picture in the next section� these
�equal time� commutation relations will still hold provided that both opera�
tors are considered at the same time��

The Hamiltonian� being a function of 
 and �� also becomes an operator�
Our next task is to �nd the spectrum from the Hamiltonian� Since there is
no obvious way to do this� let us seek guidance by writing the Klein�Gordon
equation in Fourier space� If we expand the classical Klein�Gordon �eld as


�x� t� �

Z
d�p

�����
eip�x 
�p� t�

�with 
��p� � 
��p� so that 
�x� is real�� the Klein�Gordon equation �����
becomes 

��

�t�
�
�jpj� �m�

��

�p� t� � �� �����

This is the same as the equation of motion for a simple harmonic oscillator
with frequency

p �
p
jpj� �m�� ������

The simple harmonic oscillator is a system whose spectrum we already
know how to �nd� Let us brie�y recall how it is done� We write the Hamiltonian
as

HSHO � �
�p

� � �
�

�
��

To �nd the eigenvalues ofHSHO� we write 
 and p in terms of ladder operators�


 �
p
�

�a� ay�� p � �i
r


�
�a� ay�� ������

The canonical commutation relation $
� p% � i is equivalent to�
a� ay
�
� � ������

The Hamiltonian can now be rewritten

HSHO � �aya� �
� ��

The state j�i such that a j�i � � is an eigenstate of H with eigenvalue �
��

the zero�point energy� Furthermore� the commutators�
HSHO� a

y� � ay�
�
HSHO� a

�
� �a

make it easy to verify that the states

jni � �ay�n j�i
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are eigenstates of HSHO with eigenvalues �n� �
� �� These states exhaust the

spectrum�
We can �nd the spectrum of the Klein�Gordon Hamiltonian using the

same trick� but now each Fourier mode of the �eld is treated as an independent
oscillator with its own a and ay� In analogy with ������ we write


�x� �

Z
d�p

�����
p
�p

�
ape

ip�x � aype
�ip�x

�
� ����
�

��x� �

Z
d�p

�����
��i�
r
p
�

�
ape

ip�x � aype
�ip�x

�
� ������

The inverse expressions for ap and ayp in terms of 
 and � are easy to derive
but rarely needed� In the calculations below we will �nd it useful to rearrange
����
� and ������ as follows�


�x� �

Z
d�p

�����
p
�p

�
ap � ayp

�
eip�x� ������

��x� �

Z
d�p

�����
��i�
r
p
�

�
ap � ayp

�
eip�x� ������

The commutation relation ������ becomes�
ap� a

y
p�

�
� ����������p� p��� ������

from which you can verify that the commutator of 
 and � works out correctly��

�x�� ��x��

�
�

Z
d�p d�p�

�����
�i
�

r
p�

p

��
ayp� ap�

�� �ap� ay�p���ei�p�x�p��x��
� i�����x� x��� ������

�If computations such as this one and the next are unfamiliar to you� please
work them out carefully� they are quite easy after a little practice� and are
fundamental to the formalism of the next two chapters��

We are now ready to express the Hamiltonian in terms of ladder operators�
Starting from its expression ����� in terms of 
 and �� we have

H �

Z
d�x

Z
d�p d�p�

�����
ei�p�p

���x
	
�
p
pp�

�

�
ap � ayp

��
ap� � ay�p�

�
�
�p � p� �m�

�
p
pp�

�
ap � ayp

��
ap� � ay�p�

�

�

Z
d�p

�����
p

�
aypap � �

�

�
ap� a

y
p

��
� �����

The second term is proportional to ����� an in�nite c�number� It is simply
the sum over all modes of the zero�point energies p��� so its presence is
completely expected� if somewhat disturbing� Fortunately� this in�nite energy



�� Chapter � The Klein�Gordon Field

shift cannot be detected experimentally� since experiments measure only en�
ergy di�erences from the ground state of H � We will therefore ignore this
in�nite constant term in all of our calculations� It is possible that this en�
ergy shift of the ground state could create a problem at a deeper level in the
theory� we will discuss this matter in the Epilogue�

Using this expression for the Hamiltonian in terms of ap and ayp� it is easy
to evaluate the commutators

$H� ayp% � pa
y
p� $H� ap% � �pap� ������

We can now write down the spectrum of the theory� just as for the harmonic
oscillator� The state j�i such that ap j�i � � for all p is the ground state or
vacuum� and has E � � after we drop the in�nite constant in ������ All other
energy eigenstates can be built by acting on j�i with creation operators� In
general� the state aypa

y
q � � � j�i is an eigenstate of H with energy p�q� � � ��

These states exhaust the spectrum�
Having found the spectrum of the Hamiltonian� let us try to interpret its

eigenstates� From ����� and a calculation similar to ����� we can write down
the total momentum operator�

P � �
Z
d�x ��x�r
�x� �

Z
d�p

�����
p aypap� ������

So the operator ayp creates momentum p and energy p �
pjpj� �m�� Sim�

ilarly� the state aypa
y
q � � � j�i has momentum p� q� � � �� It is quite natural to

call these excitations particles� since they are discrete entities that have the
proper relativistic energy�momentum relation� �By a particle we do not mean
something that must be localized in space� ayp creates particles in momentum
eigenstates�� From now on we will refer to p as Ep �or simply E�� since it
really is the energy of a particle� Note� by the way� that the energy is always
positive� Ep � �

pjpj� �m��
This formalism also allows us to determine the statistics of our particles�

Consider the two�particle state aypa
y
q j�i� Since ayp and ayq commute� this state

is identical to the state ayqa
y
p j�i in which the two particles are interchanged�

Moreover� a single mode p can contain arbitrarily many particles �just as a
simple harmonic oscillator can be excited to arbitrarily high levels�� Thus we
conclude that Klein�Gordon particles obey Bose�Einstein statistics�

We naturally choose to normalize the vacuum state so that h�j�i � �
The one�particle states jpi � ayp j�i will also appear quite often� and it is
worthwhile to adopt a convention for their normalization� The simplest nor�
malization hpjqi � ����������p � q� �which many books use� is not Lorentz
invariant� as we can demonstrate by considering the e�ect of a boost in the
��direction� Under such a boost we have p�� � ��p� � �E�� E� � ��E � �p���
Using the delta function identity

�
�
f�x�� f�x��

�
�



jf ��x��j��x� x��� ������
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we can compute

�����p� q� � �����p� � q�� � dp
�
�

dp�

� �����p� � q���
�
 � �

dE

dp�

�
� �����p� � q�� �

E
�E � �p��

� �����p� � q��E
�

E
�

The problem is that volumes are not invariant under boosts� a box whose
volume is V in its rest frame has volume V�� in a boosted frame� due to
Lorentz contraction� But from the above calculation� we see that the quantity
Ep�

����p� q� is Lorentz invariant� We therefore de�ne

jpi �p�Ep a
y
p j�i � ����
�

so that

hpjqi � �Ep����
������p� q�� ������

�The factor of � is unnecessary� but is convenient because of the factor of � in
Eq� ����
���

On the Hilbert space of quantum states� a Lorentz transformation & will
be implemented as some unitary operator U�&�� Our normalization condition
����
� then implies that

U�&� jpi � j&pi � ������

If we prefer to think of this transformation as acting on the operator ayp� we
can also write

U�&� aypU
��&� �

s
E	p

Ep
ay	p� ������

With this normalization we must divide by �Ep in other places� For ex�
ample� the completeness relation for the one�particle states is

���� particle �

Z
d�p

�����
jpi 

�Ep
hpj � ������

where the operator on the left is simply the identity within the subspace of
one�particle states� and zero in the rest of the Hilbert space� Integrals of this
form will occur quite often� in fact� the integralZ

d�p

�����


�Ep
�

Z
d�p

�����
������p� �m��

���
p���

������

is a Lorentz�invariant ��momentum integral� in the sense that if f�p� is
Lorentz�invariant� so is

R
d�p f�p����Ep�� The integration can be thought of
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Figure ���� The Lorentz�invariant �momentum integral is over the upper
branch of the hyperboloid p� � m��

as being over the p� � � branch of the hyperboloid p� � m� in ��momentum
space �see Fig� �����

Finally let us consider the interpretation of the state 
�x� j�i� From the
expansion ����
� we see that


�x� j�i �
Z

d�p

�����


�Ep
e�ip�x jpi �����

is a linear superposition of single�particle states that have well�de�ned mo�
mentum� Except for the factor ��Ep� this is the same as the familiar nonrel�
ativistic expression for the eigenstate of position jxi� in fact the extra factor
is nearly constant for small �nonrelativistic� p� We will therefore put forward
the same interpretation� and claim that the operator 
�x�� acting on the vac�
uum� creates a particle at position x� This interpretation is further con�rmed
when we compute

h�j
�x� jpi � h�j
Z

d�p�

�����
p
�Ep�

�
ap�e

ip��x � ayp�e
�ip��x

�p
�Ep a

y
p j�i

� eip�x� ������

We can interpret this as the position�space representation of the single�particle
wavefunction of the state jpi� just as in nonrelativistic quantum mechanics
hxjpi � eip�x is the wavefunction of the state jpi�
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��� The Klein�Gordon Field in Space�Time

In the previous section we quantized the Klein�Gordon �eld in the Schr#odinger
picture� and interpreted the resulting theory in terms of relativistic particles�
In this section we will switch to the Heisenberg picture� where it will be easier
to discuss time�dependent quantities and questions of causality� After a few
preliminaries� we will return to the question of acausal propagation raised in
Section ��� We will also derive an expression for the Klein�Gordon propagator�
a crucial part of the Feynman rules to be developed in Chapter ��

In the Heisenberg picture� we make the operators 
 and � time�dependent
in the usual way�


�x� � 
�x� t� � eiHt
�x�e�iHt � ������

and similarly for ��x� � ��x� t�� The Heisenberg equation of motion�

i
�

�t
O � $O� H %� ������

allows us to compute the time dependence of 
 and ��

i
�

�t

�x� t� �

h

�x� t��

Z
d�x�
n
�
��

��x�� t� � �
�

�r
�x�� t��� � �
�m

�
��x�� t�
oi

�

Z
d�x�
�
i�����x� x����x�� t�

�
� i��x� t��

i
�

�t
��x� t� �

h
��x� t��

Z
d�x�
n
�
��

��x�� t� � �
�
�x

�� t�
��r� �m�

�

�x�� t�

oi
�

Z
d�x�
�
�i�����x� x����r� �m�

�

�x�� t�

�
� �i��r� �m�

�

�x� t��

Combining the two results gives

��

�t�

 �
�r� �m�

�

� ����
�

which is just the Klein�Gordon equation�
We can better understand the time dependence of 
�x� and ��x� by writ�

ing them in terms of creation and annihilation operators� First note that

Hap � ap�H �Ep��

and hence

Hnap � ap�H �Ep�
n�

for any n� A similar relation �with � replaced by �� holds for ayp� Thus we
have derived the identities

eiHtape
�iHt � ape

�iEpt� eiHtaype
�iHt � aype

iEpt� ������



�� Chapter � The Klein�Gordon Field

which we can use on expression ����
� for 
�x� to �nd the desired expression
for the Heisenberg operator 
�x�� according to ������� �We will always use the
symbols ap and ayp to represent the time�independent� Schr#odinger�picture
ladder operators�� The result is


�x� t� �

Z
d�p

�����
p
�Ep

�
ape

�ip�x � aype
ip�x
����
p�
Ep

�

��x� t� �
�

�t

�x� t��

������

It is worth mentioning that we can perform the same manipulations with
P instead of H to relate 
�x� to 
���� In analogy with ������� one can show

e�iP�xapeiP�x � ape
ip�x� e�iP�xaype

iP�x � aype
�ip�x� ������

and therefore

�x� � ei�Ht�P�x�
���e�i�Ht�P�x�

� eiP �x
���e�iP �x�
������

where P� � �H�P�� �The notation here is confusing but standard� Remember
that P is the momentum operator� whose eigenvalue is the total momentum of
the system� On the other hand� p is the momentum of a single Fourier mode
of the �eld� which we interpret as the momentum of a particle in that mode�
For a one�particle state of well�de�ned momentum� p is the eigenvalue of P��

Equation ������ makes explicit the dual particle and wave interpretations
of the quantum �eld 
�x�� On the one hand� 
�x� is written as a Hilbert space
operator� which creates and destroys the particles that are the quanta of �eld
excitation� On the other hand� 
�x� is written as a linear combination of solu�
tions �eip�x and e�ip�x� of the Klein�Gordon equation� Both signs of the time

dependence in the exponential appear� We �nd both e�ip
�t and e�ip

�t� al�
though p� is always positive� If these were single�particle wavefunctions� they
would correspond to states of positive and negative energy� let us refer to
them more generally as positive� and negative�frequency modes� The connec�
tion between the particle creation operators and the waveforms displayed here
is always valid for free quantum �elds� A positive�frequency solution of the
�eld equation has as its coe	cient the operator that destroys a particle in
that single�particle wavefunction� A negative�frequency solution of the �eld
equation� being the Hermitian conjugate of a positive�frequency solution� has
as its coe	cient the operator that creates a particle in that positive�energy
single�particle wavefunction� In this way� the fact that relativistic wave equa�
tions have both positive� and negative�frequency solutions is reconciled with
the requirement that a sensible quantum theory contain only positive excita�
tion energies�
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Causality

Now let us return to the question of causality raised at the beginning of this
chapter� In our present formalism� still working in the Heisenberg picture� the
amplitude for a particle to propagate from y to x is h�j
�x�
�y� j�i� We will
call this quantity D�x � y�� Each operator 
 is a sum of a and ay operators�
but only the term h�j apayq j�i � ����������p� q� survives in this expression�
It is easy to check that we are left with

D�x� y� � h�j
�x�
�y� j�i �
Z

d�p

�����


�Ep
e�ip��x�y�� ���
��

We have already argued in ������ that integrals of this form are Lorentz in�
variant� Let us now evaluate this integral for some particular values of x� y�

First consider the case where the di�erence x � y is purely in the time�
direction� x�� y� � t� x�y � �� �If the interval from y to x is timelike� there
is always a frame in which this is the case�� Then we have

D�x� y� �
��

�����

�Z
�

dp
p�

�
p
p� �m�

e�i
p
p��m�t

�


���

�Z
m

dE
p
E� �m� e�iEt

�
t��

e�imt�

���
�

Next consider the case where x�y is purely spatial� x��y� � �� x�y � r�
The amplitude is then

D�x� y� �

Z
d�p

�����


�Ep
eip�r

�
��

�����

�Z
�

dp
p�

�Ep

eipr � e�ipr

ipr

�
�i

������r

�Z
��

dp
p eiprp
p� �m�

�

The integrand� considered as a complex function of p� has branch cuts on the
imaginary axis starting at �im �see Fig� ����� To evaluate the integral we
push the contour up to wrap around the upper branch cut� De�ning � � �ip�
we obtain



���r

�Z
m

d�
� e��rp
�� �m�

�
r��

e�mr� ���
��



�� Chapter � The Klein�Gordon Field

Figure ���� Contour for evaluating propagation amplitude D�x� y� over a
spacelike interval�

So again we �nd that outside the light�cone� the propagation amplitude is
exponentially vanishing but nonzero�

To really discuss causality� however� we should ask not whether particles
can propagate over spacelike intervals� but whether a measurement performed
at one point can a�ect a measurement at another point whose separation from
the �rst is spacelike� The simplest thing we could try to measure is the �eld

�x�� so we should compute the commutator $
�x�� 
�y�%� if this commutator
vanishes� one measurement cannot a�ect the other� In fact� if the commu�
tator vanishes for �x � y�� � �� causality is preserved quite generally� since
commutators involving any function of 
�x�� including ��x� � �
��t� would
also have to vanish� Of course we know from Eq� ������ that the commutator
vanishes for x� � y�� now let�s do the more general computation��


�x�� 
�y�
�
�

Z
d�p

�����
p
�Ep

Z
d�q

�����
p
�Eq

	
h�
ape

�ip�x � aype
ip�x�� �aqe�iq�y � ayqe

iq�y�i
�

Z
d�p

�����


�Ep

�
e�ip��x�y� � eip��x�y�

�
� D�x� y��D�y � x�� ���
��

When �x � y�� � �� we can perform a Lorentz transformation on the second
term �since each term is separately Lorentz invariant�� taking �x � y� �
��x� y�� as shown in Fig� ���� The two terms are therefore equal and cancel
to give zero� causality is preserved� Note that if �x � y�� � � there is no
continuous Lorentz transformation that takes �x�y� �� ��x�y�� In this case�
by Eq� ���
�� the amplitude is �fortunately� nonzero� roughly �e�imt � eimt�
for the special case x� y � �� Thus we conclude that no measurement in the
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Figure ���� When x � y is spacelike� a continuous Lorentz transformation
can take �x� y� to ��x� y��

Klein�Gordon theory can a�ect another measurement outside the light�cone�
Causality is maintained in the Klein�Gordon theory just as suggested at

the end of Section ��� To understand this mechanism properly� however� we
should broaden the context of our discussion to include a complex Klein�
Gordon �eld� which has distinct particle and antiparticle excitations� As was
mentioned in the discussion of Eq� ���
�� we can add a conserved charge to
the Klein�Gordon theory by considering the �eld 
�x� to be complex� rather
than real�valued� When the complex scalar �eld theory is quantized �see Prob�
lem ����� 
�x� will create positively charged particles and destroy negatively
charged ones� while 
y�x� will perform the opposite operations� Then the com�
mutator $
�x�� 
y�y�% will have nonzero contributions� which must delicately
cancel outside the light�cone to preserve causality� The two contributions have
the spacetime interpretation of the two terms in ���
��� but with charges at�
tached� The �rst term will represent the propagation of a negatively charged
particle from y to x� The second term will represent the propagation of a
positively charged particle from x to y� In order for these two processes to
be present and give canceling amplitudes� both of these particles must exist�
and they must have the same mass� In quantum �eld theory� then� causality
requires that every particle have a corresponding antiparticle with the same
mass and opposite quantum numbers �in this case electric charge�� For the
real�valued Klein�Gordon �eld� the particle is its own antiparticle�

The Klein�Gordon Propagator

Let us study the commutator $
�x�� 
�y�% a little further� Since it is a
c�number� we can write $
�x�� 
�y�% � h�j $
�x�� 
�y�% j�i� This can be rewritten
as a four�dimensional integral as follows� assuming for now that x� � y��

h�j �
�x�� 
�y�� j�i � Z d�p

�����


�Ep

�
e�ip��x�y� � eip��x�y�

�
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Z
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�����

	


�Ep
e�ip��x�y�

���
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�


��Ep e
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���
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�Ep



�

x��y�

Z
d�p

�����

Z
dp�

��i

�
p� �m�

e�ip��x�y�� ���
��

In the last step the p� integral is to be performed along the following contour�

For x� � y� we can close the contour below� picking up both poles to obtain
the previous line of ���
��� For x� � y� we may close the contour above�
giving zero� Thus the last line of ���
��� together with the prescription for
going around the poles� is an expression for what we will call

DR�x� y� � ��x� � y�� h�j $
�x�� 
�y�% j�i � ���

�

To understand this quantity better� let�s do another computation�

��� �m��DR�x� y� �
�
����x� � y��

� h�j $
�x�� 
�y�% j�i
� �
�
����x

� � y��
��
�� h�j $
�x�� 
�y�% j�i�

� ��x� � y�� ��� �m�� h�j $
�x�� 
�y�% j�i
� ���x� � y�� h�j $��x�� 
�y�% j�i

� ���x� � y�� h�j $��x�� 
�y�% j�i� �

� �i�����x� y�� ���
��

This says that DR�x� y� is a Green�s function of the Klein�Gordon operator�
Since it vanishes for x� � y�� it is the retarded Green�s function�

If we had not already derived expression ���
��� we could �nd it by Fourier
transformation� Writing

DR�x � y� �

Z
d�p

�����
e�ip��x�y� eDR�p�� ���
��

we obtain an algebraic expression for eDR�p��

��p� �m�� eDR�p� � �i�
Thus we immediately arrive at the result

DR�x� y� �

Z
d�p

�����
i

p� �m�
e�ip��x�y�� ���
��
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The p��integral of ���
�� can be evaluated according to four di�erent con�
tours� of which that used in ���
�� is only one� In Chapter � we will �nd that
a di�erent pole prescription�

is extremely useful� it is called the Feynman prescription� A convenient way
to remember it is to write

DF �x � y� �
Z

d�p

�����
i

p� �m� � i�
e�ip��x�y�� ���
��

since the poles are then at p� � ��Ep�i��� displaced properly above and below
the real axis� When x� � y� we can perform the p� integral by closing the
contour below� obtaining exactly the propagation amplitude D�x� y� ���
���
When x� � y� we close the contour above� obtaining the same expression but
with x and y interchanged� Thus we have

DF �x� y� �

	
D�x� y� for x� � y�

D�y � x� for x� � y�

� ��x� � y�� h�j
�x�
�y� j�i� ��y� � x�� h�j
�y�
�x� j�i
� h�jT
�x�
�y� j�i � ������

The last line de�nes the �time�ordering� symbol T � which instructs us to
place the operators that follow in order with the latest to the left� By applying
����m�� to the last line� you can verify directly that DF is a Green�s function
of the Klein�Gordon operator�

Equations ���
�� and ������ are� from a practical point of view� the most
important results of this chapter� The Green�s function DF �x � y� is called
the Feynman propagator for a Klein�Gordon particle� since it is� after all� a
propagation amplitude� Indeed� the Feynman propagator will turn out to be
part of the Feynman rules� DF �x�y� �or eDF �p�� is the expression that we will
attach to internal lines of Feynman diagrams� representing the propagation of
virtual particles�

Nevertheless we are still a long way from being able to do any real calcu�
lations� since so far we have talked only about the free Klein�Gordon theory�
where the �eld equation is linear and there are no interactions� Individual par�
ticles live in their isolated modes� oblivious to each others� existence and to
the existence of any other species of particles� In such a theory there is no hope
of making any observations� by scattering or any other means� On the other
hand� the formalism we have developed is extremely important� since the free
theory forms the basis for doing perturbative calculations in the interacting
theory�
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Particle Creation by a Classical Source

There is one type of interaction� however� that we are already equipped to
handle� Consider a Klein�Gordon �eld coupled to an external� classical source
�eld j�x�� That is� consider the �eld equation

��� �m��
�x� � j�x�� �����

where j�x� is some �xed� known function of space and time that is nonzero
only for a �nite time interval� If we start in the vacuum state� what will we
�nd after j�x� has been turned on and o� again�

The �eld equation ����� follows from the Lagrangian

L � �
� ���
�

� � �
�m

�
� � j�x�
�x�� ������

But if j�x� is turned on for only a �nite time� it is easiest to solve the problem
using the �eld equation directly� Before j�x� is turned on� 
�x� has the form


��x� �

Z
d�p

�����
p
�Ep

�
ape

�ip�x � aype
ip�x��

If there were no source� this would be the solution for all time� With a source�
the solution of the equation of motion can be constructed using the retarded
Green�s function�


�x� � 
��x� � i

Z
d�y DR�x� y�j�y�

� 
��x� � i

Z
d�y

Z
d�p

�����


�Ep
��x� � y��

	 �e�ip��x�y� � eip��x�y�
�
j�y�� ������

If we wait until all of j is in the past� the theta function equals  in the whole
domain of integration� Then 
�x� involves only the Fourier transform of j�

'��p� �

Z
d�y eip�yj�y��

evaluated at ��momenta p such that p� � m�� It is natural to group the
positive�frequency terms together with ap and the negative�frequency terms
with ayp� this yields the expression


�x� �

Z
d�p

�����
p
�Ep

	�
ap �

ip
�Ep

'��p�
�
e�ip�x � h�c�



� ������

You can now guess �or compute� the form of the Hamiltonian after j�x�
has acted� Just replace ap with

�
ap � i'��p��

p
�Ep
�
to obtain

H �

Z
d�p

�����
Ep

�
ayp �

ip
�Ep

'���p�
��

ap �
ip
�Ep

'��p�
�
�
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The energy of the system after the source has been turned o� is

h�jH j�i �
Z

d�p

�����


�
j'��p�j�� ����
�

where j�i still denotes the ground state of the free theory� We can interpret
these results in terms of particles by identifying j'��p�j���Ep as the probability
density for creating a particle in the mode p� Then the total number of particles
produced is Z

dN �

Z
d�p

�����


�Ep
j'��p�j�� ������

Only those Fourier components of j�x� that are in resonance with on�mass�
shell �i�e�� p� � m�� Klein�Gordon waves are e�ective at creating particles�

We will return to this subject in Problem ��� In Chapter � we will study
the analogous problem of photon creation by an accelerated electron �brems�
strahlung��

Problems

��� Classical electromagnetism �with no sources� follows from the action

S �

Z
d�x
�
� �
�F��F

��
�
� where F�� � ��A� � ��A��

�a� Derive Maxwell�s equations as the Euler�Lagrange equations of this action� treat�
ing the components A��x� as the dynamical variables� Write the equations in
standard form by identifying Ei � �F �i and �ijkBk � �F ij �

�b� Construct the energy�momentum tensor for this theory� Note that the usual
procedure does not result in a symmetric tensor� To remedy that� we can add to
T�� a term of the form ��K

��� � where K��� is antisymmetric in its �rst two
indices� Such an object is automatically divergenceless� sobT�� � T�� � ��K

���

is an equally good energy�momentum tensor with the same globally conserved
energy and momentum� Show that this construction� with

K��� � F��A� �

leads to an energy�momentum tensor bT that is symmetric and yields the standard
formulae for the electromagnetic energy and momentum densities�

E � �
� �E

� �B��� S � E�B�

��� The complex scalar eld� Consider the �eld theory of a complex�valued scalar
�eld obeying the Klein�Gordon equation� The action of this theory is

S �

Z
d�x ����

�����m������
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It is easiest to analyze this theory by considering ��x� and ���x�� rather than the real
and imaginary parts of ��x�� as the basic dynamical variables�

�a� Find the conjugate momenta to ��x� and ���x� and the canonical commutation
relations� Show that the Hamiltonian is

H �

Z
d�x ���� �r�� � r��m������

Compute the Heisenberg equation of motion for ��x� and show that it is indeed
the Klein�Gordon equation�

�b� Diagonalize H by introducing creation and annihilation operators� Show that
the theory contains two sets of particles of mass m�

�c� Rewrite the conserved charge

Q �

Z
d�x

i

�
����� � ���

in terms of creation and annihilation operators� and evaluate the charge of the
particles of each type�

�d� Consider the case of two complex Klein�Gordon �elds with the same mass� Label
the �elds as �a�x�� where a � �� �� Show that there are now four conserved
charges� one given by the generalization of part �c�� and the other three given
by

Qi �

Z
d�x

i

�
���a�	

i�ab�
�
b � �a�	

i�ab�b��

where 	i are the Pauli sigma matrices� Show that these three charges have the
commutation relations of angular momentum �SU����� Generalize these results
to the case of n identical complex scalar �elds�

��� Evaluate the function

h�j��x���y� j�i � D�x� y� �

Z
d�p

�����
�

�Ep
e�ip��x�y��

for �x� y� spacelike so that �x� y�� � �r�� explicitly in terms of Bessel functions�



Chapter �

The Dirac Field

Having exhaustively treated the simplest relativistic �eld equation� we now
move on to the second simplest� the Dirac equation� You may already be
familiar with the Dirac equation in its original incarnation� that is� as a single�
particle quantum�mechanical wave equation�! In this chapter our viewpoint
will be quite di�erent� First we will rederive the Dirac equation as a classical
relativistic �eld equation� with special emphasis on its relativistic invariance�
Then� in Section ��
� we will quantize the Dirac �eld in a manner similar to
that used for the Klein�Gordon �eld�

��� Lorentz Invariance in Wave Equations

First we must address a question that we swept over in Chapter �� What do
we mean when we say that an equation is �relativistically invariant�� A rea�
sonable de�nition is the following� If 
 is a �eld or collection of �elds and D
is some di�erential operator� then the statement �D
 � � is relativistically
invariant� means that if 
�x� satis�es this equation� and we perform a rota�
tion or boost to a di�erent frame of reference� then the transformed �eld� in
the new frame of reference� satis�es the same equation� Equivalently� we can
imagine physically rotating or boosting all particles or �elds by a common
angle or velocity� again� the equation D
 � � should be true after the trans�
formation� We will adopt this �active� point of view toward transformations
in the following analysis�

The Lagrangian formulation of �eld theory makes it especially easy to
discuss Lorentz invariance� An equation of motion is automatically Lorentz
invariant by the above de�nition if it follows from a Lagrangian that is a
Lorentz scalar� This is an immediate consequence of the principle of least
action� If boosts leave the Lagrangian unchanged� the boost of an extremum
in the action will be another extremum�

�This subject is covered� for example� in Schi� ��	�
�� Chapter �� Baym ��	�	��
Chapter �� Sakurai ��	���� Chapter � Although the present chapter is self�contained�
we recommend that you also study the single�particle Dirac equation at some point�

��
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As an example� consider the Klein�Gordon theory� We can write an arbi�
trary Lorentz transformation as

x� � x�� � &��x
� � ����

for some �	 � matrix &� What happens to the Klein�Gordon �eld 
�x� under
this transformation� Think of the �eld 
 as measuring the local value of some
quantity that is distributed through space� If there is an accumulation of this
quantity at x � x�� 
�x� will have a maximum at x�� If we now transform the
original distribution by a boost� the new distribution will have a maximum at
x � &x�� This is illustrated in Fig� ���a�� The corresponding transformation
of the �eld is


�x� � 
��x� � 
�& �x�� �����

That is� the transformed �eld� evaluated at the boosted point� gives the same
value as the original �eld evaluated at the point before boosting�

We should check that this transformation leaves the form of the Klein�
Gordon Lagrangian unchanged� According to ������ the mass term �

�m
�
��x�

is simply shifted to the point �& �x�� The transformation of ��
�x� is

��
�x�� ��
�

�& �x�

�
� �& �������
��&

�x�� �����

Since the metric tensor g�� is Lorentz invariant� the matrices & � obey the
identity

�& ���� �&
���� g

�� � g�� � �����

Using this relation� we can compute the transformation law of the kinetic term
of the Klein�Gordon Lagrangian�

���
�x��
� � g��

�
��


��x�
��
��


��x�
�

� g��
�
�& ������


��
�& ������


�
�& �x�

� g��
�
��

��
��

�
�& �x�

� ���
�
��& �x��

Thus� the whole Lagrangian is simply transformed as a scalar�

L�x� � L�& �x�� ���
�

The action S� formed by integrating L over spacetime� is Lorentz invariant�
A similar calculation shows that the equation of motion is invariant�

��� �m��
��x� �
�
�& �������&

������ �m�
�

�& �x�

� �g������ �m��
�& �x�

� ��

The transformation law ����� used for 
 is the simplest possible transfor�
mation law for a �eld� It is the only possibility for a �eld that has just one
component� But we know examples of multiple�component �elds that trans�
form in more complicated ways� The most familiar case is that of a vector �eld�
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Figure ���� When a rotation is performed on a vector �eld� it a�ects the
orientation of the vector as well as the location of the region containing the
con�guration�

such as the ��current density j��x� or the vector potential A��x�� In this case�
the quantity that is distributed in spacetime also carries an orientation� which
must be rotated or boosted� As shown in Fig� ���b�� the orientation must be
rotated forward as the point of evaluation of the �eld is changed�

under ��dimensional rotations� V i�x�� RijV j�R �x��

under Lorentz transformations� V ��x�� &��V
��& �x��

Tensors of arbitrary rank can be built out of vectors by adding more indices�
with correspondingly more factors of & in the transformation law� Using such
vector and tensor �elds we can write a variety of Lorentz�invariant equations�
for example� Maxwell�s equations�

��F�� � � or ��A� � ���
�A� � �� �����

which follow from the Lagrangian

LMaxwell � � �
� �F���

� � � �
� ���A� � ��A��

�� �����

In general� any equation in which each term has the same set of uncontracted
Lorentz indices will naturally be invariant under Lorentz transformations�

This method of tensor notation yields a large class of Lorentz�invariant
equations� but it turns out that there are still more� How do we �nd them�
We could try to systematically �nd all possible transformation laws for a �eld�
Then it would not be hard to write invariant Lagrangians� For simplicity� we
will restrict our attention to linear transformations� so that� if (a is an n
component multiplet� the Lorentz transformation law is given by an n 	 n
matrix M�&��

(a�x��Mab�&�(b�&
�x�� �����
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It can be shown that the most general nonlinear transformation laws can be
built from these linear transformations� so there is no advantage in considering
transformations more general than ������ In the following discussion� we will
suppress the change in the �eld argument and write the transformation �����
in the form

(�M�&�(� �����

What are the possible allowed forms for the matrices M�&�� The basic
restriction on M�&� is found by imagining two successive transformations� &
and &�� The net result must be a new Lorentz transformation &��� that is�
the Lorentz transformations form a group� This gives a consistency condition
that must be satis�ed by the matrices M�&�� Under the sequence of two
transformations�

(�M�&��M�&�( �M�&���(� �����

for &�� � &�&� Thus the correspondence between the matrices M and the
transformations & must be preserved under multiplication� In mathematical
language� we say that the matrices M must form an n�dimensional represen�
tation of the Lorentz group� So our question now is rephrased in mathemati�
cal language� What are the ��nite�dimensional� matrix representations of the
Lorentz group�

Before answering this question for the Lorentz group� let us consider a sim�
pler group� the rotation group in three dimensions� This group has representa�
tions of every dimensionality n� familiar in quantum mechanics as the matrices
that rotate the n�component wavefunctions of particles of di�erent spins� The
dimensionality is related to the spin quantum number s by n � �s � � The
most important nontrivial representation is the two�dimensional representa�
tion� corresponding to spin ��� The matrices of this representation are the
�	 � unitary matrices with determinant � which can be expressed as

U � e�i�
i�i��� ����

where �i are three arbitrary parameters and �i are the Pauli sigma matrices�
For any continuous group� the transformations that lie in�nitesimally close

to the identity de�ne a vector space� called the Lie algebra of the group�
The basis vectors for this vector space are called the generators of the Lie
algebra� or of the group� For the rotation group� the generators are the angular
momentum operators J i� which satisfy the commutation relations�

J i� Jj
�
� i�ijkJk� �����

The �nite rotation operations are formed by exponentiating these operators�
In quantum mechanics� the operator

R � exp
��i�iJ i� �����

gives the rotation by an angle j�j about the axis )�� The commutation rela�
tions of the operators J i determine the multiplication laws of these rotation
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operators� Thus� a set of matrices satisfying the commutation relations �����
produces� through exponentiation as in ������ a representation of the rotation
group� In the example given in the previous paragraph� the representation of
the angular momentum operators

J i � �i

�
�����

produces the representation of the rotation group given in Eq� ����� It is
generally true that one can �nd matrix representations of a continuous group
by �nding matrix representations of the generators of the group �which must
satisfy the proper commutation relations�� then exponentiating these in�nites�
imal transformations�

For our present problem� we need to know the commutation relations
of the generators of the group of Lorentz transformations� For the rotation
group� one can work out the commutation relations by writing the generators
as di�erential operators� from the expression

J � x	 p � x	 ��ir�� ���
�

the angular momentum commutation relations ����� follow straightforwardly�
The use of the cross product in ���
� is special to the case of three dimensions�
However� we can also write the operators as an antisymmetric tensor�

J ij � �i�xirj � xjri��

so that J� � J�� and so on� The generalization to four�dimensional Lorentz
transformations is now quite natural�

J�� � i�x��� � x����� �����

We will soon see that these six operators generate the three boosts and three
rotations of the Lorentz group�

To determine the commutation rules of the Lorentz algebra� we can now
simply compute the commutators of the di�erential operators ������ The
result is

$J�� � J�� % � i
�
g��J�� � g��J�� � g��J�� � g��J��

�
� �����

Any matrices that are to represent this algebra must obey these same com�
mutation rules�

Just to see that we have this right� let us look at one particular represen�
tation �which we will simply pull out of a hat�� Consider the �	 � matrices

�J ����	 � i�����
�
	 � ��	�

�
��� �����

�Here � and � label which of the six matrices we want� while 	 and � la�
bel components of the matrices�� You can easily verify that these matrices
satisfy the commutation relations ������ In fact� they are nothing but the
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matrices that act on ordinary Lorentz ��vectors� To see this� parametrize an
in�nitesimal transformation as follows�

V � � ���	 � i

�
���J ����	

�
V 	 � �����

where V is a ��vector and �� � an antisymmetric tensor� gives the in�nites�
imal angles� For example� consider the case �� � ��� � �� with all other
components of  equal to zero� Then Eq� ����� becomes

V �

�B�
 � � �
�  � �
� �  �
� � � 

�CAV� ������

which is just an in�nitesimal rotation in the xy�plane� You can also verify
that setting �� � ��� � � gives

V �

�B�
 � � �
�  � �
� �  �
� � � 

�CAV� �����

an in�nitesimal boost in the x�direction� The other components of  generate
the remaining boosts and rotations in a similar manner�

��� The Dirac Equation

Now that we have seen one �nite�dimensional representation of the Lorentz
group� the logical next step would be to develop the formalism for �nding
all other representations� Although this is not very di	cult to do �see Prob�
lem ���� it is hardly necessary for our purposes� since we are mainly interested
in the representation�s� corresponding to spin ���

We can �nd such a representation using a trick due to Dirac� Suppose
that we had a set of four n 	 n matrices �� satisfying the anticommutation
relations�

��� ��
� � ���� � ���� � �g�� 	 �n�n �Dirac algebra�� ������

Then we could immediately write down an n�dimensional representation of
the Lorentz algebra� Here it is�

S�� �
i

�

�
��� ��

�
� ������

By repeated use of ������� it is easy to verify that these matrices satisfy the
commutation relations ������

This computation goes through in any dimensionality� with Lorentz or
Euclidean metric� In particular� it should work in three�dimensional Euclidean
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space� and in fact we can simply write

�j � i�j �Pauli sigma matrices��

so that
�
�i� �j

�
� ���ij �

The factor of i in the �rst line and the minus sign in the second line are purely
conventional� The matrices representing the Lorentz algebra are then

Sij � �
��
ijk�k� ������

which we recognize as the two�dimensional representation of the rotation
group�

Now let us �nd Dirac matrices �� for four�dimensional Minkowski space�
It turns out that these matrices must be at least � 	 �� �There is no fourth
� 	 � matrix� for example� that anticommutes with the three Pauli sigma
matrices�� Further� all �	 � representations of the Dirac algebra are unitarily
equivalent�y We thus need only write one explicit realization of the Dirac
algebra� One representation� in �	 � block form� is

�� �

�
� 
 �

�
� �i �

�
� �i

��i �

�
� ����
�

This representation is called the Weyl or chiral representation� We will �nd
it an especially convenient choice� and we will use it exclusively throughout
this book� �Be careful� however� since many �eld theory textbooks choose a
di�erent representation� in which �� is diagonal� Furthermore� books that use
chiral representations often make a di�erent choice of sign conventions��

In our representation� the boost and rotation generators are

S�i �
i

�

�
��� �i

�
� � i

�

�
�i �
� ��i

�
� ������

and

Sij �
i

�

�
�i� �j

�
�



�
�ijk
�
�k �
� �k

�
� 

�
�ijk*k� ������

A four�component �eld � that transforms under boosts and rotations accord�
ing to ������ and ������ is called a Dirac spinor� Note that the rotation gen�
erator Sij is just the three�dimensional spinor transformation matrix ������
replicated twice� The boost generators S�i are not Hermitian� and thus our
implementation of boosts is not unitary �this was also true of the vector rep�
resentation ������� In fact the Lorentz group� being �noncompact�� has no
faithful� �nite�dimensional representations that are unitary� But that does not
matter to us� since � is not a wavefunction� it is a classical �eld�

yThis statement and the preceding one follow from the general theory of the
representations of the Lorentz group derived in Problem ���
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Now that we have the transformation law for �� we should look for an
appropriate �eld equation� One possibility is simply the Klein�Gordon equa�
tion�

��� �m��� � �� ������

This works because the spinor transformation matrices ������ and ������ op�
erate only in the �internal� space� they go right through the di�erential oper�
ator� But it is possible to write a stronger� �rst�order equation� which implies
������ but contains additional information� To do this we need to know one
more property of the � matrices� With a short computation you can verify
that

$��� S�� % � �J ������
� �

or equivalently��
 � i

���S
��
�
��
�
� i

���S
��
�
�
�
� i

���J ��
��
��

� �

This equation is just the in�nitesimal form of

& �
�

�
��& �

�
� &���

� � ������

where

& �
�
� exp

�� i

�
��S

��
�

������

is the spinor representation of the Lorentz transformation & �compare �������
Equation ������ says that the � matrices are invariant under simultaneous
rotations of their vector and spinor indices �just like the �i under spatial
rotations�� In other words� we can �take the vector index � on �� seriously��
and dot �� into �� to form a Lorentz�invariant di�erential operator�

We are now ready to write down the Dirac equation� Here it is�

�i���� �m���x� � �� �����

To show that it is Lorentz invariant� write down the Lorentz�transformed
version of the left�hand side and calculate��

i���� �m
�
��x�� �i���&������� �m

�
& �

�
��& �x�

� & �
�
& �

�

��
i���&������� �m

�
& �

�
��& �x�

� & �
�

�
i& �

�

�
��& �

�
�&������� �m

�
��& �x�

� & �
�

�
i&���

��&������� �m
�
��& �x�

� & �
�

�
i���� �m

�
��& �x�

� ��
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To see that the Dirac equation implies the Klein�Gordon equation� act on the
left with ��i���� �m��

� � ��i���� �m��i���� �m��

� ��������� �m���

� � ��f��� ��g���� �m���

� ��� �m����

To write down a Lagrangian for the Dirac theory� we must �gure out how

to multiply two Dirac spinors to form a Lorentz scalar� The obvious guess�

�y�� does not work� Under a Lorentz boost this becomes �y& �
�

y & �
�
�� if the

boost matrix were unitary� we would have & �
�

y � & �
�

�
and everything would be

�ne� But & �
�
is not unitary� because the generators ������ are not Hermitian�

The solution is to de�ne
� � �y��� ������

Under an in�nitesimal Lorentz transformation parametrized by �� � we have

� � �y
�
 � i

����S
���y
�
��� The sum over � and � has six distinct nonzero

terms� In the rotation terms� where � and � are both nonzero� �S���y � S��

and S�� commutes with ��� In the boost terms� where � or � is �� �S���y �
��S��� but S�� anticommutes with ��� Passing the �� to the left therefore

removes the dagger from S�� � yielding the transformation law

� � �& �
�

�
� ������

and therefore the quantity �� is a Lorentz scalar� Similarly you can show
�with the aid of ������� that ���� is a Lorentz vector�

The correct� Lorentz�invariant Dirac Lagrangian is therefore

LDirac � ��i���� �m��� ������

The Euler�Lagrange equation for � �or �y� immediately yields the Dirac equa�
tion in the form ������ the Euler�Lagrange equation for � gives the same
equation� in Hermitian�conjugate form�

�i����� �m� � �� ����
�

Weyl Spinors

+From the block�diagonal form of the generators ������ and ������� it is appar�
ent that the Dirac representation of the Lorentz group is reducible�z We can
form two ��dimensional representations by considering each block separately�
and writing

� �

�
�L
�R

�
� ������

zIf we had used a di�erent representation of the gamma matrices� the reducibility
would not be manifest� this is essentially the reason for using the chiral representation�
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The two�component objects �L and �R are called left�handed and right�
handed Weyl spinors� You can easily verify that their transformation laws�
under in�nitesimal rotations � and boosts �� are

�L � �� i� � �� � � � �� ��L�
�R � �� i� � �� � � � �� ��R�

������

These transformation laws are connected by complex conjugation� using the
identity

���� � ����� ������

it is not hard to show that the quantity ����L transforms like a right�handed
spinor�

In terms of �L and �R� the Dirac equation is

�i���� �m�� �

� �m i��� � � �r�
i��� � � �r� �m

��
�L
�R

�
� �� ������

The two Lorentz group representations �L and �R are mixed by the mass
term in the Dirac equation� But if we set m � �� the equations for �L and �R
decouple�

i��� � � �r��L � ��

i��� � � �r��R � ��
������

These are called theWeyl equations � they are especially important when treat�
ing neutrinos and the theory of weak interactions�

It is possible to clean up this notation slightly� De�ne

�� � ����� �� � ������ �����

so that

�� �

�
� ��

�� �

�
� ������

�The bar on � has absolutely nothing to do with the bar on ��� Then the
Dirac equation can be written� �m i� � �

i� � � �m
��

�L
�R

�
� �� ������

and the Weyl equations become

i� � ��L � �� i� � ��R � �� ������
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��� Free�Particle Solutions of the Dirac Equation

To get some feel for the physics of the Dirac equation� let us now discuss its
plane�wave solutions� Since a Dirac �eld � obeys the Klein�Gordon equation�
we know immediately that it can be written as a linear combination of plane
waves�

��x� � u�p�e�ip�x� where p� � m�� ����
�

For the moment we will concentrate on solutions with positive frequency� that
is� p� � �� The column vector u�p� must obey an additional constraint� found
by plugging ����
� into the Dirac equation�

���p� �m�u�p� � �� ������

It is easiest to analyze this equation in the rest frame� where p � p� � �m����
the solution for general p can then be found by boosting with & �

�
� In the rest

frame� Eq� ������ becomes

�m�� �m�u�p�� � m

�� 
 �

�
u�p�� � ��

and the solutions are

u�p�� �
p
m

�
�

�

�
� ������

for any numerical two�component spinor �� We conventionally normalize � so
that �y� � � the factor

p
m has been inserted for future convenience� We can

interpret the spinor � by looking at the rotation generator ������� � transforms
under rotations as an ordinary two�component spinor of the rotation group�
and therefore determines the spin orientation of the Dirac solution in the
usual way� For example� when � � � �� �� the particle has spin up along the
��direction�

Notice that after applying the Dirac equation� we are free to choose only
two of the four components of u�p�� This is just what we want� since a spin���
particle has only two physical states�spin up and spin down� �Of course we
are being a bit premature in talking about particles and spin� We will prove
that the spin angular momentum of a Dirac particle is  h�� when we quantize
the Dirac theory in Section ��
� for now� just notice that there are two possible
solutions u�p� for any momentum p��

Now that we have the general form of u�p� in the rest frame� we can obtain
u�p� in any other frame by boosting� Consider a boost along the ��direction�
First we should remind ourselves of what the boost does to the ��momentum
vector� In in�nitesimal form��

E

p�

�
�


 � �

�
� 
 �

���
m

�

�
�
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where � is some in�nitesimal parameter� For �nite � we must write�
E

p�

�
� exp


�

�
� 
 �

���
m

�

�
�


cosh �

�
 �
� 

�
� sinh �

�
� 
 �

���
m

�

�
�

�
m cosh �

m sinh �

�
�

������

The parameter � is called the rapidity� It is the quantity that is additive under
successive boosts�

Now apply the same boost to u�p�� According to Eqs� ������ and �������

u�p� � exp


� �

��

�
�� �
� ���

��p
m

�
�

�

�

�


cosh� ����

�
 �
� 

�
� sinh� ����

�
�� �
� ���

��p
m

�
�

�

�

�

�
e
��
�
����
�

�
� e 
��

�
����

�

�
�

� e
��
�
����

�

�
� e 
��

�
����
�

��pm��
�

�

�

��
hp

E � p�
�
����
�

�
�
p
E � p�

�
����

�

�i
�hp

E � p�
�
����

�

�
�
p
E � p�

�
����
�

�i
�

�A � ������

The last line can be simpli�ed to give

u�p� �

�p
p � � �p
p � � �

�
� ���
��

where it is understood that in taking the square root of a matrix� we take
the positive root of each eigenvalue� This expression for u�p� is not only more
compact� but is also valid for an arbitrary direction of p� When working with
expressions of this form� it is often useful to know the identity

�p � ���p � �� � p� � m�� ���
�

You can then verify directly that ���
�� is a solution of the Dirac equation in
the form of �������

In practice it is often convenient to work with speci�c spinors �� A useful
choice here would be eigenstates of ��� For example� if � �

�
�
�

�
�spin up along

the ��axis�� we get

u�p� �

�p
E � p�

�
�
�

�p
E � p�

�
�
�

�� ��
large boost

p
�E

�
��
�
�

��� ���
��
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while for � �
�
�
�

�
�spin down along the ��axis� we have

u�p� �

�p
E � p�

�
�
�

�p
E � p�

�
�
�

�� ��
large boost

p
�E

���
�

�
�

�
� ���
��

In the limit � � � the states degenerate into the two�component spinors of
a massless particle� �We now see the reason for the factor of

p
m in ������� It

keeps the spinor expressions �nite in the massless limit��
The solutions ���
�� and ���
�� are eigenstates of the helicity operator�

h � )p � S �


�
)pi

�
�i �
� �i

�
� ���
��

A particle with h � ��� is called right�handed� while one with h � ��� is
called left�handed� The helicity of a massive particle depends on the frame of
reference� since one can always boost to a frame in which its momentum is
in the opposite direction �but its spin is unchanged�� For a massless particle�
which travels at the speed of light� one cannot perform such a boost�

The extremely simple form of u�p� for a massless particle in a helicity
eigenstate makes the behavior of such a particle easy to understand� In Chap�
ter � it enabled us to guess the form of the e�e� � ���� cross section in the
massless limit� In subsequent chapters we will often do a mindless calculation
�rst� then look at helicity eigenstates in the high�energy limit to understand
what we have done�

Incidentally� we are now ready to understand the origin of the notation
�L and �R for Weyl spinors� The solutions of the Weyl equations are states of
de�nite helicity� corresponding to left� and right�handed particles� respectively�
The Lorentz invariance of helicity �for a massless particle� is manifest in the
notation of Weyl spinors� since �L and �R live in di�erent representations of
the Lorentz group�

It is convenient to write the normalization condition for u�p� in a Lorentz�
invariant way� We saw above that �y� is not Lorentz invariant� Similarly�

uyu �
�
�y
p
p � �� �ypp � �� � �pp � � �p

p � � �
�

� �Ep�
y��

���

�

To make a Lorentz scalar we de�ne

u�p� � uy�p���� ���
��

Then by an almost identical calculation�

uu � �m�y�� ���
��

This will be our normalization condition� once we also require that the two�
component spinor � be normalized as usual� �y� � � It is also conventional to
choose basis spinors �� and �� �such as

�
�
�

�
and
�
�
�

�
� that are orthogonal� For
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a massless particle Eq� ���
�� is trivial� so we must write the normalization
condition in the form of ���

��

Let us summarize our discussion so far� The general solution of the Dirac
equation can be written as a linear combination of plane waves� The positive�
frequency waves are of the form

��x� � u�p�e�ip�x� p� � m�� p� � �� ���
��

There are two linearly independent solutions for u�p��

us�p� �

�p
p � � �sp
p � � �s

�
� s � � � ���
��

which we normalize according to

ur�p�us�p� � �m�rs or ury�p�us�p� � �Ep�
rs� ������

In exactly the same way� we can �nd the negative�frequency solutions�

��x� � v�p�e�ip�x� p� � m�� p� � �� �����

�Note that we have chosen to put the � sign into the exponential� rather than
having p� � ��� There are two linearly independent solutions for v�p��

vs�p� �

� p
p � � �s

�pp � � �s
�
� s � � � ������

where �s is another basis of two�component spinors� These solutions are nor�
malized according to

vr�p�vs�p� � ��m�rs or vry�p�vs�p� � ��Ep�
rs� ������

The u�s and v�s are also orthogonal to each other�

ur�p�vs�p� � vr�p�us�p� � �� ������

Be careful� since ury�p�vs�p� � � and vry�p�us�p� � �� However� note that

ury�p�vs��p� � vry��p�us�p� � �� ����
�

where we have changed the sign of the ��momentum in one factor of each
spinor product�

Spin Sums

In evaluating Feynman diagrams� we will often wish to sum over the polar�
ization states of a fermion� We can derive the relevant completeness relations
with a simple calculation�X

s
���

us�p�us�p� �
X
s

�p
p � � �sp
p � � �s

��
�sy
p
p � �� �sypp � ��

�

�p
p � �pp � � p

p � �pp � �p
p � �pp � � p

p � �pp � �

�
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�

�
m p � �
p � � m

�
�

In the second line we have usedX
s
���

�s�sy � � �

�
 �
� 

�
�

Thus we arrive at the desired formula�X
s

us�p�us�p� � � � p�m� ������

Similarly� X
s

vs�p�vs�p� � � � p�m� ������

The combination � �p occurs so often that Feynman introduced the notation
p � ��p�� We will use this notation frequently from now on�

��� Dirac Matrices and Dirac Field Bilinears

We saw in Section ��� that the quantity �� is a Lorentz scalar� It is also
easy to show that ���� is a ��vector�we used this fact in writing down the
Dirac Lagrangian ������� Now let us ask a more general question� Consider the
expression �,�� where , is any �	� constant matrix� Can we decompose this
expression into terms that have de�nite transformation properties under the
Lorentz group� The answer is yes� if we write , in terms of the following basis
of sixteen �	� matrices� de�ned as antisymmetric combinations of ��matrices�

  of these

�� � of these

��� � �
� $�

�� �� % � ������ � �i��� � of these

���� � �������� � of these

����� � ����������  of these

� total

The Lorentz�transformation properties of these matrices are easy to deter�
mine� For example�

����� � ��& �
�

��� �
� $�

�� �� %
��
& �

�
�
�

� �
��
�
& �

�

�
��& �

�
& �

�

�
��& �

�
� & �

�

�
��& �

�
& �

�

�
��& �

�

�
�

� &��&
�
	��

�	��

Each set of matrices transforms as an antisymmetric tensor of successively
higher rank�
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The last two sets of matrices can be simpli�ed by introducing an addi�
tional gamma matrix�

� � i�������� � � i

�-
������������� � ������

Then ����� � �i������ and ���� � �i��������� The matrix � has the
following properties� all of which can be veri�ed using ������ and the anti�
commutation relations �������

���y � �� ������

���� � � ������

f�� ��g � �� �����

This last property implies that $�� S�� % � �� Thus the Dirac representation
must be reducible� since eigenvectors of � whose eigenvalues are di�erent
transform without mixing �this criterion for reducibility is known as Schur�s
lemma�� In our basis�

� �

�� �
� 

�
������

in block�diagonal form� So a Dirac spinor with only left� �right�� handed com�
ponents is an eigenstate of � with eigenvalue � ���� and indeed these
spinors do transform without mixing� as we saw explicitly in Section ����

Let us now rewrite our table of �	� matrices� and introduce some standard
terminology�

 scalar 

�� vector �

��� � i
� $�

�� �� % tensor �

��� pseudo�vector �

� pseudo�scalar 

�

The terms pseudo�vector and pseudo�scalar arise from the fact that these
quantities transform as a vector and scalar� respectively� under continuous
Lorentz transformations� but with an additional sign change under parity
transformations �as we will discuss in Section �����

+From the vector and pseudo�vector matrices we can form two currents
out of Dirac �eld bilinears�

j��x� � ��x�����x�� j��x� � ��x������x�� ������

Let us compute the divergences of these currents� assuming that � satis�es
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the Dirac equation�

��j
� � ������

�� � ������

� �im��� � ���im��

� ��

������

Thus j� is always conserved if ��x� satis�es the Dirac equation� When we
couple the Dirac �eld to the electromagnetic �eld� j� will become the electric
current density� Similarly� one can compute

��j
� � �im���� ����
�

If m � �� this current �often called the axial vector current� is also conserved�
It is then useful to form the linear combinations

j�L � ���
���

�

�
�� j�R � ���

���
�

�
�� ������

When m � �� these are the electric current densities of left�handed and right�
handed particles� respectively� and are separately conserved�

The two currents j��x� and j��x� are the Noether currents corresponding
to the two transformations

��x�� ei���x� and ��x�� ei��
�

��x��

The �rst of these is a symmetry of the Dirac Lagrangian ������� The second�
called a chiral transformation� is a symmetry of the derivative term in L but
not the mass term� thus� Noether�s theorem con�rms that the axial vector
current is conserved only if m � ��

Products of Dirac bilinears obey interchange relations� known as Fierz
identities� We will discuss only the simplest of these� which will be needed
several times later in the book� This simplest identity is most easily written
in terms of the two�component Weyl spinors introduced in Eq� �������

The core of the relation is the identity for the �	 � matrices �� de�ned
in Eq� ������

�����	����� � �����	� ������

�Here 	� �� etc� are spinor indices� and � is the antisymmetric symbol�� One
can understand this relation by noting that the indices 	� � transform in the
Lorentz representation of �L� while �� � transform in the separate representa�
tion of �R� and the whole quantity must be a Lorentz invariant� Alternatively�
one can just verify the � components of ������ explicitly�

By sandwiching identity ������ between the right�handed portions �i�e��
lower half� of Dirac spinors u�� u�� u�� u�� we �nd the identity

�u�R�
�u�R��u�R��u�R� � ����u�R�u�R��	u�R	u�R

� ��u�R��u�R��u�R��u�R��
������

This nontrivial relation says that the product of bilinears in ������ is anti�
symmetric under the interchange of the labels � and �� and also under the
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interchange of  and �� Identity ������ also holds for ��� and so we also �nd

�u�L�
�u�L��u�L��u�L� � ��u�L��u�L��u�L��u�L�� ������

It is sometimes useful to combine the Fierz identity ������ with the iden�
tity linking �� and ���

��	��
��	� � ���T ��	�	� � ������

This relation is also straightforward to verify explicitly� By the use of �������
������� and the relation

���� � �� �����

we can� for example� simplify horrible products of bilinears such as

�u�L�
�����u�L��u�L������u�L� � ����u�L�u�L��	��

���u�L�	�����u�L�

� ����u�L�u�L��	u�L	��
�������u�L�

� � � ���� � ���u�L�u�L��	u�L	u�L
� ��u�L�

�u�L��u�L��u�L�� ������

There are also Fierz rearrangement identities for ��component Dirac
spinors and � 	 � Dirac matrices� To derive these� however� it is useful to
take a more systematic approach� Problem ��� presents a general method and
gives some examples of its application�

��� Quantization of the Dirac Field

We are now ready to construct the quantum theory of the free Dirac �eld�
From the Lagrangian

L � ��i� �m�� � ��i���� �m��� ������

we see that the canonical momentum conjugate to � is i�y� and thus the
Hamiltonian is

H �

Z
d�x�

��i� �r�m
�
� �

Z
d�x�y

��i��� �r�m��
�
�� ������

If we de�ne � � ���� � � ��� you may recognize the quantity in brackets as
the Dirac Hamiltonian of one�particle quantum mechanics�

hD � �i� �r�m�� ����
�

How Not to Quantize the Dirac Field�
A Lesson in Spin and Statistics

To quantize the Dirac �eld in analogy with the Klein�Gordon �eld we would
impose the canonical commutation relations�

�a�x�� �
y
b �y�
�
� �����x� y��ab� �equal times� ������
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where a and b denote the spinor components of �� This already looks peculiar�
If ��x� were real�valued� the left�hand side would be antisymmetric under
x � y� while the right�hand side is symmetric� But � is complex� so we
do not have a contradiction yet� In fact� we will soon �nd that much worse
problems arise when we impose commutation relations on the Dirac �eld� But
it is instructive to see how far we can get� in order to better understand the
relation between spin and statistics� So let us press on� just remember that
the next few pages will eventually turn out to be a blind alley�

Our �rst task is to �nd a representation of the commutation relations in
terms of creation and annihilation operators that diagonalizes H � From the
form of the Hamiltonian ������� it will clearly be helpful to expand ��x� in a
basis of eigenfunctions of hD� We know these eigenfunctions already from our
calculations in Section ���� There we found that�

i���� � i� �r�m
�
us�p�e�ip�x � ��

so us�p�eip�x are eigenfunctions of hD with eigenvalues Ep� Similarly� the
functions vs�p�e�ip�x �or equivalently� vs��p�e�ip�x� are eigenfunctions of
hD with eigenvalues �Ep� These form a complete set of eigenfunctions� since
for any p there are two u�s and two v�s� giving us four eigenvectors of the �	�
matrix hD�

Expanding � in this basis� we obtain

��x� �

Z
d�p

�����
p
�Ep

eip�x
X
s
���

�
aspu

s�p� � bspv
s� p�

�
� ������

where asp and bsp are operator coe	cients� �For now we work in the Schr#odinger
picture� where � does not depend on time�� Postulate the commutation rela�
tions �

arp� a
sy
q

�
�
�
brp� b

sy
q

�
� ����������p� q��rs� ������

It is then easy to verify the commutation relations ������ for � and �y��
��x�� �y�y�

�
�

Z
d�p d�q

�����
p

�Ep �Eq
ei�p�x�q�y�

	
X
r�s

��
arp� a

sy
q

�
ur�p�us�q� �

�
brp� b

sy
q

�
vr� p�vs� q�

�
��

�

Z
d�p

�����


�Ep
eip��x�y�

	
h�
��Ep � � � p�m

�
�
�
��Ep � � � p�m

�i
��

� �����x� y�	 ����� ������

In the second step we have used the spin sum completeness relations ������
and �������
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We are now ready to write H in terms of the a�s and b�s� After another
short calculation �making use of the orthogonality relations ������� ������� and
����
��� we �nd

H �

Z
d�p

�����

X
s

�
Epa

sy
p a

s
p �Epb

sy
p b

s
p

�
� ������

Something is terribly wrong with the second term� By creating more and
more particles with by� we can lower the energy inde�nitely� �It would not
have helped to rename b � by� since doing so would ruin the commutation
relation ��������

We seem to be in rather deep trouble� but again let�s press on� and inves�
tigate the causality of this theory� To do this we should compute $��x�� �y�y�%
�or more conveniently� $��x�� ��y�%� at non�equal times and hope to get zero
outside the light�cone� First we must switch to the Heisenberg picture and
restore the time�dependence of � and �� Using the relations

eiHtaspe
�iHt � aspe

�iEpt� eiHtbspe
�iHt � bspe

�iEpt� �����

we immediately have

��x� �

Z
d�p

�����
p
�Ep

X
s

�
aspu

s�p�e�ip�x � bspv
s�p�eip�x

�
�

��x� �

Z
d�p

�����
p
�Ep

X
s

�
asyp u

s�p�eip�x � bsyp v
s�p�e�ip�x

�
�

������

We can now calculate the general commutator��
�a�x�� �b�y�

�
�

Z
d�p

�����


�Ep

X
s

�
usa�p�u

s
b�p�e

�ip��x�y� � vsa�p�v
s
b�p�e

ip��x�y�
�

�

Z
d�p

�����


�Ep

�
�p�m�abe

�ip��x�y� � �p�m�abe
ip��x�y�

�
�
�
i�x �m

�
ab

Z
d�p

�����


�Ep

�
e�ip��x�y� � eip��x�y�

�
�
�
i�x �m

�
ab

�

�x�� 
�y�

�
�

Since
�

�x�� 
�y�

�
�the commutator of a real Klein�Gordon �eld� vanishes

outside the light�cone� this quantity does also�
There is something odd� however� about this solution to the causality

problem� Let j�i be the state that is annihilated by all the asp and bsp� a
s
p j�i �

bsp j�i � �� Then�
�a�x�� �b�y�

�
� h�j ��a�x�� �b�y�� j�i
� h�j�a�x��b�y� j�i � h�j�b�y��a�x� j�i �
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just as for the Klein�Gordon �eld� But in the Klein�Gordon case� we got one
term of the commutator from each of these two pieces� the propagation of
a particle from y to x was canceled by the propagation of an antiparticle
from x to y outside the light�cone� Here both terms come from the �rst piece�
h�j��x���y� j�i� since the second piece is zero� The cancellation is between
positive�energy particles and negative�energy particles� both propagating from
y to x�

This observation can actually lead us to a resolution of the negative�
energy problem� One of the assumptions we made in quantizing the Dirac
theory must have been incorrect� Let us therefore forget about the postulated
commutation relations ������ and ������� and see whether we can �nd a way
for positive�energy particles to propagate in both directions� We will also have
to drop our de�nition of the vacuum j�i as the state that is annihilated by all
asp and bsp� We will� however� retain the expressions ������ for ��x� and ��x�

as Heisenberg operators� since if ��x� and ��x� solve the Dirac equation� they
must be decomposable into such plane�wave solutions�

First consider the propagation amplitude h�j��x���y� j�i� which is to rep�
resent a positive�energy particle propagating from y to x� In this case we
want the �Heisenberg� state ��y� j�i to be made up of only positive�energy�
or negative�frequency components �since a Heisenberg state .H � e�iHt.S��
Thus only the asyp term of ��y� can contribute� which means that bsyp must
annihilate the vacuum� Similarly h�j��x� can contain only positive�frequency
components� Thus we have

h�j��x���y� j�i � h�j
Z

d�p

�����
p
�Ep

X
r

arpu
r�p�e�ipx

	
Z

d�q

�����
p
�Eq

X
s

asyq u
s�q�eiqy j�i �

������

We can say something about the matrix element h�j arpasyq j�i even without

knowing how to interchange arp and asyq � by using translational and rotational
invariance� If the ground state j�i is to be invariant under translations� we
must have j�i � eiP�x j�i� Furthermore� since asyq creates momentum q� we
can use Eq� ������ to compute

h�jarpasyq j�i � h�jarpasyq eiP�x j�i
� ei�p�q��x h�j eiP�xarpasyq j�i
� ei�p�q��x h�j arpasyq j�i �

This says that if h�jarpasyq j�i is to be nonzero� p must equal q� Similarly� it
can be shown that rotational invariance of j�i implies r � s� �This should be
intuitively clear� and can be checked after we discuss the angular momentum
operator later in this section�� From these considerations we conclude that
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the matrix element can be written

h�jarpasyq j�i � ����������p� q��rs �A�p��
where A�p� is so far undetermined� Note� however� that if the norm of a state
is always positive �as it should be in any self�respecting Hilbert space�� A�p�
must be greater than zero� We can now go back to ������� and write

h�j��x���y� j�i �
Z

d�p

�����


�Ep

X
s

us�p�us�p�A�p�e�ip�x�y�

�

Z
d�p

�����


�Ep

�p�m
�
A�p�e�ip�x�y��

This expression is properly invariant under boosts only if A�p� is a Lorentz
scalar� i�e�� A�p��A�p��� Since p� � m�� A must be a constant� So �nally we
obtain

h�j�a�x��b�y� j�i �
�
i�x �m

�
ab

Z
d�p

�����


�Ep
e�ip�x�y� � A� ������

Similarly� in the amplitude h�j��y���x� j�i� we want the only contri�
butions to be from the positive�frequency terms of ��y� and the negative�
frequency terms of ��x�� So asp still annihilates the vacuum� but bsp does not�
Then by arguments identical to those given above� we have

h�j�b�y��a�x� j�i � ��i�x �m
�
ab

Z
d�p

�����


�Ep
eip�x�y� �B� ����
�

where B is another positive constant� The minus sign is important� it comes
from the completeness relation ������ for

P
vv and the sign of x in the ex�

ponential factor� It implies that we cannot have h�j $��x�� ��y�% j�i � � out�
side the light�cone� The two terms ������ and ����
� would indeed cancel if
A � �B� but this is impossible since A and B must both be positive�

The solution� however� is now at hand� By setting A � B � � it is easy
to obtain �outside the light�cone�

h�j�a�x��b�y� j�i � �h�j�b�y��a�x� j�i �
That is� the spinor �elds anticommute at spacelike separation� This is enough
to preserve causality� since all reasonable observables �such as energy� charge�
and particle number� are built out of an even number of spinor �elds� for any
such observables O� and O�� we still have $O��x��O��y�% � � for �x�y�� � ��

And remarkably� postulating anticommutation relations for the Dirac �eld
solves the negative energy problem� The equal�time anticommutation relations
will be �

�a�x�� �
y
b �y�
�
� �����x � y��ab��

�a�x�� �b�y�
�
�
�
�ya�x�� �

y
b �y�
�
� ��

������
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We can expand ��x� in terms of asp and bsyp as before �Eq� �������� The creation
and annihilation operators must now obey�

arp� a
sy
q

�
�
�
brp� b

sy
q

�
� ����������p� q��rs ������

�with all other anticommutators equal to zero� in order that ������ be satis�ed�
Another computation gives the Hamiltonian�

H �

Z
d�p

�����

X
s

�
Epa

sy
p a

s
p �Epb

sy
p b

s
p

�
�

which is the same as before� bsyp still creates negative energy� However� the

relation fbrp� bsyq g � ����������p � q��rs is symmetric between brp and bsyq � So
let us simply rede�ne

'bsp � bsyp � 'bsyp � bsp� ������

These of course obey exactly the same anticommutation relations� but now
the second term in the Hamiltonian is

�Epbsyp bsp � �Ep'b
sy
p
'bsp � �const��

If we choose j�i to be the state that is annihilated by asp and 'bsp� then all
excitations of j�i have positive energy�

What happened� To better understand this trick� let us abandon the �eld
theory for a moment and consider a theory with a single pair of b and by

operators obeying fb� byg �  and fb� bg � fby� byg � �� Choose a state j�i
such that b j�i � �� Then by j�i is a new state� call it ji� This state satis�es
b ji � j�i and by ji � �� So b and by act on a Hilbert space of only two states�
j�i and ji� We might say that j�i represents an �empty� state� and that by

��lls� the state� But we could equally well call ji the empty state and say
that b � 'by �lls it� The two descriptions are completely equivalent� until we
specify some observable that allows us to distinguish the states physically� In
our case the correct choice is to take the state of lower energy to be the empty
one� And it is less confusing to put the dagger on the operator that creates
positive energy� That is exactly what we have done�

Note� by the way� that since �'by�� � �� the state cannot be �lled twice�
More generally� the anticommutation relations imply that any multiparticle
state is antisymmetric under the interchange of two particles� aypa

y
q j�i �

�ayqayp j�i� Thus we conclude that if the ladder operators obey anticommuta�

tion relations� the corresponding particles obey Fermi�Dirac statistics�
We have just shown that in order to insure that the vacuum has only

positive�energy excitations� we must quantize the Dirac �eld with anticom�
mutation relations� under these conditions the particles associated with the
Dirac �eld obey Fermi�Dirac statistics� This conclusion is part of a more gen�
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eral result� �rst derived by Pauli!� Lorentz invariance� positive energies� pos�
itive norms� and causality together imply that particles of integer spin obey
Bose�Einstein statistics� while particles of half�odd�integer spin obey Fermi�
Dirac statistics�

The Quantized Dirac Field

Let us now summarize the results of the quantized Dirac theory in a systematic
way� Since the dust has settled� we should clean up our notation� From now
on we will write 'bp �the operator that lowers the energy of a state� simply

as bp� and 'byp as byp� All the expressions we will need in our later work are
listed below� corresponding expressions above� where they di�er� should be
forgotten�

First we write the �eld operators�

��x� �

Z
d�p

�����
p
�Ep

X
s

�
aspu

s�p�e�ip�x � bsyp v
s�p�eip�x

�
� ������

��x� �

Z
d�p

�����
p
�Ep

X
s

�
bspv

s�p�e�ip�x � asyp u
s�p�eip�x

�
� ������

The creation and annihilation operators obey the anticommutation rules�
arp� a

sy
q

�
�
�
brp� b

sy
q

�
� ����������p� q��rs� �����

with all other anticommutators equal to zero� The equal�time anticommuta�
tion relations for � and �y are then�

�a�x�� �
y
b �y�
�
� �����x � y��ab��

�a�x�� �b�y�
�
�
�
�ya�x�� �

y
b �y�
�
� ��

������

The vacuum j�i is de�ned to be the state such that

asp j�i � bsp j�i � �� ������

The Hamiltonian can be written

H �

Z
d�p

�����

X
s

Ep

�
asyp a

s
p � bsyp b

s
p

�
� ������

where we have dropped the in�nite constant term that comes from anticom�
muting bsp and bsyp � From this we see that the vacuum is the state of lowest
energy� as desired� The momentum operator is

P �

Z
d�x �y��ir�� �

Z
d�p

�����

X
s

p
�
asyp a

s
p � bsyp b

s
p

�
� ����
�

�W� Pauli� Phys� Rev� ��� ��� ��	���� reprinted in Schwinger ��	�
�� A rigorous
treatment is given by R� F� Streater and A� S� Wightman� PCT� Spin and Statistics�
and All That �Benjamin�Cummings� Reading� Mass�� �	����
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Thus both asyp and bsyp create particles with energy �Ep and momentum p�

We will refer to the particles created by asyp as fermions and to those created

by bsyp as antifermions�
The one�particle states

jp� si �
p
�Epa

sy
p j�i ������

are de�ned so that their inner product

hp� rjq� si � �Ep����
������p� q��rs ������

is Lorentz invariant� This implies that the operator U�&� that implements
Lorentz transformations on the states of the Hilbert space is unitary� even
though for boosts� & �

�
is not unitary�

It will be reassuring to do a consistency check� to see that U�&� imple�
ments the right transformation on ��x�� So calculate

U��x�U � � U

Z
d�p

�����
p
�Ep

X
s

�
aspu

s�p�e�ipx�bsyp v
s�p�eipx

�
U �� ������

We can concentrate on the �rst term� the second is completely analogous�
Equation ������ implies that asp transforms according to

U�&�aspU
��&� �

s
E	p

Ep
as	p� ������

assuming that the axis of spin quantization is parallel to the boost or rotation
axis� To use this relation to evaluate ������� rewrite the integral asZ

d�p

�����
p
�Ep

asp �

Z
d�p

�����


�Ep
�p�Epa

s
p�

The second factor is transformed in a simple way by U � and the �rst is a
Lorentz�invariant integral� Thus� if we apply ������ and make the substitution
'p � &p� Eq� ������ becomes

U�&���x�U ��&� �

Z
d�'p

�����


�E�p

X
s

us�&��'p�
p
�E�pa

s
�pe
�i�p�	x � � � � �

But us�&��'p� � & �
�

�
us�'p�� so indeed we have

U�&���x�U ��&� �

Z
d�'p

�����
p
�E�p

X
s

& �
�

�
us�'p�as�pe

�i�p�	x � � � �

� & �
�

�
��&x��

�����

This result says that the transformed �eld creates and destroys particles
at the point &x� as it must� Note� however� that this transformation appears
to be in the wrong direction compared to Eq� ������ where the transformed
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�eld 
 was evaluated at & �x� The di�erence is that in Section �� we imag�
ined that we transformed a pre�existing �eld distribution that was measured
by 
�x�� Here� we are transforming the action of 
�x� in creating or destroy�
ing particles� These two ways of implementing the Lorentz transformation
work in opposite directions� Notice� though� that the matrix acting on � and
the transformation of the coordinate x have the correct relative orientation�
consistent with Eq� ������

Next we should discuss the spin of a Dirac particle� We expect Dirac
fermions to have spin ��� now we can demonstrate this property from our
formalism� We have already shown that the particles created by asyp and bsyp
each come in two �spin� states� s � � �� But we haven�t proved yet that this
�spin� has anything to do with angular momentum� To do this� we must write
down the angular momentum operator�

Recall that we found the linear momentum operator in Section ��� by
looking for the conserved quantity associated with translational invariance�
We can �nd the angular momentum operator in a similar way as a consequence
of rotational invariance� Under a rotation �or any Lorentz transformation�� the
Dirac �eld � transforms �in our original convention� according to

��x�� ���x� � & �
�
��& �x��

To apply Noether�s theorem we must compute the change in the �eld at a
�xed point� that is�

�� � ���x�� ��x� � & �
�
��& �x� � ��x��

Consider for de�niteness an in�nitesimal rotation of coordinates by an angle
� about the z�axis� The parametrization of this transformation is given just
below Eq� ������ �� � ��� � �� Using the same parameters in Eq� �������
we �nd

& �
�
� � i

���S
�� � � i

��*
��

We can now compute

���x� �
�
� i

��*
�
�
��t� x� �y� y � �x� z�� ��x�

� ���x�y � y�x �
i
�*

�
�
��x� � ����

The time�component of the conserved Noether current is then

j� �
�L

������
�� � �i����x�y � y�x �

i
�*

�
�
��

Similar expressions hold for rotations about the x� and y�axes� so the angular
momentum operator is

J �

Z
d�x �y

�
x	 ��ir� � �

��
�
�� ����

For nonrelativistic fermions� the �rst term of ���� gives the orbital angular
momentum� The second term therefore gives the spin angular momentum�
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Unfortunately� the division of ���� into spin and orbital parts is not so
straightforward for relativistic fermions� so it is not simple to write a general
expression for this quantity in terms of ladder operators�

To prove that a Dirac particle has spin ��� however� it su	ces to consider
particles at rest� In that case� the orbital term of ���� does not contribute�
and we can easily write the spin term in terms of ladder operators� It is easiest
to use the Schr#odinger picture expression ������ for ��x��

Jz �

Z
d�x

Z
d�p d�p�

�����
p

�Ep �Ep�
e�ip

��xeip�x

	
X
r�r�

�
ar
�y
p� u

r�y�p�� � br
�

p�v
r�y��p��

�*�

�

�
arpu

r�p� � brypv
r��p�

�
�

We would like to apply this operator to the one�particle zero�momentum state
asy� j�i� This is most easily done using a trick� Since Jz must annihilate the

vacuum� Jza
sy
� j�i � $Jz � a

sy
� % j�i� The only nonzero term in this latter quantity

has the structure $aryp a
r�

p � a
sy
� % � ����������p�ary� �

r�s� the other three terms in
the commutator either vanish or annihilate the vacuum� Thus we �nd

Jza
sy
� j�i �



�m

X
r

�
ury���

*�

�
us���

�
ary� j�i �

X
r

�
�ry

��

�
�s
�
ary� j�i �

where we have used the explicit form ������ of u��� to obtain the last expres�
sion� The sum over r is accomplished most easily by choosing the spinors �r

to be eigenstates of ��� We then �nd that for �s �
�
�
�

�
� the one�particle state

is an eigenstate of Jz with eigenvalue ���� while for �s �
�
�
�

�
� it is an eigen�

state of Jz with eigenvalue ���� This result is exactly what we expect for
electrons�

An analogous calculation determines the spin of a zero�momentum an�
tifermion� But in this case� since the order of the b and by terms in Jz is
reversed� we get an extra minus sign from evaluating $bpb

y
p� b

y
�% � �$bypbp� by�%�

Thus for positrons� the association between the spinors �s and the spin angular
momentum is reversed�

�
�
�

�
corresponds to spin ���� while ���� corresponds

to spin ���� This reversal of sign agrees with the prediction of Dirac hole
theory� From that viewpoint� a positron is the absence of a negative�energy
electron� If the missing electron had positive Jz� its absence has negative Jz�

In summary� the angular momentum of zero�momentum fermions is given
by

Jza
sy
� j�i � � �

�a
sy
� j�i � Jzb

sy
� j�i � � �

�b
sy
� j�i � �����

where the upper sign is for �s �
�
�
�

�
and the lower sign is for �s �

�
�
�

�
�

There is one more important conserved quantity in the Dirac theory� In
Section ��� we saw that the current j� � ���� is conserved� The charge
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associated with this current is

Q �

Z
d�x�y�x���x� �

Z
d�p

�����

X
s

�
asyp a

s
p � bspb

sy
p

�
�

or� if we ignore another in�nite constant�

Q �

Z
d�p

�����

X
s

�
asyp a

s
p � bsyp b

s
p

�
� �����

So asyp creates fermions with charge �� while bsyp creates antifermions with
charge �� When we couple the Dirac �eld to the electromagnetic �eld� we
will see that Q is none other than the electric charge �up to a constant factor
that depends on which type of particle we wish to describe� e�g�� for electrons�
the electric charge is Qe��

In Quantum Electrodynamics we will use the spinor �eld � to describe
electrons and positrons� The particles created by asyp are electrons� they have
energy Ep� momentum p� spin �� with polarization appropriate to �s� and
charge � �in units of e�� The particles created by bsyp are positrons� they have
energy Ep� momentum p� spin �� with polarization opposite to that of �s�
and charge �� The state ���x� j�i contains a positron at position x� whose
polarization corresponds to the spinor component chosen� Similarly� ���x� j�i
is a state of one electron at position x�

The Dirac Propagator

Calculating propagation amplitudes for the Dirac �eld is by now a straight�
forward exercise�

h�j�a�x��b�y� j�i �
Z

d�p

�����


�Ep

X
s

usa�p�u
s
b�p�e

�ip��x�y�

�
�
i�x �m

�
ab

Z
d�p

�����


�Ep
e�ip��x�y�� �����

h�j�b�y��a�x� j�i �
Z

d�p

�����


�Ep

X
s

vsa�p�v
s
b�p�e

�ip��y�x�

� ��i�x �m
�
ab

Z
d�p

�����


�Ep
e�ip��y�x�� ���
�

Just as we did for the Klein�Gordon equation� we can construct Green�s
functions for the Dirac equation obeying various boundary conditions� For
example� the retarded Green�s function is

SabR �x � y� � ��x� � y�� h�j��a�x�� �b�y�� j�i � �����

It is easy to verify that

SR�x� y� �
�
i�x �m

�
DR�x� y�� �����
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since on the right�hand side the term involving ����x
� � y�� vanishes� Using

����� and the fact that � � � ��� we see that SR is a Green�s function of
the Dirac operator��

i�x �m
�
SR�x� y� � i�����x� y� � ����� �����

The Green�s function of the Dirac operator can also be found by Fourier
transformation� Expanding SR�x�y� as a Fourier integral and acting on both
sides with �i�x �m�� we �nd

i�����x� y� �

Z
d�p

�����
�p�m�e�ip��x�y� eSR�p�� �����

and hence eSR�p� � i

p�m
�
i�p�m�

p� �m�
� ������

To obtain the retarded Green�s function� we must evaluate the p� integral in
������ along the contour shown on page ��� For x� � y� we close the contour
below� picking up both poles to obtain the sum of ����� and ���
�� For
x� � y� we close the contour above and get zero�

The Green�s function with Feynman boundary conditions is de�ned by
the contour shown on page ��

SF �x� y� �

Z
d�p

�����
i� p�m�

p� �m� � i�
e�ip��x�y�

�

	
h�j��x���y� j�i for x� � y� �close contour below�

�h�j��y���x� j�i for x� � y� �close contour above�

� h�jT��x���y� j�i � �����

where we have chosen to de�ne the time�ordered product of spinor �elds with
an additional minus sign when the operators are interchanged� This minus
sign is extremely important in the quantum �eld theory of fermions� we will
meet it again in Section ����

As with the Klein�Gordon theory� the expression ����� for the Feynman
propagator is the most useful result of this chapter� When we do perturbative
calculations with Feynman diagrams� we will associate the factor eSF �p� with
each internal fermion line�
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��� Discrete Symmetries of the Dirac Theory

In the last section we discussed the implementation of continuous Lorentz
transformations on the Hilbert space of the Dirac theory� We found that for
each transformation & there was a unitary operator U�&�� which induced the
correct transformation on the �elds�

U�&���x�U ��&� � & �
�

�
��&x�� ������

In this section we will discuss the analogous operators that implement various
discrete symmetries on the Dirac �eld�

In addition to continuous Lorentz transformations� there are two other
spacetime operations that are potential symmetries of the Lagrangian� par�
ity and time reversal� Parity� denoted by P � sends �t�x� � �t��x�� reversing
the handedness of space� Time reversal� denoted by T � sends �t�x�� ��t�x��
interchanging the forward and backward light�cones� Neither of these opera�
tions can be achieved by a continuous Lorentz transformation starting from
the identity� Both� however� preserve the Minkowski interval x� � t� � x�� In
standard terminology� the continuous Lorentz transformations are referred to
as the proper� orthochronous Lorentz group� L��� Then the full Lorentz group
breaks up into four disconnected subsets� as shown below�

L��
P�� L�� � PL�� �orthochronous�

T

x�y x�yT
L	� � TL�� ��

P
L	� � PTL�� �nonorthochronous�

�proper� �improper�

At the same time that we discuss P and T � it will be convenient to discuss a
third �non�spacetime� discrete operation� charge conjugation� denoted by C�
Under this operation� particles and antiparticles are interchanged�

Although any relativistic �eld theory must be invariant under L��� it need
not be invariant under P � T � or C� What is the status of these symmetry op�
erations in the real world� From experiment� we know that three of the forces
of Nature� the gravitational� electromagnetic� and strong interactions�are
symmetric with respect to P � C� and T � The weak interactions violate C and
P separately� but preserve CP and T � But certain rare processes �all so far
observed involve neutral K mesons� also show CP and T violation� All obser�
vations indicate that the combination CPT is a perfect symmetry of Nature�

The currently accepted theoretical model of the weak interactions is the
Glashow�Weinberg�Salam gauge theory� described in Chapter ��� This theory
violates C and P in the strongest possible way� It is actually a surprise �though
not quite an accident� that C and P happen to be quite good symmetries in the
most readily observable processes� On the other hand� no one knows a really
beautiful theory that violates CP � In the current theory� when there are three
�or more� fermion generations� there is room for a parameter that� if nonzero�
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causes CP violation� But the value of this parameter is no better understood
than the value of the electron mass� the physical origin of CP violation remains
a mystery� We will discuss this question further in Section �����

Parity

With this introduction� let us now discuss the action of P � T � and C on Dirac
particles and �elds� First consider parity� The operator P should reverse the
momentum of a particle without �ipping its spin�

Mathematically� this means that P should be implemented by a unitary op�
erator �properly called U�P �� but we�ll just call it P � which� for example�
transforms the state asp j�i into asp j�i� In other words� we want

PaspP � �aa
s
p and PbspP � �bb

s
p� ������

where �a and �b are possible phases� These phases are restricted by the con�
dition that two applications of the parity operator should return observables
to their original values� Since observables are built from an even number of
fermion operators� this requires ��a� �

�
b � ��

Just as a continuous Lorentz transformation is implemented on the Dirac
�eld as the �	� constant matrix & �

�
� the parity transformation should also be

represented by a �	 � constant matrix� To �nd this matrix� and to determine
�a and �b� we compute the action of P on ��x�� Using ������� we have

P��x�P �

Z
d�p

�����
p
�Ep

X
s

�
�aa

s
pu

s�p�e�ipx � ��b b
sy
pv

s�p�eipx
�
� ������

Now change variables to 'p � �p���p�� Note that p � x � 'p � �t��x�� Also
'p � � � p � � and 'p � � � p � �� This allows us to write

u�p� �

�p
p � � �p
p � � �

�
�

�p
'p � � �p
'p � � �

�
� ��u�'p��

v�p� �

� p
p � � �

�pp � � �
�
�

� p
'p � � �

�p'p � � �
�

� ���v�'p��

So ������ becomes

P��x�P �

Z
d�'p

�����
p
�E�p

X
s

�
�aa

s
�p�

�us�'p�e�i�p�t��x�

� ��b b
sy
�p �

�vs�'p�ei�p�t��x�
�
�
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This should equal some constant matrix times ��t��x�� and indeed it works
if we make ��b � ��a� This implies

�a�b � ��a��a � �� ����
�

Thus we have the parity transformation of ��x� in its �nal form�

P��t�x�P � �a�
���t��x�� ������

It will be very important �for example� in writing down Lagrangians� to
know how the various Dirac �eld bilinears transform under parity� Recall that
the �ve bilinears are

��� ����� i�
�
��� ��

�
�� ������ i���� ������

The factors of i have been chosen to make all these quantities Hermitian� as
you can easily verify� �Any new term that we add to a Lagrangian must be
real�� First we should compute

P��t�x�P � P�y�t�x�P�� �
�
P��t�x�P

�y
�� � ��a��t��x���� ������

Then the scalar bilinear transforms as

P��P � j�aj���t��x�������t��x� � ����t��x�� ������

while for the vector we obtain

P����P � ���������t��x� �
	
������t��x� for � � ��
������t��x� for � � � �� ��

������

Note that the vector acquires the same minus sign on the spatial components
as does the vector x�� Similarly� the transformations of the pseudo�scalar and
pseudo�vector are

Pi���P � i��������t��x� � �i����t��x�� �����

P�����P � ����������t��x� �
	
������ for � � ��
������ for � � � �� ��

������

Just as we anticipated in Section ���� the �pseudo� signi�es an extra mi�
nus sign in the parity transformation� �The transformation properties of
i�$��� �� %� � ������ are reserved for Problem ����� Note that the transfor�
mation properties of fermion bilinears were independent of �a� so there would
have been no loss of generality in setting �a � ��b �  from the beginning�

However� the relative minus sign ����
� between the parity transforma�
tions of a fermion and an antifermion has important consequences� Consider
a fermion�antifermion state� asyp b

s�y
q j�i� Applying P � we �nd P

�
asyp b

s�y
q j�i� �

��asypbs�yq j�i�� Thus a state containing a fermion�antifermion pair gets an ex�
tra ��� under parity� This information is most useful in the context of bound
states� in which the fermion and antifermion momenta are integrated with the
Schr#odinger wavefunction to produce a system localized in space� We consider
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such states in detail in Section 
��� but here we should remark that if the spa�
tial wavefunction is symmetric under x� �x� the state has odd parity� while
if it is antisymmetric under x � �x� the state has even parity� The L � �
bound states� for example� have odd parity� the J � � state transforms as a
pseudo�scalar� while the three J �  states transform as the spatial compo�
nents of a vector� These properties show up in selection rules for decays of
positronium and quark�antiquark systems �see Problem �����

Time Reversal

Now let us turn to the implementation of time reversal� We would like T to
take the form of a unitary operator that sends ap to a p �and similarly for
bp� and ��t�x� to ���t�x� �times some constant matrix�� These properties�
however� are extremely di	cult to achieve� since we saw above that sending
ap to a�p instead sends �t�x� to �t��x� in the expansion of �� The di	culty is
even more apparent when we impose the constraint that time reversal should
be a symmetry of the free Dirac theory� $T�H % � �� Then

��t�x� � eiHt��x�e�iHt

� T��t�x�T � eiHt
�
T��x�T

�
e�iHt

� T��t�x�T j�i � eiHt
�
T��x�T

� j�i �
assuming that H j�i � �� The right�hand side is a sum of negative�frequency
terms only� But if T is to reverse the time dependence of ��t�x�� then the left�
hand side is �up to a constant matrix� ���t�x� j�i � e�iHt��x� j�i� which is
a sum of positive�frequency terms� Thus we have proved that T cannot be
implemented as a linear unitary operator�

What can we do� The way out is to retain the unitarity condition T y �
T��� but have T act on c�numbers as well as operators� as follows�

T �c�number� � �c�number��T� ������

Then even if $T�H % � �� the time dependence of all exponential factors is
reversed� Te�iHt � e�iHtT � Since all time evolution in quantum mechanics is
performed with such exponential factors� this e�ectively changes the sign of t�
Note that the operation of complex conjugation is nonlinear� T is referred to
as an antilinear or antiunitary operator�

In addition to reversing the momentum of a particle� T should also �ip
the spin�

To quantify this� we must �nd a mathematical operation that �ips a spinor ��
In the earlier parts of this chapter� we denoted the spin state of a fermion

by a label s � � �� In the remainder of this section� we will associate s with
the physical spin component of the fermion along a speci�c axis� If this axis
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has polar coordinates �� 
� the two�component spinors with spin up and spin
down along this axis are

���� �
�

cos ��
ei� sin �

�

�
� ���� �

��e�i� sin �
�

cos ��

�
�

Let �s � ������ ����� for s � � �� Also de�ne

� s � �i����s��� ������

This quantity is the �ipped spinor� from the explicit formulae�

� s � ������������� ����
�

The form of the spin reversal relation follows more generally from the identity
��� � �������� This equation implies that� if � satis�es n ��� � �� for some
axis n� then

�n � ����i����� � �i����n � ����� � i������ � ���i������
Notice that� with this convention for the spin �ip� two successive spin �ips
return a spin to ��� times the original state�

We now associate the various fermion spin states with these spinors� The
electron annihilation operator asp destroys an electron whose spinor us�p�
contains �s� The positron annihilation operator bsp destroys a positron whose
spinor vs�p� contains � s�

vs�p� �

� p
p � � � s

�pp � � � s

�
� ������

As in Eq� ����
�� we de�ne

a s
p � �a�p��a�p�� b s

p � �b�p��b�p�� ������

We can now work out the relation between the Dirac spinors u and v and
their time reversals� De�ne 'p � �p���p�� This vector satis�es the identityp
'p � � �� � ��

p
p � ��� to prove this� expand the square root as in ������� For

some choice of spin and momentum� associated with the Dirac spinor us�p��
let u s�'p� be the spinor with the reversed momentum and �ipped spin� These
quantities are related by

u s�'p� �

�p
'p � � � i���s��p
'p � � � i���s��

�
�

�
i��
p
p � �� �s�

i��
p
p � �� �s�

�
� �i

�
�� �
� ��

��
us�p�

��
� ������us�p����

Similarly� for vs�p��

v s�'p� � ������vs�p����
in this relation� v s contains � � s� � ��s�
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Using the notation of Eq� ������� we de�ne the time reversal transforma�
tion of fermion annihilation operators as follows�

TaspT � a s
p� T bspT � b s

p� ������

�An additional overall phase would have no e�ect on the rest of our discussion
and is omitted for simplicity�� Relations ������ allow us to compute the action
of T on the fermion �eld ��x��

T��t�x�T �

Z
d�p

�����
p
�Ep

X
s

T
�
aspu

s�p�e�ipx � bsyp v
s�p�eipx

�
T

�

Z
d�p

�����
p
�Ep

X
s

�
a s
p

�
us�p�

��
eipx � b sy

p

�
vs�p�

��
e�ipx

�
� �������

Z
d�'p

�����
p
�E�p

X
s

�
a s
�p u

s�'p�ei�p�t��x�

� b sy
�p v s�'p�e�i�p�t��x�

�
� ����������t�x�� ������

In the last step we used 'p � �t��x� � �'p � ��t�x�� Just as for parity� we have
derived a simple transformation law for the fermion �eld ��x�� The relative
minus sign in the transformation laws for particle and antiparticle is present
here as well� implicit in the twice��ipped spinor in v s�

Now we can check the action of T on the various bilinears� First we need

T�T � �T�T �y����� � �y��t�x��������y�� � ���t�x�������� ������

Then the transformation of the scalar bilinear is

T���t�x�T � �����������������t�x� � �����t�x�� �����

The pseudo�scalar acquires an extra minus sign when T goes through the i�

T i���T � �i���������������� � �i�����t�x��
For the vector� we must separately compute each of the four cases � � �� � �� ��
After a bit of work you should �nd

T����T � ��������������������

�

	
�������t�x� for � � ��
�������t�x� for � � � �� ��

������

This is exactly the tranformation property we want for vectors such as the
current density� You can verify that the pseudo�vector transforms in exactly
the same way under time�reversal�
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Charge Conjugation

The last of the three discrete symmetries is the particle�antiparticle sym�
metry C� There will be no problem in implementing C as a unitary linear
operator� Charge conjugation is conventionally de�ned to take a fermion with
a given spin orientation into an antifermion with the same spin orientation�
Thus� a convenient choice for the transformation of fermion annihilation op�
erators is

CaspC � bsp� CbspC � asp� ������

Again� we ignore possible additional phases for simplicity�
Next we want to work out the action of C on ��x�� First we need a relation

between vs�p� and us�p�� Using ������� and �������

�
vs�p�

��
�

� p
p � �� i�����p
p � �� i�����

��
�

�
i��
p
p � ����

i��
p
p � ����

��
�

�
� i��

i�� �

��p
p � ��p
p � ��

�
�

where � stands for �s� That is�

us�p� � �i���vs�p���� vs�p� � �i���us�p���� ������

If we substitute ������ into the expression for the fermion �eld operator� and
then transform this operator with C� we �nd

C��x�C �

Z
d�p

�����
p
�Ep

X
s

�
�i��bsp

�
vs�p�

��
e�ipx � i��asyp

�
us�p�

��
eipx
�

� �i�����x� � �i����y�T � �i�������T � ����
�

Note that C is a linear unitary operator� even though it takes � � ���
Once again� we would like to know how C acts on fermion bilinears� First

we need

C��x�C � C�yC�� � ��i����T �� � ��i������T � ������

Working out the transformations of bilinears is a bit tricky� and it helps to
write in spinor indices� For the scalar�

C��C � ��i������T ��i������T � ���ab��bc�c�d��de��ea
� ��d�

�
de�

�
ea�

�
ab�

�
bc�c � �����������

� ����

������

�The minus sign in the third step is from fermion anticommutation�� The
pseudo�scalar is no more di	cult�

Ci���C � i��i������T ���i������T � i���� ������

We must do each component of the vector and pseudo�vector separately� Not�
ing that �� and �� are symmetric matrices while �� and �� are antisymmetric�
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we eventually �nd

C����C � ������ ������

C�����C � ������� ���
��

Although the operator C interchanges � and �� it does not actually change
the order of the creation and annihilation operators� Thus� if ���� is de�ned
to subtract the in�nite constant noted above Eq� ������ this constant does
not reappear in the process of conjugation by C�

Summary of C� P � and T

The transformation properties of the various fermion bilinears under C� P � and
T are summarized in the table below� Here we use the shorthand ���� � 
for � � � and ���� � � for � � � �� ��

�� i��� ���� ����� ����� ��

P � � ���� ����� �������� ����
T � � ���� ���� ��������� �����
C � � � � � �

CPT � � � � � �
We have included the transformation properties of the tensor bilinear �see
Problem ����� and also of the derivative operator�

Notice �rst that the free Dirac Lagrangian L� � ��i���� � m�� is in�
variant under C� P � and T separately� We can build more general quantum
systems that violate any of these symmetries by adding to L� some pertur�
bation �L� But �L must be a Lorentz scalar� and the last line of the table
shows that all Lorentz scalar combinations of � and � are invariant under the
combined symmetry CPT � Actually� it is quite generally true that one cannot
build a Lorentz�invariant quantum �eld theory with a Hermitian Hamiltonian
that violates CPT �y

Problems

��� Lorentz group� Recall from Eq� ����� the Lorentz commutation relations�

�J�� � J�� � � i�g��J�� � g��J�� � g��J�� � g��J����

�a� De�ne the generators of rotations and boosts as

Li � �
� �
ijkJjk � Ki � J�i�

yThis theorem and the spin�statistics theorem are proved with great care in
Streater and Wightman� op� cit�
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where i� j� k � �� �� � An in�nitesimal Lorentz transformation can then be writ�
ten

� � ��� i� � L� i� �K���

Write the commutation relations of these vector operators explicitly� �For exam�
ple� �Li� Lj � � i�ijkLk�� Show that the combinations

J� �
�
� �L� iK� and J� � �

� �L� iK�

commute with one another and separately satisfy the commutation relations of
angular momentum�

�b� The �nite�dimensional representations of the rotation group correspond precisely
to the allowed values for angular momentum� integers or half�integers� The result
of part �a� implies that all �nite�dimensional representations of the Lorentz group
correspond to pairs of integers or half integers� �j�� j��� corresponding to pairs of
representations of the rotation group� Using the fact that J � �
� in the spin�
�
� representation of angular momentum� write explicitly the transformation
laws of the ��component objects transforming according to the � �� � �� and ���

�
� �

representations of the Lorentz group� Show that these correspond precisely to
the transformations of �L and �R given in �����

�c� The identity �T � �	��	� allows us to rewrite the �L transformation in the
unitarily equivalent form

�� � ���� � i� � �
�
� � � �

�
��

where �� � �TL	
�� Using this law� we can represent the object that transforms

as � �� �
�
� � as a �� � matrix that has the �R transformation law on the left and�

simultaneously� the transposed �L transformation on the right� Parametrize this
matrix as �

V � � V � V � � iV �

V � � iV � V � � V �

�
�

Show that the object V � transforms as a ��vector�

��� Derive the Gordon identity�

u�p����u�p� � u�p��

p�� � p�

�m
�
i	��q�
�m

�
u�p��

where q � �p� � p�� We will put this formula to use in Chapter ��

��� Spinor products� �This problem� together with Problems �� and ���� intro�
duces an e�cient computational method for processes involving massless particles��
Let k�� � k

�
� be �xed ��vectors satisfying k

�
� � �� k

�
� � ��� k� � k� � �� De�ne basic

spinors in the following way� Let uL� be the left�handed spinor for a fermion with
momentum k�� Let uR� � �k�uL�� Then� for any p such that p is lightlike �p� � ���
de�ne

uL�p� �
�p
�p � k�

�puR� and uR�p� �
�p
�p � k�

�puL��

This set of conventions de�nes the phases of spinors unambiguously �except when p is
parallel to k���

�a� Show that �k�uR� � �� Show that� for any lightlike p� �puL�p� � �puR�p� � ��
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�b� For the choices k� � �E� �� ���E�� k� � ��� �� �� ��� construct uL�� uR�� uL�p��
and uR�p� explicitly�

�c� De�ne the spinor products s�p�� p�� and t�p�� p��� for p�� p� lightlike� by

s�p�� p�� � uR�p��uL�p��� t�p�� p�� � uL�p��uR�p���

Using the explicit forms for the u� given in part �b�� compute the spinor products
explicitly and show that t�p�� p�� � �s�p�� p���

� and s�p�� p�� � �s�p�� p��� In
addition� show that

js�p�� p��j� � �p� � p��
Thus the spinor products are the square roots of ��vector dot products�

��� Majorana fermions� Recall from Eq� ����� that one can write a relativistic
equation for a massless ��component fermion �eld that transforms as the upper two
components of a Dirac spinor ��L�� Call such a ��component �eld �a�x�� a � �� ��

�a� Show that it is possible to write an equation for ��x� as a massive �eld in the
following way�

i	 � ��� im	��� � ��

That is� show� �rst� that this equation is relativistically invariant and� second�
that it implies the Klein�Gordon equation� ��� � m��� � �� This form of the
fermion mass is called a Majorana mass term�

�b� Does the Majorana equation follow from a Lagrangian� The mass term would
seem to be the variation of �	��ab�

�
a�
�
b � however� since 	

� is antisymmetric� this
expression would vanish if ��x� were an ordinary c�number �eld� When we go to
quantum �eld theory� we know that ��x� will become an anticommuting quan�
tum �eld� Therefore� it makes sense to develop its classical theory by considering
��x� as a classical anticommuting �eld� that is� as a �eld that takes as values
Grassmann numbers which satisfy

� � �� for any �� �

Note that this relation implies that �� � �� A Grassmann �eld ��x� can be
expanded in a basis of functions as

��x� �
X
n

�n�n�x��

where the �n�x� are orthogonal c�number functions and the �n are a set of
independent Grassmann numbers� De�ne the complex conjugate of a product of
Grassmann numbers to reverse the order�

���� � ��� � �����
This rule imitates the Hermitian conjugation of quantum �elds� Show that the
classical action�

S �

Z
d�x
h
�yi	 � ��� im

�
��T 	��� �y	����

i
�

�where �y � ����T � is real �S� � S�� and that varying this S with respect to �
and �� yields the Majorana equation�
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�c� Let us write a ��component Dirac �eld as

��x� �

�
�L
�R

�
�

and recall that the lower components of � transform in a way equivalent by a
unitary transformation to the complex conjugate of the representation �L� In
this way� we can rewrite the ��component Dirac �eld in terms of two ��component
spinors�

�L�x� � ���x�� �R�x� � i	�����x��

Rewrite the Dirac Lagrangian in terms of �� and �� and note the form of the
mass term�

�d� Show that the action of part �c� has a global symmetry� Compute the divergences
of the currents

J� � �y	��� J� � �y�	
��� � �y�	

����

for the theories of parts �b� and �c�� respectively� and relate your results to the
symmetries of these theories� Construct a theory of N free massive ��component
fermion �elds with O�N� symmetry �that is� the symmetry of rotations in an
N �dimensional space��

�e� Quantize the Majorana theory of parts �a� and �b�� That is� promote ��x� to a
quantum �eld satisfying the canonical anticommutation relation

f�a�x�� �yb�y�g � �ab�
����x� y��

construct a Hermitian Hamiltonian� and �nd a representation of the canonical
commutation relations that diagonalizes the Hamiltonian in terms of a set of
creation and annihilation operators� �Hint� Compare ��x� to the top two com�
ponents of the quantized Dirac �eld��

��� Supersymmetry� It is possible to write �eld theories with continuous symme�
tries linking fermions and bosons� such transformations are called supersymmetries�

�a� The simplest example of a supersymmetric �eld theory is the theory of a free
complex boson and a free Weyl fermion� written in the form

L � ���
����� �yi	 � ��� F�F�

Here F is an auxiliary complex scalar �eld whose �eld equation is F � �� Show
that this Lagrangian is invariant �up to a total divergence� under the in�nitesi�
mal tranformation

�� � �i�T 	���
�� � �F � 	 � ��	����
�F � �i�y	 � ���

where the parameter �a is a ��component spinor of Grassmann numbers�

�b� Show that the term

�L � $m�F � �
� im�T	��%� �complex conjugate�
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is also left invariant by the transformation given in part �a�� Eliminate F from
the complete Lagrangian L � �L by solving its �eld equation� and show that
the fermion and boson �elds � and � are given the same mass�

�c� It is possible to write supersymmetric nonlinear �eld equations by adding cubic
and higher�order terms to the Lagrangian� Show that the following rather general
�eld theory� containing the �eld ��i� �i�� i � �� � � � � n� is supersymmetric�

L � ���
�
i �

��i � �yi i	 � ��i � F�i Fi

�
�
Fi
�W ���

��i
�

i

�

��W ���

��i��j
�Ti 	

��j � c�c�
�
�

where W ��� is an arbitrary function of the �i� called the superpotential� For the
simple case n � � and W � g��
� write out the �eld equations for � and �
�after elimination of F ��

��� Fierz transformations� Let ui� i � �� � � � � �� be four ��component Dirac
spinors� In the text� we proved the Fierz rearrangement formulae ���
� and ���	��
The �rst of these formulae can be written in ��component notation as

u��
�
�
���

�

�
u�u���

�
���

�

�
u� � �u���

�
���

�

�
u�u���

�
���

�

�
u��

In fact� there are similar rearrangement formulae for any product

�u��
Au���u��

Bu���

where �A��B are any of the �� combinations of Dirac matrices listed in Section ���

�a� To begin� normalize the �� matrices �A to the convention

tr$�A�B% � ��AB �

This gives �A � f�� ��� i�j � � � �g� write all �� elements of this set�
�b� Write the general Fierz identity as an equation

�u��
Au���u��

Bu�� �
X
C�D

CABCD�u��
Cu���u��

Du���

with unknown coe�cients CABCD� Using the completeness of the �� �
A matri�

ces� show that

CABCD �
�

��
tr$�C�A�D�B %�

�c� Work out explicitly the Fierz transformation laws for the products �u�u���u�u��
and �u��

�u���u���u���

��� This problem concerns the discrete symmetries P � C� and T �

�a� Compute the transformation properties under P � C� and T of the antisymmetric
tensor fermion bilinears� �	��� � with 	�� � i

� $�
�� �� %� This completes the table

of the transformation properties of bilinears at the end of the chapter�

�b� Let ��x� be a complex�valued Klein�Gordon �eld� such as we considered in Prob�
lem ���� Find unitary operators P � C and an antiunitary operator T �all de�ned
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in terms of their action on the annihilation operators ap and bp for the Klein�
Gordon particles and antiparticles� that give the following tranformations of the
Klein�Gordon �eld�

P ��t�x�P � ��t��x��
T ��t�x�T � ���t�x��
C ��t�x�C � ���t�x��

Find the transformation properties of the components of the current

J� � i������� ������

under P � C� and T �

�c� Show that any Hermitian Lorentz�scalar local operator built from ��x�� ��x��
and their conjugates has CPT � ���

��� Bound states� Two spin��
� particles can combine to a state of total spin either
� or �� The wavefunctions for these states are odd and even� respectively� under the
interchange of the two spins�

�a� Use this information to compute the quantum numbers under P and C of all
electron�positron bound states with S� P � or D wavefunctions�

�b� Since the electron�photon coupling is given by the Hamiltonian

�H �

Z
d�x eA�j

��

where j� is the electric current� electrodynamics is invariant to P and C if
the components of the vector potential have the same P and C parity as the
corresponding components of j�� Show that this implies the following surprising
fact� The spin�� ground state of positronium can decay to � photons� but the
spin�� ground state must decay to  photons� Find the selection rules for the
annihilation of higher positronium states� and for ��photon transitions between
positronium levels�



Chapter �

Interacting Fields and FeynmanDiagrams

��� Perturbation Theory	Philosophy and Examples

We have now discussed in some detail the quantization of two free �eld theories
that give approximate descriptions of many of the particles found in Nature�
Up to this point� however� free�particle states have been eigenstates of the
Hamiltonian� we have seen no interactions and no scattering� In order to obtain
a closer description of the real world� we must include new� nonlinear terms
in the Hamiltonian �or Lagrangian� that will couple di�erent Fourier modes
�and the particles that occupy them� to one another� To preserve causality�
we insist that the new terms may involve only products of �elds at the same
spacetime point� $
�x�%� is �ne� but 
�x�
�y� is not allowed� Thus the terms
describing the interactions will be of the form

Hint �

Z
d�x Hint

�

�x�
�
� �
Z
d�x Lint

�

�x�
�
�

For now we restrict ourselves to theories in which Hint �� �Lint� is a function
only of the �elds� not of their derivatives�

In this chapter we will discuss three important examples of interacting
�eld theories� The �rst is �phi�fourth� theory�

L �


�
���
�

� � 

�
m�
� � �

�-

�� ����

where � is a dimensionless coupling constant� �A 
� interaction would be a bit
simpler� but then the energy would not be positive�de�nite unless we added
a higher even power of 
 as well�� Although we are introducing this theory
now for purely pedagogical reasons �since it is the simplest of all interacting
quantum theories�� models of the real world do contain 
� interactions� the
most important example in particle physics is the self�interaction of the Higgs
�eld in the standard electroweak theory� In Part II� we will see that 
� theory
also arises in statistical mechanics� The equation of motion for 
� theory is

��� �m��
 � � �

�-

�� �����

��
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which cannot be solved by Fourier analysis as the free Klein�Gordon equation
could� In the quantum theory we impose the equal�time commutation relations�


�x�� ��y�
�
� i�����x� y��

which are una�ected by Lint� �Note� however� that if Lint contained ��
� the
de�nition of ��x� would change�� It is an easy exercise to write down the
Hamiltonian of this theory and �nd the Heisenberg equation of motion for
the operator 
�x�� the result is the same as the classical equation of motion
������ just as it was in the free theory�

Our second example of an interacting �eld theory will be Quantum Elec�
trodynamics�

LQED � LDirac � LMaxwell � Lint
� ��i � �m�� � �

� �F���
� � e����A��

�����

where A� is the electromagnetic vector potential� F�� � ��A� � ��A� is the
electromagnetic �eld tensor� and e � �jej is the electron charge� �To describe
a fermion of charge Q� replace e with Q� If we wish to consider several species
of charged particles at once� we simply duplicate LDirac and Lint for each
additional species�� That such a simple Lagrangian can account for nearly
all observed phenomena from macroscopic scales down to � �� cm is rather
astonishing� In fact� the QED Lagrangian can be written even more simply�

LQED � ��iD �m�� � �
� �F�� �

�� �����

where D� is the gauge covariant derivative�

D� � �� � ieA��x�� ���
�

A crucial property of the QED Lagrangian is that it is invariant under the
gauge transformation

��x�� ei��x���x�� A� � A� � 

e
��	�x�� �����

which is realized on the Dirac �eld as a local phase rotation� This invariance
under local phase rotations has a fundamental geometrical signi�cance� which
motivates the term covariant derivative� For our present purposes� though� it
is su	cient just to recognize ����� as a symmetry of the theory�

The equations of motion follow from ����� by the canonical procedure�
The Euler�Lagrange equation for � is

�iD �m���x� � �� �����

which is just the Dirac equation coupled to the electromagnetic �eld by the
minimal coupling prescription� � � D� The Euler�Lagrange equation for A�

is

��F
�� � e���� � ej� � �����
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These are the inhomogeneous Maxwell equations� with the current density
j� � ���� given by the conserved Dirac vector current ������� As with 
�

theory� the equations of motion can also be obtained as the Heisenberg equa�
tions of motion for the operators ��x� and A��x�� This is easy to verify for
��x�� we have not yet discussed the quantization of the electromagnetic �eld�

In fact� we will not discuss canonical quantization of the electromagnetic
�eld at all in this book� It is an awkward subject� essentially because of gauge
invariance� Note that since "A� does not appear in the Lagrangian ������ the
momentum conjugate to A� is identically zero� This contradicts the canonical
commutation relation $A��x�� ���y�% � i��x � y�� One solution is to quan�
tize in Coulomb gauge� where r �A � � and A� is a constrained� rather than
dynamical� variable� but then manifest Lorentz invariance is sacri�ced� Alter�
natively� one can quantize the �eld in Lorentz gauge� ��A

� � �� It is then

possible to modify the Lagrangian� adding an "A� term� One obtains the com�
mutation relations $A��x�� "A��y�% � �ig����x � y�� essentially the same as
four Klein�Gordon �elds� But the extra minus sign in $A�� "A�% leads to another
�surmountable� di	culty� states created by a�yp have negative norm�!

The Feynman rules for calculating scattering amplitudes that involve pho�
tons are derived more easily in the functional integral formulation of �eld the�
ory� to be discussed in Chapter �� That method has the added advantage of
generalizing readily to the case of non�Abelian gauge �elds� as we will see
in Part III� In the present chapter we will simply guess the Feynman rules
for photons� This will actually be quite easy after we derive the rules for an
analogous but simpler theory� Yukawa theory �

LYukawa � LDirac � LKlein Gordon � g��
� �����

This will be our third example� It is similar to QED� but with the photon
replaced by a scalar particle 
� The interaction term contains a dimensionless
coupling constant g� analogous to the electron charge e� Yukawa originally
invented this theory to describe nucleons ��� and pions �
�� In modern particle
theory� the Standard Model contains Yukawa interaction terms coupling the
scalar Higgs �eld to quarks and leptons� most of the free parameters in the
Standard Model are Yukawa coupling constants�

Having written down our three paradigm interactions� let us pause a mo�
ment to discuss what other interactions could be found in Nature� At �rst it
might seem that the list would be in�nite� even for a scalar theory we could
write down interactions of the form 
n for any n� But remarkably� one simple
and reasonable axiom eliminates all but a few of the possible interactions� That
axiom is that the theory be renormalizable� and it arises as follows� Higher�
order terms in perturbation theory� as mentioned in Chapter � will involve

�Excellent treatments of both quantization procedures are readily available� For
Coulomb gauge quantization� see Bjorken and Drell ��	���� Chapter ��� for Lorentz
gauge quantization� see Mandl and Shaw ��	
��� Chapter ��
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integrals over the ��momenta of intermediate ��virtual�� particles� These in�
tegrals are often formally divergent� and it is generally necessary to impose
some form of cut�o� procedure� the simplest is just to cut o� the integral at
some large but �nite momentum &� At the end of the calculation one takes
the limit &��� and hopes that physical quantities turn out to be indepen�
dent of &� If this is indeed the case� the theory is said to be renormalizable�
Suppose� however� that the theory includes interactions whose coupling con�
stants have the dimensions of mass to some negative power� Then to obtain
a dimensionless scattering amplitude� this coupling constant must be multi�
plied by some quantity of positive mass dimension� and it turns out that this
quantity is none other than &� Such a term diverges as &��� so the theory
is not renormalizable�

We will discuss these matters in detail in Chapter �� For now we merely
note that any theory containing a coupling constant with negative mass di�
mension is not renormalizable� A bit of dimensional analysis then allows us to
throw out nearly all candidate interactions� Since the action S �

R L d�x is
dimensionless� L must have dimension �mass�� �or simply dimension ��� From
the kinetic terms of the various free Lagrangians� we note that the scalar and
vector �elds 
 and A� have dimension � while the spinor �eld � has dimension
���� We can now tabulate all of the allowed renormalizable interactions�

For theories involving only scalars� the allowed interaction terms are

�
� and �
��

The coupling constant � has dimension � while � is dimensionless� Terms of
the form 
n for n � � are not allowed� since their coupling constants would
have dimension ��n� Of course� more interesting theories can be obtained by
including several scalar �elds� real or complex �see Problem �����

Next we can add spinor �elds� Spinor self�interactions are not allowed�
since �� �besides violating Lorentz invariance� already has dimension ����
Thus the only allowable new interaction is the Yukawa term�

g��
�

although similar interactions can also be constructed out of Weyl and Majo�
rana spinors�

When we add vector �elds� many new interactions are possible� The most
familiar is the vector�spinor interaction of QED�

e����A��

Again it is easy to construct similar terms out of Weyl and Majorana spinors�
Less important is the scalar QED Lagrangian�

L � jD�
j� �m�j
j�� which contains eA�
��

�� e�j
j�A��

This is our �rst example of a derivative interaction� quantization of this theory
will be much easier with the functional integral formalism� so we postpone its
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discussion until Chapter �� Other possible Lorentz�invariant terms involving
vectors are

A����A
�� and A��

Although it is far from obvious� these terms lead to inconsistencies unless
their coupling constants are precisely chosen on the basis of a special type of
symmetry� which must involve several vector �elds� This symmetry underlies
the non�Abelian gauge theories� which will be the main subject of Part III� A
mass term �

�m
�A� for vector �elds is also inconsistent� except in the special

case where it is added to QED� in any case� it breaks �Abelian or non�Abelian�
gauge invariance�

This exhausts the list of possible Lagrangians involving scalar� spinor� and
vector particles� It is interesting to note that the currently accepted models
of the strong� weak� and electromagnetic interactions include all of the types
of interactions listed above� The three paradigm interactions to be studied in
this chapter cover nearly half of the possibilities� we will study the others in
detail later in this book�

The assumption that realistic theories must be renormalizable is cer�
tainly convenient� since a nonrenormalizable theory would have little pre�
dictive power� However� one might still ask why Nature has been so kind as to
use only renormalizable interactions� One might have expected that the true
theory of Nature would be a quantum theory of a much more general type�
But it can be shown that� however complicated a fundamental theory appears
at very high energies� the low�energy approximation to this theory that we
see in experiments should be a renormalizable quantum �eld theory� We will
demonstrate this in Section ���

At a more practical level� the preceding analysis highlights a great dif�
ference in methodology between nonrelativistic quantum mechanics and rela�
tivistic quantum �eld theory� Since the potential V �r� that appears in the
Schr#odinger equation is completely arbitrary� nonrelativistic quantum me�
chanics puts no limits on what interactions can be found in the real world� But
we have just seen that quantum �eld theory imposes very tight constraints
on Nature �or vice versa�� Taken literally� our discussion implies that the only
tasks left for particle physicists are to enumerate the elementary particles that
exist and to measure their masses and coupling constants� While this view�
point is perhaps overly arrogant� the fact that it is even thinkable is surely
a sign that particle physicists are on the right track toward a fundamental
theory�

Given a set of particles and couplings� we must still work out the ex�
perimental consequences� How do we analyze the quantum mechanics of an
interacting �eld theory� It would be nice if we could explicitly solve at least
a few examples �that is� �nd the exact eigenvalues and eigenvectors as we did
for the free theories� to get a feel for the properties of interacting theories�
Unfortunately� this is easier said than done� No exactly solvable interacting
�eld theories are known in more than two spacetime dimensions� and even
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there the solvable models involve special symmetries and considerable tech�
nical complication�y Studying these theories would be interesting� but hardly
worth the e�ort at this stage� Instead we will fall back on a much simpler and
more generally applicable approach� Treat the interaction term Hint as a per�
turbation� compute its e�ects as far in perturbation theory as is practicable�
and hope that the coupling constant is small enough that this gives a reason�
able approximation to the exact answer� In fact� the perturbation series we
obtain will turn out to be very simple in structure� through the use of Feyn�
man diagrams it will be possible at least to visualize the e�ects of interactions
to arbitrarily high order�

This simpli�cation of the perturbation series for relativistic �eld theories
was the great advance of Tomonaga� Schwinger� and Feynman� To achieve
this simpli�cation� each� independently� found a way to reformulate quan�
tum mechanics to remove the special role of time� and then applied his new
viewpoint to recast each term of the perturbation expansion as a spacetime
process� We will develop quantum �eld theory from a spacetime viewpoint� us�
ing Feynman�s method of functional integration� in Chapter �� In the present
chapter we follow a more pedestrian line of analysis� �rst developed by Dyson�
to derive the spacetime picture of perturbation theory from the conventional
machinery of quantum mechanics�z

��� Perturbation Expansion of Correlation Functions

Let us then begin the study of perturbation theory for interacting �elds� aim�
ing toward a formalism that will allow us to visualize the perturbation series
as spacetime processes� Although we will not need to reformulate quantum
mechanics� we will rederive time�dependent perturbation theory in a form
that is convenient for our purposes� Ultimately� of course� we want to calcu�
late scattering cross sections and decay rates� For now� however� let us be less
ambitious and try to calculate a simpler �but more abstract� quantity� the
two�point correlation function� or two�point Green�s function�

h�jT
�x�
�y� j�i � �����

in 
� theory� We introduce the notation j�i to denote the ground state of the
interacting theory� which is generally di�erent from j�i� the ground state of
the free theory� The time�ordering symbol T is inserted for later convenience�
The correlation function can be interpreted physically as the amplitude for
propagation of a particle or excitation between y and x� In the free theory� it

yA brief survey of exactly solvable quantum �eld theories is given in the Epilogue�
zFor a historical account of the contributions of Tomonaga� Schwinger� Feynman�

and Dyson� see Schweber ��		���
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is simply the Feynman propagator�

h�jT
�x�
�y� j�ifree � DF �x� y� �

Z
d�p

�����
i e�ip��x�y�

p� �m� � i�
� ����

We would like to know how this expression changes in the interacting the�
ory� Once we have analyzed the two�point correlation function� it will be easy
to generalize our results to higher correlation functions in which more than
two �eld operators appear� In Sections ��� and ��� we will continue the anal�
ysis of correlation functions� eventually developing the formalism of Feynman
diagrams for evaluating them perturbatively� Then in Sections ��
 and ���
we will learn how to calculate cross sections and decay rates using the same
techniques�

To attack this problem� we write the Hamiltonian of 
� theory as

H � H� �Hint � HKlein Gordon �

Z
d�x

�

�-

��x�� �����

We want an expression for the two�point correlation function ����� as a power
series in �� The interaction Hamiltonian Hint enters ����� in two places� �rst�
in the de�nition of the Heisenberg �eld�


�x� � eiHt
�x�e�iHt � �����

and second� in the de�nition of j�i� We must express both 
�x� and j�i in
terms of quantities we know how to manipulate� free �eld operators and the
free theory vacuum j�i�

It is easiest to begin with 
�x�� At any �xed time t�� we can of course
expand 
 as before in terms of ladder operators�


�t��x� �

Z
d�p

�����
p
�Ep

�
ape

ip�x � aype
�ip�x

�
�

Then to obtain 
�t�x� for t � t�� we just switch to the Heisenberg picture as
usual�


�t�x� � eiH�t�t��
�t��x�e�iH�t�t���

For � � �� H becomes H� and this reduces to


�t�x�
��
�
�

� eiH��t�t��
�t��x�e�iH��t�t�� � 
I�t�x�� �����

When � is small� this expression will still give the most important part of
the time dependence of 
�x�� and thus it is convenient to give this quantity
a name� the interaction picture �eld� 


I
�t�x�� Since we can diagonalize H�� it

is easy to construct 

I
explicitly�



I
�t�x� �

Z
d�p

�����
p
�Ep

�
ape

�ip�x � aype
ip�x
����
x�
t�t�

� ���
�

This is just the familiar expression for the free �eld from Chapter ��
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The problem now is to express the full Heisenberg �eld 
 in terms of 
I �
Formally� it is just


�t�x� � eiH�t�t��e�iH��t�t��
I�t�x�e
iH��t�t��e�iH�t�t��

� Uy�t� t��
I�t�x�U�t� t���
�����

where we have de�ned the unitary operator

U�t� t�� � eiH��t�t��e�iH�t�t��� �����

known as the interaction picture propagator or time�evolution operator� We
would like to express U�t� t�� entirely in terms of 


I
� for which we have an

explicit expression in terms of ladder operators� To do this� we note that
U�t� t�� is the unique solution� with initial condition U�t�� t�� � � of a simple
di�erential equation �the Schr#odinger equation��

i
�

�t
U�t� t�� � eiH��t�t���H �H�

�
e�iH�t�t��

� eiH��t�t���Hint

�
e�iH�t�t��

� eiH��t�t���Hint

�
e�iH��t�t��eiH��t�t��e�iH�t�t��

� HI�t�U�t� t��� �����

where

HI �t� � eiH��t�t���Hint

�
e�iH��t�t�� �

Z
d�x

�

�-

�I �����

is the interaction Hamiltonian written in the interaction picture� The so�
lution of this di�erential equation for U�t� t�� should look something like
U � exp��iHIt�� this would be our desired formula for U in terms of 


I
�

Doing it more carefully� we will show that the actual solution is the following
power series in ��

U�t� t�� �  � ��i�
tZ

t�

dt�HI�t�� � ��i��
tZ

t�

dt�

t�Z
t�

dt�HI �t��HI�t��

� ��i��
tZ

t�

dt�

t�Z
t�

dt�

t�Z
t�

dt�HI�t��HI�t��HI�t�� � � � � �
������

To verify this� just di�erentiate� Each term gives the previous one times
�iHI�t�� The initial condition U�t� t�� �  for t � t� is obviously satis�ed�

Note that the various factors of HI in ������ stand in time order� later
on the left� This allows us to simplify the expression considerably� using the
time�ordering symbol T � The H�

I term� for example� can be written

tZ
t�

dt�

t�Z
t�

dt�HI�t��HI�t�� �


�

tZ
t�

dt�

tZ
t�

dt� T
�
HI�t��HI �t��

�
� �����
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Figure ���� Geometric interpretation of Eq� �������

The double integral on the right�hand side just counts everything twice� since
in the t�t��plane� the integrand TfHI�t��HI �t��g is symmetric about the line
t� � t� �see Fig� ����

A similar identity holds for the higher terms�

tZ
t�

dt�

t�Z
t�

dt� � � �
tn �Z
t�

dtnHI�t�� � � �HI�tn� �


n-

tZ
t�

dt� � � � dtn T
�
HI�t�� � � �HI�tn�

�
�

This case is a little harder to visualize� but it is not hard to convince oneself
that it is true� Using this identity� we can now write U�t� t�� in an extremely
compact form�

U�t� t�� �  � ��i�
tZ

t�

dt�HI�t�� �
��i��
�-

tZ
t�

dt� dt� T
�
HI�t��HI�t��

�
� � � �

� T

	
exp
h
�i

tZ
t�

dt�HI �t
��
i


� ������

where the time�ordering of the exponential is just de�ned as the Taylor series
with each term time�ordered� When we do real computations we will keep
only the �rst few terms of the series� the time�ordered exponential is just a
compact way of writing and remembering the correct expression�

We now have control over 
�t�x�� we have written it entirely in terms of


I
� as desired� Before moving on to consider j�i� however� it is convenient to

generalize the de�nition of U � allowing its second argument to take on values
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other than our �reference time� t�� The correct de�nition is quite natural�

U�t� t�� � T

	
exp
h
�i

tZ
t�

dt��HI�t
���
i


� �t � t�� ������

Several properties follow from this de�nition� and it is necessary to verify
them� First� U�t� t�� satis�es the same di�erential equation ������

i
�

�t
U�t� t�� � HI�t�U�t� t��� ������

but now with the initial condition U �  for t � t�� From this equation you
can show that

U�t� t�� � eiH��t�t��e�iH�t�t��e�iH��t
��t��� ����
�

which proves that U is unitary� Finally� U�t� t�� satis�es the following identities
�for t� � t� � t���

U�t�� t��U�t�� t�� � U�t�� t���

U�t�� t��
�
U�t�� t��

�y
� U�t�� t���

������

Now we can go on to discuss j�i� Since j�i is the ground state of H �
we can isolate it by the following procedure� Imagine starting with j�i� the
ground state of H�� and evolving through time with H �

e�iHT j�i �
X
n

e�iEnT jni hnj�i �

where En are the eigenvalues of H � We must assume that j�i has some overlap
with j�i� that is� h�j�i � � �if this were not the case� HI would in no sense be
a small perturbation�� Then the above series contains j�i� and we can write

e�iHT j�i � e�iE�T j�i h�j�i�
X
n

�

e�iEnT jni hnj�i �

where E� � h�jH j�i� �The zero of energy will be de�ned by H� j�i � ���
Since En � E� for all n � �� we can get rid of all the n � � terms in the series
by sending T to � in a slightly imaginary direction� T � �� � i��� Then
the exponential factor e�iEnT dies slowest for n � �� and we have

j�i � lim
T���� i��

�
e�iE�T h�j �i� �

e�iHT j�i � ������

Since T is now very large� we can shift it by a small constant�

j�i � lim
T���� i��

�
e�iE��T�t�� h�j �i� �

e�iH�T�t�� j�i

� lim
T���� i��

�
e�iE��t����T �� h�j �i� �

e�iH�t����T ��e�iH���T�t�� j�i

� lim
T���� i��

�
e�iE��t����T �� h�j �i� �

U�t���T � j�i � ������
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In the second line we have used H� j�i � �� Ignoring the c�number factor in
front� this expression tells us that we can get j�i by simply evolving j�i from
time �T to time t� with the operator U � Similarly� we can express h�j as

h�j � lim
T���� i��

h�jU�T� t��
�
e�iE��T�t�� h�j�i� �

� ������

Let us put together the pieces of the two�point correlation function� For
the moment� assume that x� � y� � t�� Then

h�j
�x�
�y� j�i � lim
T���� i��

�
e�iE��T�t�� h�j�i� � h�jU�T� t��

	 �U�x�� t��
�y

I�x�U�x�� t��

�
U�y�� t��

�y

I�y�U�y�� t��

	 U�t���T � j�i
�
e�iE��t����T �� h�j �i� �

� lim
T���� i��

�jh� j�i j�e�iE���T �
� �

	 h�jU�T� x��
I�x�U�x�� y��
I�y�U�y���T � j�i � ������
This is starting to look simple� except for the awkward factor in front� To get
rid of it� divide by  in the form

 � h�j�i � �jh� j�i j�e�iE���T �
� � h�jU�T� t��U�t���T � j�i �

Then our formula� still for x� � y�� becomes

h�j
�x�
�y� j�i � lim
T���� i��

h�jU�T� x��

I
�x�U�x�� y��


I
�y�U�y���T � j�i

h�jU�T��T � j�i �

Now note that all �elds on both sides of this expression are in time order� If
we had considered the case y� � x� this would still be true� Thus we arrive
at our �nal expression� now valid for any x� and y��

h�jT�
�x�
�y�� j�i � lim
T���� i��

h�jT
n

I�x�
I�y� exp

��i R TT dtHI�t�
�o j�i

h�jT
n
exp
��i R T

T
dtHI�t�

�o j�i �

�����
The virtue of considering the time�ordered product is clear� It allows us to
put everything inside one large T �operator� A similar formula holds for higher
correlation functions of arbitrarily many �elds� for each extra factor of 
 on
the left� put an extra factor of 
I on the right� So far this expression is exact�
But it is ideally suited to doing perturbative calculations� we need only retain
as many terms as desired in the Taylor series expansions of the exponentials�
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��� Wick
s Theorem

We have now reduced the problem of calculating correlation functions to that
of evaluating expressions of the form

h�jT�
I�x��
I�x�� � � �
I�xn�� j�i �
that is� vacuum expectation values of time�ordered products of �nite �but
arbitrary� numbers of free �eld operators� For n � � this expression is just
the Feynman propagator� For higher n you could evaluate this object by brute
force� plugging in the expansion of 


I
in terms of ladder operators� In this

section and the next� however� we will see how to simplify such calculations
immensely�

Consider again the case of two �elds� h�jTf

I
�x�


I
�y�g j�i� We already

know how to calculate this quantity� but now we would like to rewrite it in
a form that is easy to evaluate and also generalizes to the case of more than
two �elds� To do this we �rst decompose 


I
�x� into positive� and negative�

frequency parts�


I�x� � 
�I �x� � 
�I �x�� ������

where


�I �x� �

Z
d�p

�����
p
�Ep

ape
�ip�x� 
�I �x� �

Z
d�p

�����
p
�Ep

aype
�ip�x�

This decomposition can be done for any free �eld� It is useful because


�I �x� j�i � � and h�j
�I �x� � ��

For example� consider the case x� � y�� The time�ordered product of two
�elds is then

T
I�x�
I�y� �
x��y�


�I �x�

�
I �y� � 
�I �x�


�
I �y� � 
�I �x�


�
I �y� � 
�I �x�


�
I �y�

� 
�I �x�

�
I �y� � 
�I �y�


�
I �x� � 
�I �x�


�
I �y� � 
�I �x�


�
I �y�

�
�

�I �x�� 


�
I �y�
�
� ������

In every term except the commutator� all the ap�s are to the right of all the

ayp�s� Such a term �e�g�� aypa
y
qakal� is said to be in normal order� and has

vanishing vacuum expectation value� Let us also de�ne the normal ordering
symbol N�� to place whatever operators it contains in normal order� for ex�
ample�

N
�
apa

y
kaq
� � aykapaq� ������

The order of ap and aq on the right�hand side makes no di�erence since they
commute�!

�In the literature one often sees the notation ����� � instead of N�������
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If we had instead considered the case y� � x�� we would get the same four
normal�ordered terms as in ������� but this time the �nal commutator would
be $
�I �y�� 


�
I �x�%� Let us therefore de�ne one more quantity� the contraction

of two �elds� as follows�


�x�
�y� �
	�


��x�� 
��y�
�

for x� � y���

��y�� 
��x�

�
for y� � x��

����
�

This quantity is exactly the Feynman propagator�


�x�
�y� � DF �x� y�� ������

�From here on we will often drop the subscript I for convenience� contractions
will always involve interaction�picture �elds��

The relation between time�ordering and normal�ordering is now extremely
simple to express� at least for two �elds�

T
�

�x�
�y�

�
� N
�

�x�
�y� � 
�x�
�y�

�
� ������

But now that we have all this new notation� the generalization to arbitrarily
many �elds is also easy to write down�

T
�

�x��
�x�� � � �
�xm�

�
� N
�

�x��
�x�� � � �
�xm� � all possible contractions

�
�

������

This identity is known as Wick�s theorem� and we will prove it in a moment�
For m � � it is identical to ������� The phrase all possible contractions means
there will be one term for each possible way of contracting the m �elds in
pairs� Thus for m � � we have �writing 
�xa� as 
a for brevity�

T
�

�
�
�
�

�
� N
�

�
�
�
� � 
�
�
�
� � 
�
�
�
� � 
�
�
�
�

� 
�
�
�
� � 
�
�
�
� � 
�
�
�
�

� 
�
�
�
� � 
�
�
�
� � 
�
�
�
�
�
�

������

When the contraction symbol connects two operators that are not adjacent�
we still de�ne it to give a factor of DF � For example�

N
�

�
�
�
�

�
means DF �x� � x�� �N

�

�
�
�
�

In the vacuum expectation value of ������� any term in which there remain
uncontracted operators gives zero �since h�jN�any operator� j�i � ��� Only
the three fully contracted terms in the last line survive� and they are all c�
numbers� so we have

h�jT�
�
�
�
�� j�i � DF �x� � x��DF �x� � x��

� DF �x� � x��DF �x� � x��

� DF �x� � x��DF �x� � x���

������
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Now let us prove Wick�s theorem� Naturally the proof is by induction
on m� the number of �elds� We have already proved the case m � �� So
assume the theorem is true for m �  �elds� and let�s try to prove it for
m �elds� Without loss of generality� we can restrict ourselves to the case
x�� � x�� � � � �x�m� if this is not the case we can just relabel the points� without
a�ecting either side of ������� Then applying Wick�s theorem to 
� � � �
m� we
have

T
�

� � � �
m

�
� 
� � � �
m
� 
�N

n

� � � �
m �

�
all contractions

not involving 
�

�o
� �
�� � 
�� �N

n

� � � �
m �

�
all contractions

not involving 
�

�o
������

We want to move the 
�� and 
�� inside the Nfg� For the 
�� term this is easy�
Just move it in� since �being on the left� it is already in normal order� The
term with 
�� must be put in normal order by commuting it to the right past
all the other 
�s� Consider� for example� the term with no contractions�


�� N
�

� � � �
m

�
� N
�

� � � �
m

�

�� �

�

�� � N�
� � � �
m�

�
� N
�

�� 
� � � �
m

�
�N
�
$
�� � 


�
� %
� � � �
m � 
�$


�
� � 


�
� %
� � � �
m � � � ��

� N
�

�� 
� � � �
m � 
�
�
� � � �
m � 
�
�
� � � �� � � �

�
�

The �rst term in the last line combines with part of the 
�� term from ����� to
give Nf
�
� � � �
mg� so we now have the �rst term on the right�hand side of
Wick�s theorem� as well as all possible terms involving a single contraction of

� with another �eld� Similarly� a term in ����� involving one contraction will
produce all possible terms involving both that contraction and a contraction
of 
� with one of the other �elds� Doing this with all the terms of ������ we
eventually get all possible contractions of all the �elds� including 
�� Thus the
induction step is complete� and Wick�s theorem is proved�

��� Feynman Diagrams

Wick�s theorem allows us to turn any expression of the form

h�jT�

I
�x��
I�x�� � � �
I�xn�

� j�i
into a sum of products of Feynman propagators� Now we are ready to develop
a diagrammatic interpretation of such expressions� Consider �rst the case of
four �elds� all at di�erent spacetime points� which we worked out in Eq� �������
Let us represent each of the points x� through x� by a dot� and each factor
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DF �x� y� by a line joining x to y� Then Eq� ������ can be represented as the
sum of three diagrams �called Feynman diagrams��

h�jT�
�
�
�
�� j�i � ������

Although this isn�t exactly a measurable quantity� the diagrams do suggest an
interpretation� Particles are created at two spacetime points� each propagates
to one of the other points� and then they are annihilated� This can happen in
three ways� corresponding to the three ways to connect the points in pairs� as
shown in the three diagrams� The total amplitude for the process is the sum
of the three diagrams�

Things get more interesting when the expression contains more than one
�eld at the same spacetime point� So let us now return to the evaluation of
the two�point function h�jTf
�x�
�y�g j�i� and put formula ����� to use� We
will ignore the denominator until the very end of this section� The numerator�
with the exponential expanded as a power series� is

h�jT
n

�x�
�y� � 
�x�
�y�

h
�i
Z
dtHI�t�

i
� � � �

o
j�i � ������

The �rst term gives the free��eld result� h�jTf
�x�
�y�g j�i � DF �x�y�� The
second term� in 
� theory� is

h�jT
n

�x�
�y� ��i�

Z
dt

Z
d�z

�

�-

�
o
j�i

� h�jT
n

�x�
�y�

��i�
�-

�Z
d�z 
�z�
�z�
�z�
�z�

o
j�i �

Now apply Wick�s theorem� We get one term for every way of contracting the
six 
 operators with each other in pairs� There are 
 ways to do this� but
�fortunately� only two of them are really di�erent� If we contract 
�x� with

�y�� then there are three ways to contract the four 
�z��s with each other�
and all three give identical expressions� The other possibility is to contract

�x� with one of the 
�z��s �four choices�� 
�y� with one of the others �three
choices�� and the remaining two 
�z��s with each other �one choice�� There
are twelve ways to do this� and all give identical expressions� Thus we have

h�jT
n

�x�
�y� ��i�

Z
dt

Z
d�z

�

�-

�
o
j�i

� � �
��i�

�-

�
DF �x� y�

Z
d�z DF �z � z�DF �z � z�

� � �
��i�

�-

�Z
d�z DF �x� z�DF �y � z�DF �z � z��

������
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We can understand this expression better if we represent each term as a
Feynman diagram� Again we draw each contraction DF as a line� and each
point as a dot� But this time we must distinguish between the �external�
points� x and y� and the �internal� point z� each internal point is associated
with a factor of ��i�� R d�z� We will worry about the constant factors in a
moment� Using these rules� we see that the above expression ������ is equal
to the sum of two diagrams�

We refer to the lines in these diagrams as propagators� since they represent the
propagation amplitude DF � Internal points� where four lines meet� are called
vertices� Since DF �x � y� is the amplitude for a free Klein�Gordon particle
to propagate between x and y� the diagrams actually interpret the analytic
formula as a process of particle creation� propagation� and annihilation which
takes place in spacetime�

Now let�s try a more complicated contraction� from the �� term in the
expansion of the correlation function�

h�j
�x�
�y� �
��

��i�
��

�� R
d�z 





R
d�w 





R
d�u



 j�i

�


�-

��i�
�-

�� Z
d�z d�w d�u DF �x� z�DF �z � z�DF �z � w�

	DF �w � y�D�
F �w � u�DF �u� u�� ����
�

The number of �di�erent� contractions that give this same expression is large�

�-��z�
interchange
of vertices

	 � � ���z�
placement of
contractions
into z vertex

	 � � � � �� �z �
placement of
contractions
into w vertex

	 � � ���z�
placement of
contractions
into u vertex

	 ����z�
interchange
of w u

contractions

The product of these combinatoric factors is ������ roughly �� of the total
of �
��
 possible full contractions of the � operators� The structure of this
particular contraction can be represented by the following �cactus� diagram�

It is conventional� for obvious reasons� to let this one diagram represent the
sum of all ����� identical terms�
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In practice one always draws the diagram �rst� using it as a mnemonic
device for writing down the analytic expression� But then the question arises�
What is the overall constant� We could� of course� work it out as above� We
could associate a factor

R
d�z��i���-� with each vertex� put in the �n- from

the Taylor series� and then do the combinatorics by writing out the product
of �elds as in ����
� and counting� But the �n- from the Taylor series will
almost always cancel the n- from interchanging the vertices� so we can just
forget about both of these factors� Furthermore� the generic vertex has four
lines coming in from four di�erent places� so the various placements of these
contractions into 



 generates a factor of �- �as in the w vertex above��
which cancels the denominator in ��i���-�� It is therefore conventional to
associate the expression

R
d�z��i�� with each vertex� �This was the reason

for the factor of �- in the 
� coupling��
In the above diagram� this scheme gives a constant that is too large by

a factor of � � � � � � �� the symmetry factor of the diagram� Two factors
of � come from lines that start and end on the same vertex� The diagram is
symmetric under the interchange of the two ends of such a line� The other
factor of � comes from the two propagators connecting w to u� The diagram is
symmetric under the interchange of these two lines with each other� A third
possible type of symmetry is the equivalence of two vertices� To get the correct
overall constant for a diagram� we divide by its symmetry factor� which is in
general the number of ways of interchanging components without changing
the diagram�

Most people never need to evaluate a diagram with a symmetry factor
greater than �� so there�s no need to worry too much about these technicalities�
But here are a few examples� to make some sense out of the above rules�

When in doubt� you can always determine the symmetry factor by counting
equivalent contractions� as we did above�

We are now ready to summarize our rules for calculating the numerator
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of our expression ����� for h�jT
�x�
�y� j�i�

h�jT
n

I�x�
I�y� exp

h
�i
Z
dtHI�t�

io
j�i �

�
sum of all possible diagrams

with two external points

�
�

where each diagram is built out of propagators� vertices� and external points�
The rules for associating analytic expressions with pieces of diagrams are
called the Feynman rules� In 
� theory the rules are�

� For each propagator� � DF �x� y��

�� For each vertex� � ��i��
Z
d�z�

�� For each external point� � �

�� Divide by the symmetry factor�

One way to interpret these rules is to think of the vertex factor ��i�� as
the amplitude for the emission and�or absorption of particles at a vertex� The
integral

R
d�z instructs us to sum over all points where this process can occur�

This is just the superposition principle of quantum mechanics� When a process
can happen in alternative ways� we add the amplitudes for each possible way�
To compute each individual amplitude� the Feynman rules tell us to multiply
the amplitudes �propagators and vertex factors� for each independent part of
the process�

Since these rules are written in terms of the spacetime points x� y� etc��
they are sometimes called the position�space Feynman rules� In most calcu�
lations� it is simpler to express the Feynman rules in terms of momenta� by
introducing the Fourier expansion of each propagator�

DF �x � y� �

Z
d�p

�����
i

p� �m� � i�
e�ip��x�y�� ������

Represent this in the diagram by assigning a ��momentum p to each propa�
gator� indicating the direction with an arrow� �Since DF �x� y� � DF �y�x��
the direction of p is arbitrary�� Then when four lines meet at a vertex� the
z�dependent factors of the diagram are

��

Z
d�z e�ip�ze�ip�ze�ip�ze�ip�z

� ����������p� � p� � p� � p���

������

In other words� momentum is conserved at each vertex� The delta functions
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from the vertices can now be used to perform some of the momentum inte�
grals from the propagators� We are left with the following momentum�space

Feynman rules �

� For each propagator� �
i

p� �m� � i�
�

�� For each vertex� � �i��

�� For each external point� � e�ip�x�

�� Impose momentum conservation at each vertex�


� Integrate over each undetermined momentum�

Z
d�p

�����
�

�� Divide by the symmetry factor�

Again� we can interpret each factor as the amplitude for that part of the
process� with the integrations coming from the superposition principle� The
exponential factor for an external point is just the amplitude for a particle at
that point to have the needed momentum� or� depending on the direction of
the arrow� for a particle with a certain momentum to be found at that point�

This nearly completes our discussion of the computation of correlation
functions� but there are still a few loose ends� First� what happened to the
large time T that was taken to �� � i��� We glossed over it completely in
this section� starting with Eq� ������� The place to put it back is Eq� �������
where instead of just integrating over d�z� we should have

lim
T���� i��

TZ
T

dz�
Z
d�z e�i�p��p��p��p���z�

The exponential blows up as z� � � or z� � �� unless its argument
is purely imaginary� To achieve this� we can take each p� to have a small
imaginary part� p� � � � i��� But this is precisely what we do in following
the Feynman boundary conditions for computing DF � We integrate along a
contour that is rotated slightly away from the real axis� so that p� � � � i���
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The explicit dependence on T seems to disappear when we take the limit
T �� in ������� But consider the diagram

������

The delta function for the left�hand vertex is �������p� � p��� so momentum
conservation at the right�hand vertex is automatically satis�ed� and we get
��������� there� This awkward factor is easy to understand by going back to
position space� It is simply the integral of a constant over d�w�Z

d�w �const� � ��T � � �volume of space�� ������

This just tells us that the spacetime process ������ can happen at any place
in space� and at any time between �T and T � Every disconnected piece of a
diagram� that is� every piece that is not connected to an external point� will
have one such ��������� � �T � V factor�

The contributions to the correlation function coming from such diagrams
can be better understood with the help of a very pretty identity� the exponen�
tiation of the disconnected diagrams� It works as follows� A typical diagram
has the form� �

� ���
��

with a piece connected to x and y� and several disconnected pieces� �Since each
vertex has an even number of lines coming into it� x and y must be connected
to each other�� Label the various possible disconnected pieces by Vi�

Vi �
� �

� ���
�

The elements Vi are connected internally� but disconnected from external
points� Suppose that a diagram �such as ���
��� has ni pieces of the form
Vi� for each i� in addition to its one piece that is connected to x and y� �In
any given diagram� only �nitely many of the ni will be nonzero�� If we also
let Vi denote the value of the piece Vi� then the value of such a diagram is

�value of connected piece� �
Y
i



ni-

�
Vi
�ni

�

The �ni- is the symmetry factor coming from interchanging the ni copies of
Vi� The sum of all diagrams� representing the numerator of our formula for
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the two�point correlation function� is thenX
all possible
connected
pieces

X
all fnig

�
value of

connected piece

�
	
�Y

i



ni-

�
Vi
�ni�

�

where �all fnig� means �all ordered sets fn�� n�� n�� � � �g of nonnegative inte�
gers�� The sum of the connected pieces factors out of this expression� giving

�
�X

connected
�
	
X

all fnig

�Y
i



ni-

�
Vi
�ni�

�

where
�P

connected
�
is an abbreviation for the sum of the values of all con�

nected pieces� It is not too hard to see that the rest of the expression can also
be factored �try working backwards��

�
�X

connected
�
	
�X
n�



n�-
V n�
�

��X
n�



n�-
V n�
�

��X
n�



n�-
V n�
�

�
� � �

�
�X

connected
�
	
Y
i

�X
ni



ni-
V ni
i

�
�
�X

connected
�
	
Y
i

exp
�
Vi
�

�
�X

connected
�
	 exp

�X
i

Vi

�
� ���
��

We have just shown that the sum of all diagrams is equal to the sum of
all connected diagrams� times the exponential of the sum of all disconnected
diagrams� �We should really say �pieces� rather than �diagrams� on the right�
hand side of the equality� but from now on we will often just call a single piece
a �diagram��� Pictorially� the identity is

lim
T���� i��

h�jT
n


I
�x�


I
�y� exp

h
�i

TZ
T

dtHI�t�
io
j�i

�

� �

	 exp

�� �� � ���
��

Now consider the denominator of our formula ����� for the two�point
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function� By an argument identical to the above� it is just

h�jT
n
exp
h
�i

TZ
T

dtHI�t�
io
j�i � exp

 �
�

which cancels the exponential of the disconnected diagrams in the numerator�
This is the �nal simpli�cation of the formula� which now reads

h�jT �
�x�
�y�� j�i
� sum of all connected diagrams with two external points

� ���
��

We have come a long way from our original formula� Eq� ������
Having gotten rid of the disconnected diagrams in our formula for the

correlation function� we might pause a moment to go back and interpret them
physically� The place to look is Eq� ������� which can be written

lim
T���� i��

h�jT
n


I
�x�


I
�y� exp

h
�i R T

T
dtHI�t�

io
j�i

� h�jT
�x�
�y� j�i � lim
T���� i��

�jh� j�i j�e�iE���T �
�
�

Looking only at the T �dependent parts of both sides� this implies

exp
hX

i

Vi

i
� exp

h
�iE���T �

i
� ���

�

Since each disconnected diagram Vi contains a factor of ������������ � �T �V �
this gives us a formula for the energy density of the vacuum �relative to the
zero of energy set by H� j�i � ���

E�

volume
� i

 � h
������������

i
� ���
��

We should emphasize that the right�hand side is independent of T and �vol�
ume�� in particular it is reassuring to see that E� is proportional to the volume
of space� In Chapter  we will �nd that this formula is actually useful�

This completes our present analysis of the two�point correlation function�
The generalization to higher correlation functions is easy�

h�jT �
�x�� � � �
�xn�� j�i � � sum of all connected diagrams

with n external points

�
� ���
��

The disconnected diagrams exponentiate� factor� and cancel as before� by the
same argument� There is now a potential confusion in terminology� however�
By �disconnected� we mean �disconnected from all external points��exactly
the same diagrams as in ���
�� �They are sometimes called �vacuum bubbles�
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or �vacuum to vacuum transitions��� In higher correlation functions� diagrams
can also be disconnected in another sense� Consider� for example� the four�
point function�

h�jT
�
�
�
� j�i

�

���
��

In many of these diagrams� external points are disconnected from each other�
Such diagrams do not exponentiate or factor� they contribute to the amplitude
just as do the fully connected diagrams �in which any point can be reached
from any other by traveling along the lines��

Note that in 
� theory� all correlation functions of an odd number of �elds
vanish� since it is impossible to draw an allowed diagram with an odd number
of external points� We can also see this by going back to Wick�s theorem� The
interaction Hamiltonian HI contains an even number of �elds� so all terms
in the perturbation expansion of an odd correlation function will contain an
odd number of �elds� But it is impossible to fully contract an odd number
of �elds in pairs� and only fully contracted terms have nonvanishing vacuum
expectation value�

��� Cross Sections and the S�Matrix

We now have an extremely beautiful formula� Eq� ���
��� for computing an
extremely abstract quantity� the n�point correlation function� Our next task
is to �nd equally beautiful ways of computing quantities that can actually be
measured� cross sections and decay rates� In this section� after brie�y reviewing
the de�nitions of these objects� we will relate them �via a rather technical but
fairly careful derivation� to a more primitive quantity� the S�matrix� In the
next section we will learn how to compute the matrix elements of the S�matrix
using Feynman diagrams�

The Cross Section

The experiments that probe the behavior of elementary particles� especially
in the relativistic regime� are scattering experiments� One collides two beams
of particles with well�de�ned momenta� and observes what comes out� The
likelihood of any particular �nal state can be expressed in terms of the cross
section� a quantity that is intrinsic to the colliding particles� and therefore
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allows comparison of two di�erent experiments with di�erent beam sizes and
intensities�

The cross section is de�ned as follows� Consider a target� at rest� of parti�
cles of type A� with density �A �particles per unit volume�� Aim at this target
a bunch of particles of type B� with number density �B and velocity v�

Let �A and �B be the lengths of the bunches of particles� Then we expect
the total number of scattering events �or scattering events of any particular
desired type� to be proportional to �A� �B� �A� �B� and the cross�sectional
area A common to the two bunches� The cross section� denoted by �� is just
the total number of events �of whatever type desired� divided by all of these
quantities�

� � Number of scattering events

�A �A �B �B A
� ���
��

The de�nition is symmetric between the A�s and B�s� so of course we could
have taken the B�s to be at rest� or worked in any other reference frame�

The cross section has units of area� In fact� it is the e�ective area of
a chunk taken out of one beam� by each particle in the other beam� that
subsequently becomes the �nal state we are interested in�

In real beams� �A and �B are not constant� the particle density is generally
larger at the center of the beam than at the edges� We will assume� however�
that both the range of the interaction between the particles and the width of
the individual particle wavepackets are small compared to the beam diameter�
We can then consider �A and �B to be constant in what follows� and remember
that� to compute the event rate in an actual accelerator� one must integrate
over the beam area�

Number of events � � �A �B

Z
d�x �A�x� �B�x�� ������

If the densities are constant� or if we use this formula to compute an e�ective
area A of the beams� then we have simply

Number of events �
�NANB

A
� �����

where NA and NB are the total numbers of A and B particles�
Cross sections for many di�erent processes may be relevant to a single

scattering experiment� In e�e� collisions� for example� one can measure the
cross sections for production of ����� ����� ������ ������� etc�� and
countless processes involving hadron production� not to mention simple e�e�

scattering� Usually� of course� we wish to measure not only what the �nal�state
particles are� but also the momenta with which they come out� In this case
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our de�nition ���
�� of � still works� but if we specify the exact momenta de�
sired� � will be in�nitesimal� The solution is to de�ne the di�erential cross

section� d���d�p� � � � d�pn�� It is simply the quantity that� when integrated
over any small d�p� � � � d�pn� gives the cross section for scattering into that re�
gion of �nal�state momentum space� The various �nal�state momenta are not
all independent� Four components will always be constrained by ��momentum
conservation� In the simplest case� where there are only two �nal�state parti�
cles� this leaves only two unconstrained momentum components� usually taken
to be the angles � and 
 of the momentum of one of the particles� Integrating
d���d�p�d

�p�� over the four constrained momentum components then leaves
us with the usual di�erential cross section d��d��

A somewhat simpler measurable quantity is the decay rate , of an unsta�
ble particle A �assumed to be at rest� into a speci�ed �nal state �of two or
more particles�� It is de�ned as

, � Number of decays per unit time

Number of A particles present
� ������

The lifetime � of the particle is then the reciprocal of the sum of its decay
rates into all possible �nal states� �The particle�s half�life is � � ln ���

In nonrelativistic quantum mechanics� an unstable atomic state shows up
in scattering experiments as a resonance� Near the resonance energy E�� the
scattering amplitude is given by the Breit�Wigner formula

f�E� � 

E �E� � i,��
� ������

The cross section therefore has a peak of the form

� � 

�E �E��� � ,���
�

The width of the resonance peak is equal to the decay rate of the unstable
state�

The Breit�Wigner formula ������ also applies in relativistic quantum me�
chanics� In particular� it gives the scattering amplitude for processes in which
initial particles combine to form an unstable particle� which then decays� The
unstable particle� viewed as an excited state of the vacuum� is a direct ana�
logue of the unstable nonrelativistic atomic state� If we call the ��momentum
of the unstable particle p and its mass m� we can make a relativistically in�
variant generalization of �������



p� �m� � im,
� 

�Ep�p� �Ep � i�m�Ep�,���
� ������

The decay rate of the unstable particle in a general frame is �m�Ep�,� in ac�
cord with relativistic time dilation� Although the two expressions in ������ are
equal in the vicinity of the resonance� the left�hand side� which is manifestly
Lorentz invariant� is much more convenient�
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The S�Matrix

How� then� do we calculate a cross section� We must set up wavepackets rep�
resenting the initial�state particles� evolve this initial state for a very long
time with the time�evolution operator exp��iHt� of the interacting �eld the�
ory� and overlap the resulting �nal state with wavepackets representing some
desired set of �nal�state particles� This gives the probability amplitude for
producing that �nal state� which is simply related to the cross section� We
will �nd that� in the limit where the wavepackets are very narrow in momen�
tum space� the amplitude depends only on the momenta of the wavepackets�
not on the details of their shapes�y

A wavepacket representing some desired state j
i can be expressed as

j
i �
Z

d�k

�����
p
�Ek


�k� jki � ����
�

where 
�k� is the Fourier transform of the spatial wavefunction� and jki is a
one�particle state of momentum k in the interacting theory� In the free theory�
we would have jki � p

�Eka
y
k j�i� The factor of

p
�Ek converts our relativistic

normalization of jki to the conventional normalization in which the sum of
all probabilities adds up to �

h
j
i �  if

Z
d�k

�����

��
�k���� � � ������

The probability we wish to compute is then

P �
��h
�
� � � �� �z �

future

j
A
B� �z �
past

i
���� ������

where j
A
Bi is a state of two wavepackets constructed in the far past and
h
�
� � � �j is a state of several wavepackets �one for each �nal�state particle�
constructed in the far future� The wavepackets are localized in space� so each
can be constructed independently of the others� States constructed in this
way are called in and out states� Note that we use the Heisenberg picture�
States are time�independent� but the name we give a state depends on the
eigenvalues or expectation values of time�dependent operators� Thus states
with di�erent names constructed at di�erent times have a nontrivial overlap�
which depends on the time dependence of the operators�

If we set up j
A
Bi in the remote past� and then take the limit in which
the wavepackets 
i�ki� become concentrated about de�nite momenta pi� this
de�nes an in state jpApBiin with de�nite initial momenta� It is useful to view
j
A
Bi as a linear superposition of such states� It is important� however� to

yMuch of this section is based on the treatment of nonrelativistic scattering given
in Taylor ��	���� Chapters �� � and ��� We concentrate on the additional complications
of the relativistic theory� glossing over many subtleties� common to both cases� which
Taylor explains carefully�
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Figure ���� Incident wavepackets are uniformly distributed in impact pa�
rameter b�

take into account the transverse displacement of the wavepacket 
B relative
to 
A in position space �see Fig� ����� Although we could leave this implicit
in the form of 
B�kB�� we instead adopt the convention that our reference
momentum�space wavefunctions are collinear �that is� have impact parameter
b � ��� and write 
B�kB� with an explicit factor exp��ib�kB� to account for
the spatial translation� Then� since 
A and 
B are constructed independently
at di�erent locations� we can write the initial state as

j
A
Biin �

Z
d�kA
�����

Z
d�kB
�����


A�kA�
B�kB�e�ib�kBp
��EA���EB�

jkAkBiin� ������

We could expand h
�
� � � �j in terms of similarly de�ned out states of de�nite
momentum formed in the asymptotic future�z

outh
�
� � � � j �
�Y

f

Z
d�pf
�����


f �pf �p
�Ef

�
outhp�p� � � � j�

It is much easier� however� to use the out states of de�nite momentum as
the �nal states in the probability amplitude ������� and to multiply by the
various normalization factors after squaring the amplitude� This is physically
reasonable as long as the detectors of �nal�state particles mainly measure
momentum�that is� they do not resolve positions at the level of de Broglie
wavelengths�

We can now relate the probability of scattering in a real experiment to
an idealized set of transition amplitudes between the asymptotically de�ned
in and out states of de�nite momentum�

outhp�p� � � � jkAkBiin� ������

zHere and below� the product symbol applies �symbolically� to the integral as
well as the other factors in parentheses� the integrals apply to what is outside the
parentheses as well�
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To compute the overlap of in states with out states� we note that the conven�
tions for de�ning the two sets of states are related by time translation�

outhp�p� � � � jkAkBiin � lim
T��

hp�p� � � �� �z �
T

jkAkB� �z �
�T

i

� lim
T��

hp�p� � � � j e�iH��T � jkAkBi �
������

In the last line� the states are de�ned at any common reference time� Thus� the
in and out states are related by the limit of a sequence of unitary operators�
This limiting unitary operator is called the S�matrix �

outhp�p� � � � jkAkBiin � hp�p� � � � jS jkAkBi � �����

The S�matrix has the following structure� If the particles in question
do not interact at all� S is simply the identity operator� Even if the theory
contains interactions� the particles have some probability of simply missing
one another� To isolate the interesting part of the S�matrix�that is� the part
due to interactions�we de�ne the T�matrix by

S � �� iT� ������

Next we note that the matrix elements of S should re�ect ��momentum con�
servation� Thus S or T should always contain a factor �����kA � kB �

P
pf ��

Extracting this factor� we de�ne the invariant matrix element M� by

hp�p� � � �j iT jkAkBi � ���������
�
kA�kB �

P
pf
� � iM�kA� kB � pf �� ������

We have written this expression in terms of ��momenta p and k� but of course
all ��momenta are on mass�shell� p� � Ep� k

� � Ek� �Note that our entire
treatment is speci�c to the case where the initial state contains only two
particles� For ��many or many�many interactions� one can invent analogous
constructions� but we will not consider such complicated experiments in this
book��

The matrix element M is analogous to the scattering amplitude f of
one�particle quantum mechanics� It is useful because it allows us to separate
all the physics that depends on the details of the interaction Hamiltonian
��dynamics�� from all the physics that doesn�t ��kinematics��� In the next
section we will discuss how to compute M using Feynman diagrams� But
�rst� we must �gure out how to reconstruct the cross section � from M�

To do this� let us calculate� in terms of M� the probability for the initial
state j
A
Bi to scatter and become a �nal state of n particles whose momenta
lie in a small region d�p� � � � d�pn� In our normalization� this probability is

P�AB �  � � � � n� �

�Q
f

d�pf
�����



�Ef

���
outhp� � � �pn

�� 
A
Biin���� ������
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For a single target �A� particle and many incident �B� particles with di�erent
impact parameters b� the number of scattering events is

N �
X

all incident
particles i

Pi �
Z
d�b nB P�b��

where nB is the number density �particles per unit area� of B particles� Since
we are assuming that this number density is constant over the range of the
interaction� nB can be taken outside the integral� The cross section is then

� �
N

nBNA
�

N

nB �  �

Z
d�b P�b�� ����
�

Deriving a simple expression for � in terms ofM is now a fairly straight�
forward calculation� Combining ����
�� ������� and ������� we have �writing
d� rather than � since this is an in�nitesimal quantity�

d� �

�Q
f

d�pf
�����



�Ef

�Z
d�b

� Y
i
A�B

Z
d�ki
�����


i�ki�p
�Ei

Z
d�ki
�����


�i �ki�p
�Ei

�
	 eib��

�kB�kB��
outhfpfgjfkigiin

��
outhfpfgjfkigiin

��
� ������

where we have used kA and kB as dummy integration variables in the second
half of the squared amplitude� The d�b integral can be performed to give a
factor of ����������k�B � k�B �� We get more delta functions by writing the �nal
two factors of ������ in terms of M� Assuming that we are not interested in
the trivial case of forward scattering where no interaction takes place� we can
drop the � in Eq� ������ and write these factors as�

outhfpfgjfkigiin
�
� iM�fkig � fpfg� ����������

P
ki �
P

pf ���
outhfpfgjfkigiin

��
� �iM��fkig � fpfg� ����������

P
ki �

P
pf ��

We can use the second of these delta functions� together with the �����k�B�k�B ��
to perform all six of the k integrals in ������� Of the six integrals� only those
over kzA and kzB require some work�Z

dkzAdk
z
B ��k

z
A�k

z
B �
P
pzf � ��EA�EB �

P
Ef �

�

Z
dkzA �

�q
k�A�m

�
A �
q
k�B�m

�
B �
P
Ef

����
�kz
B

�pz

f
��kz
A

�
���� kzAEA � kzB
EB

���� �


jvA � vBj � ������

In the last line and in the rest of Eq� ������ it is understood that the con�
straints kzA � kzB �

P
pzf and EA � EB �

P
Ef now apply �in addition to

the constraints k�A � k�A and k�B � k�B coming from the other four integrals��
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The di�erence jvA � vB j is the relative velocity of the beams as viewed from
the laboratory frame�

Now recall that the initial wavepackets are localized in momentum space�
centered on pA and pB� This means that we can evaluate all factors that
are smooth functions of kA and kB at pA and pB� pulling them outside the
integrals� These factors include EA� EB� jvA�vBj� andM�everything except
the remaining delta function� After doing this� we arrive at the expression

d� �

�Q
f

d�pf
�����



�Ef

���M�pA� pB � fpfg�
���

�EA�EB jvA�vBj
Z

d�kA
�����

Z
d�kB
�����

	 ��
A�kA������
B�kB��������������kA�kB�P pf ��

������

To simplify this formula further� we should think a bit more about the
properties of real particle detectors� We have already noted that real detec�
tors project mainly onto eigenstates of momentum� But real detectors have
�nite resolution� that is� they sum incoherently over momentum bites of ��
nite size� Normally� the measurement of the �nal�state momentum is not of
such high quality that it can resolve the small variation of this momentum
that results from the momentum spread of the initial wavepackets 
A� 
B� In
that case� we may treat even the momentum vector kA � kB inside the delta
function as being well approximated by its central value pA � pB� With this
further approximation� we can perform the integrals over kA and kB using the
normalization condition ������� This produces the �nal form of the relation
between S�matrix elements and cross sections�

d� �


�EA�EB jvA�vBj
�Q

f

d�pf
�����



�Ef

�
	 ��M�pA� pB � fpfg�

��� ����������pA�pB �P pf ��

������

All dependence on the shapes of the wavepackets has disappeared�
The integral over �nal�state momenta in ������ has the structureZ

d/n �

�Q
f

Z
d�pf
�����



�Ef

�
����������P �P pf �� ������

with P the total initial ��momentum� This integral is manifestly Lorentz in�
variant� since it is built up from invariant ��momentum integrals constrained
by a ��momentum delta function� This integral is known as relativistically

invariant n�body phase space� Of the other ingredients in ������� the matrix
element M is also Lorentz invariant� The Lorentz transformation property of
������ therefore comes entirely from the prefactor



EAEBjvA � vBj �


jEBpzA �EApzBj
�



j��xy�p�Ap�Bj
�

This is not Lorentz invariant� but it is invariant to boosts along the z�direction�
In fact� this expression has exactly the transformation properties of a cross�
sectional area�
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For the special case of two particles in the �nal state� we can simplify
the general expression ������ by partially evaluating the phase�space integrals
in the center�of�mass frame� Label the momenta of the two �nal particles
p� and p�� We �rst choose to integrate all three components of p� over the
delta functions enforcing ��momentum conservation� This sets p� � �p� and
converts the integral over two�body phase space to the formZ

d/� �

Z
dp� p

�
� d�

����� �E� �E�
������Ecm �E� �E��� �����

where E� �
p
p�� �m�

�� E� �
p
p�� �m�

�� and Ecm is the total initial energy�
Integrating over the �nal delta function givesZ

d/� �

Z
d�

p��
���E�E�

� p�
E�

�
p�
E�

���
�

Z
d�



���
jp�j
Ecm

�

������

For reactions symmetric about the collision axis� two�body phase space can
be written simply as an integral over the polar angle in the center�of�mass
frame� Z

d/� �

Z
d cos �



��

�jp�j
Ecm

� ������

The last factor tends to  at high energy�
Applying this simpli�cation to ������� we �nd the following form of the

cross section for two �nal�state particles��
d�

d�

�
CM

�


�EA�EB jvA�vBj
jp�j

����� �Ecm

��M�pA� pB � p�� p��
���� ������

In the special case where all four particles have identical masses �including the
commonly seen limit m� ��� this reduces to the formula quoted in Chapter ��

d�

d�

�
CM

�
jMj�

����E�
cm

�all four masses identical�� ����
�

To conclude this section� we should derive a formula for the di�erential
decay rate� d,� in terms of M� The correct expression is only a slight modi��
cation of ������� and is quite easy to guess� Just remove from ������ the factors
that do not make sense when the initial state consists of a single particle� The
de�nition of , assumes that the decaying particle is at rest� so the normaliza�
tion factor ��EA��� becomes ��mA���� �In any other frame� this factor would
give the usual time dilation�� Thus the decay rate formula is

d, �


�mA

�Q
f

d�pf
�����



�Ef

���M�mA � fpfg�
��� ����������pA �P pf �� ������

Unfortunately� the meaning of this formula is far from clear� Since an unstable
particle cannot be sent into the in�nitely distant past� our de�nition ������
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of M�mA � fpfg� in terms of the S�matrix makes no sense in this context�
Nevertheless formula ������ is correct� when M is computed according to the
Feynman rules for S�matrix elements that we will present in the following
section� We postpone the further discussion of these matters� and the proof
of Eq� ������� until Section ���� Until then� an intuitive notion of M as a
transition amplitude should su	ce�

Equations ������ and ������ are completely general� whether or not the
�nal state contains several identical particles� �The computation of M� of
course� will be quite di�erent when identical particles are present� but that is
another matter�� When integrating either of these formulae to obtain a total

cross section or decay rate� however� we must be careful to avoid counting the
same �nal state several times� If there are n identical particles in the �nal
state� we must either restrict the integration to inequivalent con�gurations�
or divide by n- after integrating over all sets of momenta�

��� Computing S�Matrix Elements

from Feynman Diagrams

Now that we have formulae for cross sections and decay rates in terms of
the invariant matrix element M� the only remaining task is to �nd a way of
computingM for various processes in various interacting �eld theories� In this
section we will write down �and try to motivate� a formula for M in terms
of Feynman diagrams� We postpone the actual proof of this formula until
Section ���� since the proof is somewhat technical and will be much easier to
understand after we have seen how the formula is used�

Recall from its de�nition� Eq� ������ that the S�matrix is simply the
time�evolution operator� exp��iHt�� in the limit of very large t�

hp�p� � � �jS jkAkBi � lim
T��

hp�p� � � �j e�iH��T � jkAkBi � ������

To compute this quantity we would like to replace the external plane�wave
states in ������� which are eigenstates of H � with their counterparts in the
unperturbed theory� which are eigenstates of H�� We successfully made such
a replacement for the vacuum state j�i in Eq� �������

j�i � lim
T���� i��

�
e�iE�T h�j �i� �

e�iHT j�i �

This time we would like to �nd a relation of the form

jkAkBi � lim
T���� i��

e�iHT jkAkBi�� ������

where we have omitted some unknown phases and overlap factors like those
in ������� To �nd such a relation would not be easy� In ������� we used the fact
that the vacuum was the state of absolute lowest energy� Here we can use only
the much weaker statement that the external states with well�separated initial
and �nal particles have the lowest energy consistent with the predetermined
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nonzero values of momentum� The problem is a deep one� and it is associated
with one of the most fundamental di	culties of �eld theory� that interactions
a�ect not only the scattering of distinct particles but also the form of the
single�particle states themselves�

If the formula ������ could somehow be justi�ed� we could use it to rewrite
the right�hand side of ������ as

lim
T���� i��

�hp� � � �pnje�iH��T �jpApBi�

� lim
T���� i��

�hp� � � �pnjT
�
exp
h
�i
Z T

T

dtHI�t�
i�
jpApBi��

������

In the evaluation of vacuum expectation values� the awkward proportionality
factors between free and interacting vacuum states cancelled out of the �nal
formula� Eq� ������ In the present case those factors are so horrible that we
have not even attempted to write them down� we only hope that a similar
dramatic cancellation will take place here� In fact such a cancellation does
take place� although it is not easy to derive this conclusion from our present
approach� Up to one small modi�cation �which is unimportant for our present
purposes�� the formula for the nontrivial part of the S�matrix can be simpli�ed
to the following form�

hp� � � �pnj iT jpApBi

� lim
T���� i��

�
�hp� � � �pnjT

�
exp
h
�i
Z T

T

dtHI �t�
i�
jpApBi�

�
connected�
amputated

������

The attributes �connected� and �amputated� refer to restrictions on the class
of possible Feynman diagrams� these terms will be de�ned in a moment� We
will prove Eq� ������ in Section ���� In the remainder of this section� we will
explain this formula and motivate the new restrictions that we have added�

First we must learn how to represent the matrix element in ������ as a
sum of Feynman diagrams� Let us evaluate the �rst few terms explicitly� in

� theory� for the case of two particles in the �nal state� The �rst term is

�hp�p�jpApBi� �
p
�E��E��EA�EB h�j a�a�ayAayB j�i

� �EA�EB�����
�
��pA � p����pB � p��

� ��pA � p����pB � p��
�
�

�����

The delta functions force the �nal state to be identical to the initial state�
so this term is part of the 0�� in S � �� iT � and does not contribute to the
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scattering matrix element M� We can represent it diagrammatically as

The next term in hp�p�jS jpApBi is

�hp�p�jT
�
�i �

�-

Z
d�x
�I�x�

�
jpApBi�

� �hp�p�jN
�
�i �

�-

Z
d�x
�I �x� � contractions

�
jpApBi��

������

using Wick�s theorem� Since the external states are not j�i� terms that are not
fully contracted do not necessarily vanish� we can use an annihilation operator
from 


I
�x� to annihilate an initial�state particle� or a creation operator from



I
�x� to produce a �nal�state particle� For example�


�I �x�jpi� �

Z
d�k

�����
p
�Ek

ake
�ik�x p�Epa

y
p j�i

�

Z
d�k

�����
p
�Ek

e�ik�x
p
�Ep����

���k� p� j�i

� e�ip�x j�i �

������

An uncontracted 

I
operator inside the N �product of ������ has two terms�


�I on the far right and 
�I on the far left� We get one contribution to the
S�matrix element for each way of commuting the a of 
�I past an initial�state
ay� and one contribution for each way of commuting the ay of 
�I past a �nal�
state a� It is natural� then� to de�ne the contractions of �eld operators with
external states as follows�


I�x�jpi � e�ip�x� hpj
I�x� � e�ip�x� ������

To evaluate an S�matrix element such as ������� we simply write down all
possible full contractions of the 
I operators and the external�state momenta�

To see that this prescription is correct� let us evaluate ������ in detail�
The N �product contains terms of the form





� 



� 



� ����
�

The last term� in which the 
 operators are fully contracted with each other� is
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equal to a vacuum bubble diagram times the value of ����� calculated above�

� i
�

�-

Z
d�x �hp�p�j



jpApBi�

�

������

This is just another contribution to the trivial part of the S�matrix� so we
ignore it�

Next consider the second term of ����
�� in which two of the four 
 oper�
ators are contracted� The normal�ordered product of the remaining two �elds
looks like �ayay��aya�aa�� As we commute these operators past the a�s and
ay�s of the initial and �nal states� we �nd that only a term with an equal num�
ber of a�s and ay�s can survive� In the language of contractions� this says that
one of the 
�s must be contracted with an initial�state jpi� the other with a
�nal�state hpj� The uncontracted jpi and hpj give a delta function as in ������
To represent these quantities diagrammatically� we introduce external lines to
our Feynman rules�



I
�x�jpi � hpj


I
�x� � ������

Feynman diagrams for S�matrix elements will always contain external lines�
rather than the external points of diagrams for correlation functions� The
second term of ����
� thus yields four diagrams�

The integration
R
d�x produces a momentum�conserving delta function at

each vertex �including the external momenta�� so these diagrams again de�
scribe trivial processes in which the initial and �nal states are identical� This
illustrates a general principle� Only fully connected diagrams� in which all
external lines are connected to each other� contribute to the T �matrix�

Finally� consider the term of ����
� in which none of the 
 operators are
contracted with each other� Our prescription tells us to contract two of the

�s with jpApBi and the other two with hp�p�j� There are �- ways to do this�
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Thus we obtain the diagram

� ��-� �
�
�i �

�-

�Z
d�x e�i�pA�pB�p��p���x

� �i� ����������pA � pB � p� � p���

������

This is exactly of the form iM����������pA � pB � p� � p��� with M � ���
Before continuing our discussion of Feynman diagrams for S�matrix ele�

ments� we should certainly pause to turn this result into a cross section� For
scattering in the center�of�mass frame� we can simply plug jMj� � �� into
Eq� ����
� to obtain �

d�

d�

�
CM

�
��

����E�
cm

� ������

We have just computed our �rst quantum �eld theory cross section� It is a
rather dull result� having no angular dependence at all� �This situation will
be remedied when we consider fermions in the next section�� Integrating over
d�� and dividing by � since there are two identical particles in the �nal state�
we �nd the total cross section�

�total �
��

���E�
cm

� ������

In practice� one would probably use this result to measure the value of ��
Returning to our general discussion� let us consider some higher�order

contributions to the T �matrix for the processA�B � � �� If we ignore� for the
moment� the �connected and amputated� prescription� we have the formula

hp�p�j iT jpApBi �
�

�����

plus diagrams in which the four external lines are not all connected to each
other� We have already seen that this last class of diagrams gives no contribu�
tion to the T �matrix� The �rst diagram shown in ����� gives the lowest�order
contribution to T � which we calculated above� The next three diagrams give
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expected corrections to this amplitude� involving creation and annihilation of
additional �virtual� particles�

The diagrams in the second line of ����� contain disconnected �vacuum
bubbles�� By the same argument as at the end of Section ���� the disconnected
pieces exponentiate to an overall phase factor giving the shift of the energy
of the interacting vacuum state upon which the scattering takes place� Thus
they are irrelevant to S� We have now seen that only fully connected diagrams
give sensible contributions to S�matrix elements�

The last diagram is more problematical� let us evaluate it� After integrat�
ing over the two vertex positions� we obtain

�


�

Z
d�p�

�����
i

p�� �m�

Z
d�k

�����
i

k� �m�

	 ��i������������pA � p� � p� � p��

	 ��i������������pB � p���

������

We can integrate over p� using the second delta function� It tells us to evaluate



p�� �m�

���
p�
pB

�


p�B �m�
�



�
�

We get in�nity� since pB� being the momentum of an external particle� is on�
shell� p�B � m�� This is a disaster� Clearly� our formula for S makes sense only
if we exclude diagrams of this form� that is� diagrams with loops connected to
only one external leg� Fortunately� this is physically reasonable� In the same
way that the vacuum bubble diagrams represent the evolution of j�i into j�i�
these external leg corrections�

represent the evolution of jpi� into jpi� the single�particle state of the inter�
acting theory� Since these corrections have nothing to do with the scattering
process� we should exclude them from the computation of S�

For a general diagram with external legs� we de�ne amputation in the
following way� Starting from the tip of each external leg� �nd the last point
at which the diagram can be cut by removing a single propagator� such that
this operation separates the leg from the rest of the diagram� Cut there� For
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example�

Let us summarize our prescription for calculating scattering amplitudes�
Our formula for S�matrix elements� Eq� ������� can be rewritten

iM� ����������pA � pB �
P

pf �

�

�
sum of all connected� amputated Feynman

diagrams with pA� pB incoming� pf outgoing

�
�

������

By 0connected�� we now mean fully connected� that is� with no vacuum bub�
bles� and all external legs connected to each other� The Feynman rules for
scattering amplitudes in 
� theory are� in position space�

� For each propagator� � DF �x� y��

�� For each vertex� � ��i��
Z
d�x�

�� For each external line� � e�ip�x�

�� Divide by the symmetry factor�

Notice that the factor for an ingoing line is just the amplitude for that particle
to be found at the vertex it connects to� i�e�� the particle�s wavefunction� Sim�
ilarly� the factor for an outgoing line is the amplitude for a particle produced
at the vertex to have the desired �nal momentum�

Just as with the Feynman rules for correlation functions� it is usually
simpler to introduce the momentum�space representation of the propagators�
carry out the vertex integrals to obtain momentum�conserving delta functions�
and use these delta functions to evaluate as many momentum integrals as
possible� In a scattering amplitude� however� there will always be an overall
delta function� which can be used to cancel the one on the left�hand side of
Eq� ������� We are then left with

iM � sum of all connected� amputated diagrams� ������

where the diagrams are evaluated according to the following rules�
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� For each propagator� �
i

p� �m� � i�
�

�� For each vertex� � �i��

�� For each external line� � �

�� Impose momentum conservation at each vertex�


� Integrate over each undetermined loop momentum�

Z
d�p

�����
�

�� Divide by the symmetry factor�

This is our �nal version of the Feynman rules for 
� theory� these rules are
also listed in the Appendix� for reference�

Actually� Eq� ������ still isn�t quite correct� One more modi�cation is nec�
essary� involving the proportionality factors that were omitted from Eq� �������
But the modi�cation a�ects only diagrams containing loops� so we postpone
its discussion until Chapters � and �� where we �rst evaluate such diagrams�
We will prove the corrected formula ������ in Section ���� by relating S�
matrix elements to correlation functions� for which we have actually derived
a formula in terms of Feynman diagrams�

��� Feynman Rules for Fermions

So far in this chapter we have discussed only 
� theory� in order to avoid un�
necessary complication� We are now ready to generalize our results to theories
containing fermions�

Our treatment of correlation functions in Section ��� generalizes without
di	culty� Lorentz invariance requires that the interaction Hamiltionian HI be
a product of an even number of spinor �elds� so no di	culties arise in de�ning
the time�ordered exponential of HI �

To apply Wick�s theorem� however� we must generalize the de�nitions of
the time�ordering and normal�ordering symbols to include fermions� We saw
at the end of Section ��
 that the time�ordering operator T acting on two
spinor �elds is most conveniently de�ned with an additional minus sign�

T
�
��x���y�

� � 	 ��x���y� for x� � y��

���y���x� for x� � y��
����
�

With this de�nition� the Feynman propagator for the Dirac �eld is

SF �x� y� �

Z
d�p

�����
i�p�m�

p� �m� � i�
e�ip��x�y� � h�jT��x���y� j�i � ������
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For products of more than two spinor �elds� we generalize this de�nition in
the natural way� The time�ordered product picks up one minus sign for each
interchange of operators that is necessary to put the �elds in time order� For
example�

T
�
��������

�
� ������������ if x�� � x�� � x�� � x���

The de�nition of the normal�ordered product of spinor �elds is analogous�
Put in an extra minus sign for each fermion interchange� The anticommutation
properties make it possible to write a normal�ordered product in several ways�
but with our conventions these are completely equivalent�

N
�
apaqa

y
r

�
� ����ayrapaq � ����ayraqap�

Using these de�nitions� it is not hard to generalize Wick�s theorem� Con�
sider �rst the case of two Dirac �elds� say T

�
��x���y�

�
� In analogy with �������

de�ne the contraction of two �elds by

T
�
��x���y�

�
� N
�
��x���y�

�
� ��x���y�� ������

Explicitly� for the Dirac �eld�

��x���y� �
	 f���x�� ���y�g for x� � y�

�f���y�� ���x�g for x� � y�



� SF �x� y�� ������

��x���y� � ��x���y� � �� ������

De�ne contractions under the normal�ordering symbol to include minus signs
for operator interchanges�

N
�
��������

�
� �����N

�
����

�
� �SF �x� � x��N

�
����

�
� �����

With these conventions� Wick�s theorem takes the same form as before�

T
�
������ � � �

�
� N
�
������ � � � � all possible contractions

�
� ����

The proof is essentially unchanged from the bosonic case� since all extra minus
signs are accounted for by the above de�nitions�

Yukawa Theory

Writing down the Feynman rules for fermion correlation functions would now
be easy� but instead let�s press on and discuss scattering processes� For de��
niteness� we begin by analyzing the Yukawa theory�

H � HDirac �HKlein Gordon �

Z
d�x g��
� �����
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This is a simpli�ed model of Quantum Electrodynamics� In this section we
will carefully work out the rules of calculation for Yukawa theory� so that in
the next section we can guess the rules for QED without too much di	culty�

To be even more speci�c� consider the two�particle scattering reaction

fermion�p� � fermion�k� �� fermion�p�� � fermion�k���

The leading contribution comes from the H�
I term of the S�matrix�

�hp��k�jT
� 
�-

��ig�
Z
d�x�I�I
I ��ig�

Z
d�y �I�I
I

�
jp�ki�� �����

To evaluate this expression� use Wick�s theorem to reduce the T �product to
an N �product of contractions� then act the uncontracted �elds on the initial�
and �nal�state particles� Represent this latter process as the contraction

�I �x�jp� si �
Z

d�p�

�����
p
�Ep�

X
s�

as
�

p�u
s��p��e�ip

��xp�Epa
sy
p j�i

� e�ip�xus�p� j�i �
�����

Similar expressions hold for the contraction of �I with a �nal�state fermion�
and for contractions of �I and �I with antifermion states� Note that �I can
be contracted with a fermion on the right or an antifermion on the left� the
opposite is true for �I �

We can write a typical contribution to the matrix element ����� as the
contraction

hp��k�j ��� ��ig�
R
d�x��
 ��ig�R d�y ��
 jp�ki� ���
�

Up to a possible minus sign� the value of this quantity is

��ig��
Z

d�q

�����
i

q� �m�
�

�������p��p�q�

	 �������k��k�q�u�p��u�p�u�k��u�k��
�We have dropped the factor ��- because there is a second� identical term
that comes from interchanging x and y in ���
��� Using either delta func�
tion to perform the integral� we �nd that this expression takes the form
iM�������*p�� with

iM �
�ig�

q� �m�
�

u�p��u�p�u�k��u�k�� �����

When writing it in this way� we must remember to impose the constraints
p� p� � q � k� � k�



��� Chapter � Interacting Fields and Feynman Diagrams

Instead of working from ���
�� we could draw a Feynman diagram�

We denote scalar particles by dashed lines� and fermions by solid lines� The S�
matrix element could then be obtained directly from the following momentum�
space Feynman rules�

� Propagators�


�x�
�y� � �
i

q� �m�
� � i�

��x���y� � �
i�p�m�

p� �m� � i�

�� Vertices� � �ig

�� External leg contractions�


 jqi � �  hqj 
 � � 

� jp� si� �z �
fermion

� � us�p� hp� sj� �z �
fermion

� � � us�p�

� jk� si� �z �
antifermion

� � vs�k� hk� sj� �z �
antifermion

� � � vs�k�

�� Impose momentum conservation at each vertex�


� Integrate over each undetermined loop momentum�

�� Figure out the overall sign of the diagram�

Several comments are in order regarding these rules�
First� note that the �n- from the Taylor series of the time�ordered expo�

nential is always canceled by the n- ways of interchanging vertices to obtain
the same contraction� The diagrams of Yukawa theory never have symmetry
factors� since the three �elds ���
� in HI cannot substitute for one another
in contractions�

Second� the direction of the momentum on a fermion line is always signi��
cant� On external lines� as for bosons� the direction of the momentum is always
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ingoing for initial�state particles and outgoing for �nal�state particles� This
follows immediately from the expansions of � and �� where the annihilation
operators ap and bp both multiply e�ip�x and the creation operators ayp and byp
both multiply e�ip�x� On internal fermion lines �propagators�� the momentum
must be assigned in the direction of particle�number �ow �for electrons� this
is the direction of negative charge �ow�� This requirement is most easily seen
by working out an example from �rst principles� Consider the annihilation of
a fermion and an antifermion into two bosons�

� hk�k�j R d�x
�� R d�y 
�� jp�p�i
�
Z
d�x

Z
d�y v�p��e�ip

��x
Z

d�q

�����
i�q�m�

q��m�
e�iq��x�y� u�p�e�ip�y�

The integrals over x and y give delta functions that force q to �ow from y to x�
as shown� On internal boson lines the direction of the momentum is irrelevant
and may be chosen for convenience� since DF �x� y� � DF �y � x��

It is conventional to draw arrows on fermion lines� as shown� to represent
the direction of particle�number �ow� The momentum assigned to a fermion
propagator then �ows in the direction of this arrow� For external antiparticles�
however� the momentum �ows opposite to the arrow� it helps to show this
explicitly by drawing a second arrow next to the line�

Third� note that in our examples the Dirac indices contract together along
the fermion lines� This will also happen in more complicated diagrams�

� u�p�� � i�p� �m�

p�� �m�
� i�p� �m�

p�� �m�
� u�p��� �����

Finally� let�s take a moment to worry about fermion minus signs� Return
to the example of the fermion�fermion scattering process� We adopt a sign
convention for the initial and �nal states�

jp�ki � aypa
y
k j�i � hp��k�j � h�j ak�ap� � �����

so that �jp� ki�y � hp� kj� Then the contraction

hp��k�j����x ����yjp�ki � h�jak�ap� �x�x �y�y aypayk j�i
can be untangled by moving �y two spaces to the left� and so picks up a factor
of ���� � �� But note that in the contraction

hp��k�j����x ����yjp�ki � h�jak�ap� �x�x �y�y aypayk j�i �
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it is su	cient to move the �y one space to the left� giving a factor of �� This
contraction corresponds to the diagram

The full result� to lowest order� for the S�matrix element for this process
is therefore

iM �

� ��ig��
�
u�p��u�p�



�p��p�� �m�
�

u�k��u�k�

� u�p��u�k�


�p��k�� �m�
�

u�k��u�p�
�
�

�����

The minus sign di�erence between these diagrams is a re�ection of Fermi
statistics� Turning this expression into an explicit cross section would require
some additional work� we postpone such calculations until Chapter 
� when
we can work with QED instead of the less interesting Yukawa theory�

In complicated diagrams� one can often simplify the determination of the
minus signs by noting that the product ����� or any other pair of fermions�
commutes with any operator� Thus�

� � � ����x����y����z����w � � � � � � � �������x����z����y����w � � �
� � � �SF �x� z�SF �z � y�SF �y � w� � � � �

But note that in a closed loop of n fermion propagators we have

� �� �� �� ��

� ��� tr�� �� �� �� �
�

� ��� tr
�
SF SF SF SF

�
� ������

A closed fermion loop always gives a factor of � and the trace of a product
of Dirac matrices�
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The Yukawa Potential

We now have all the formal rules we need to compute scattering amplitudes
in Yukawa theory� Before going on to discuss QED� let us brie�y descend from
abstraction to concrete physics� and consider one very simple application of
these rules� the scattering of distinguishable fermions� in the nonrelativistic
limit� By comparing the amplitude for this process to the Born approxima�
tion formula from nonrelativistic quantum mechanics� we can determine the
potential V �r� created by the Yukawa interaction�

If the two interacting particles are distinguishable� only the �rst dia�
gram in ����� contributes� To evaluate the amplitude in the nonrelativis�
tic limit� we keep terms only to lowest order in the ��momenta� Thus� up to
O�p��p��� � � ���

p � �m�p�� k � �m�k��

p� � �m�p��� k� � �m�k���
�����

Using these expressions� we have

�p� � p�� � �jp� � pj� �O�p���

us�p� �
p
m

�
�s

�s

�
� etc��

where �s is a two�component constant spinor normalized to �s
�y�s � �ss

�

� The
spinor products in ����� are then

us
�

�p��us�p� � �m�s
�y�s � �m�ss

�

�

ur
�

�k��ur�k� � �m�r
�y�r � �m�rr

�

�
������

So our �rst physical conclusion is that the spin of each particle is separately
conserved in this nonrelativistic scattering interaction�a pleasing result�

Putting together the pieces of the scattering amplitude ������ we �nd

iM �
ig�

jp� � pj� �m�
�

�m�ss
�

�m�rr
�

� ������

This should be compared with the Born approximation to the scattering am�
plitude in nonrelativistic quantum mechanics� written in terms of the potential
function V �x��

hp�jiT jpi � �ieV �q� ������Ep� �Ep�� �q � p� � p�� ������

So apparently� for the Yukawa interaction�

eV �q� �
�g�

jqj� �m�
�

� ����
�
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�The factors of �m in ������ arise from our relativistic normalization conven�
tions� and must be dropped when comparing to ������� which assumes con�
ventional nonrelativistic normalization of states� The additional �����p� � p�
goes away when we integrate over the momentum of the target��

Inverting the Fourier transform to �nd V �x� requires a short calculation�

V �x� �

Z
d�q

�����
�g�

jqj� �m�
�

eiq�x

�
�g�
���

�Z
�

dq q�
eiqr � e�iqr

iqr



q� �m�
�

�
�g�
���ir

�Z
��

dq
q eiqr

q� �m�
�

� ������

The contour of this integral can be closed above in the complex plane� and
we pick up the residue of the simple pole at q � �im�� Thus we �nd

V �r� � � g�

��



r
e�m�r� ������

an attractive �Yukawa potential�� with range �m� �  h�m�c� the Compton
wavelength of the exchanged boson� Yukawa made this potential the basis for
his theory of the nuclear force� and worked backwards from the range of the
force �about  fm� to predict the mass �about ��� MeV� of the required boson�
the pion�

What happens if instead we scatter particles o� of antiparticles� For the
process

f��p�f��k� �� f��p
��f��k

���

we need to evaluate �nonrelativistically�

vs�k�vs
�

�k�� � m��sy���sy�
�
� 
 �

��
�s
�

��s�
�
� ��m�ss

�

� ������

We must also work out the fermion minus sign� Using jp�ki � aypb
y
k j�i and

hp��k�j � h�j bk�ap� � we can write the contracted matrix element as

hp��k�j �� �� jp�ki � h�j bk�ap� �� �� aypb
y
k j�i �

To untangle the contractions requires three operator interchanges� so there is
an overall factor of �� This cancels the extra minus sign in ������� and there�
fore we see that the Yukawa potential between a fermion and an antifermion
is also attractive� and identical in strength to that between two fermions�
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The remaining case to consider is scattering of two antifermions� It should
not be surprising that the potential is again attractive� there is an additional
minus sign from changing the other uu into vv� and the number of interchanges
necessary to untangle the contractions is even� Thus we conclude that the
Yukawa potential is universally attractive� whether it is between a pair of
fermions� a pair of antifermions� or one of each�

��� Feynman Rules for Quantum Electrodynamics

Now we are ready to step from Yukawa theory to Quantum Electrodynamics�
To do this� we replace the scalar particle 
 with a vector particle A�� and
replace the Yukawa interaction Hamiltonian with

Hint �

Z
d�x e����A�� ������

How do the Feynman rules change� The answer� though di	cult to prove� is
easy to guess� In addition to the fermion rules from the previous section� we
have

New vertex� � �ie��

Photon propagator� �
�ig��
q� � i�

External photon lines� A� jpi � � ���p�

hpj A� � � ����p�

Photons are conventionally drawn as wavy lines� The symbol ���p� stands for
the polarization vector of the initial� or �nal�state photon�

To justify these rules� recall that in Lorentz gauge �which we employ to
retain explicit relativistic invariance� the �eld equation for A� is

��A� � �� ������

Thus each component of A separately obeys the Klein�Gordon equation �with
m � ��� The momentum�space solutions of this equation are ���p�e

�ip�x�
where p� � � and ���p� is any ��vector� The interpretation of � as the polar�
ization vector of the �eld should be familiar from classical electromagnetism�
If we expand the quantized electromagnetic �eld in terms of classical solutions
of the wave equation� as we did for the Klein�Gordon �eld� we �nd

A��x� �

Z
d�p

�����
p
�Ep

�X
r
�

�
arp�

r
��p�e

�ip�x � aryp �
r�
� �p�eip�x

�
� �����
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where r � �� � �� � labels a basis of polarization vectors� The external line
factors in the Feynman rules above follow immediately from this expansion�
just as we obtained u�s and v�s as the external line factors for Dirac particles�
The only subtlety is that we must restrict initial� and �nal�state photons to
be transversely polarized� Their polarization vectors are always of the form
�� � ��� ��� where p � � � �� For p along the z�axis� the right� and left�handed
polarization vectors are �� � ��� ��i� ���p��

The form of the QED vertex factor is also easy to justify� by simply
looking at the interaction Hamiltonian ������� Note that the � matrix in a
QED amplitude will sit between spinors or other � matrices� with the Dirac
indices contracted along the fermion line� Note also that this interaction term
is speci�c to the case of an electron �and its antiparticle� the positron�� In
general� for a Dirac particle with electric charge Qjej�

� �iQjej���

For example� an electron has Q � �� an up quark has Q � ����� and a
down quark has Qd � ����

There is no easy way to derive the form of the photon propagator� so for
now we will settle for a plausibility argument� Since the electromagnetic �eld
in Lorentz gauge obeys the massless Klein�Gordon equation� it should come
as no surprise that the photon propagator is nearly identical to the massless
Klein�Gordon propagator� The factor of �g�� � however� requires explanation�
Lorentz invariance dictates that the photon propagator be an isotropic second�
rank tensor that can dot together the �� and �� from the vertices at each
end� The simplest candidate is g�� � To understand the overall sign of the
propagator� evaluate its Fourier transform�Z

d�q

�����
�ig��
q� � i�

e�iq��x�y� �
Z

d�q

�����


�jqj e
�iq��x�y� � ��g���� ������

Presumably this is equal to h�jT �A��x�A� �y�
� j�i� Now set � � �� and take

the limit x� � y� from the positive direction� Then this quantity becomes the
norm of the state A��x� j�i� which should be positive� We see that our choice
of signs in the propagator implies that the three states created by Ai� with
with i � � �� �� indeed have positive norm� These states include all real �non�
virtual� photons� which always have spacelike polarizations� Unfortunately�
because g�� is not positive de�nite� the states created by A� inevitably have
negative norm� This is potentially a serious problem for any theory with vector
particles� For Quantum Electrodynamics� we will show in Section 
�
 that the
negative�norm states created by A� are never produced in physical processes�
In Section ��� we will give a careful derivation of the photon propagator�



��
 Feynman Rules for Quantum Electrodynamics ���

The Coulomb Potential

As a simple application of these Feynman rules� and to better understand the
sign of the propagator� let us repeat the nonrelativistic scattering calculation
of the previous section� this time for QED� The leading�order contribution is

iM � � ��ie��u�p����u�p� �ig��
�p� � p��

u�k����u�k�� ������

In the nonrelativistic limit�

u�p����u�p� � uy�p��u�p� � ��m��y��

You can easily verify that the other terms� u�p���iu�p�� vanish if p � p� � ��
they can therefore be neglected compared to u�p����u�p� in the nonrelativistic
limit� Thus we have

iM� �ie�

�jp� � pj� ��m��y��p��m��y��k � g��

�
�ie�

jp� � pj� ��m��y��p��m��y��k �

������

Comparing this to the Yukawa case ������� we see that there is an extra
factor of �� the potential is a repulsive Yukawa potential with m � �� that
is� a repulsive Coulomb potential�

V �r� �
e�

��r
�

	

r
� ����
�

where 	 � e���� � ��� is the �ne�structure constant�
For particle�antiparticle scattering� note �rst that

v�k���v�k�� � vy�k�v�k�� � ��m�y���

The presence of the �� eliminates the minus sign that we found in the Yukawa
case� The nonrelativistic scattering amplitude is therefore

iM � � ��� � �ie�
jp� � pj� ���m��y��p���m�y���k� ������

where the ��� is the same fermion minus sign we saw in the Yukawa case� This
is an attractive potential� Similarly� for antifermion�antifermion scattering one
�nds a repulsive potential� We have just veri�ed that in quantum �eld theory�
when a vector particle is exchanged� like charges repel while unlike charges
attract�
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Note that the repulsion in fermion�fermion scattering came entirely from
the extra factor �g�� � � in the vector boson propagator� A tensor boson�
such as the graviton� would have a propagator

�


�

�
��g�����g��� � ��g�����g���

�� i

q� � i�

�
�

which in nonrelativistic collisions gives a factor ��g���� � �� this will result
in a universally attractive potential� It is reassuring to see that quantum
�eld theory does indeed reproduce the obvious features of the electric and
gravitational forces�

Exchanged particle ff and ff ff

scalar �Yukawa� attractive attractive
vector �electricity� repulsive attractive
tensor �gravity� attractive attractive

Problems

��� Let us return to the problem of the creation of Klein�Gordon particles by a
classical source� Recall from Chapter � that this process can be described by the
Hamiltonian

H � H� �

Z
d�x ��j�t�x���x���

where H� is the free Klein�Gordon Hamiltonian� ��x� is the Klein�Gordon �eld� and
j�x� is a c�number scalar function� We found that� if the system is in the vacuum state
before the source is turned on� the source will create a mean number of particles

hNi �
Z

d�p

�����
�

�Ep
j!��p�j��

In this problem we will verify that statement� and extract more detailed information�
by using a perturbation expansion in the strength of the source�

�a� Show that the probability that the source creates no particles is given by

P ��� �

���h�j Tn exp$ iZ d�x j�x��I �x�%
o
j�i
�����

�b� Evaluate the term in P��� of order j�� and show that P ��� � � � � � O�j���
where � equals the expression given above for hNi�

�c� Represent the term computed in part �b� as a Feynman diagram� Now represent
the whole pertubation series for P ��� in terms of Feynman diagrams� Show that
this series exponentiates� so that it can be summed exactly� P ��� � exp�����

�d� Compute the probability that the source creates one particle of momentum k�
Perform this computation �rst to O�j� and then to all orders� using the trick of
part �c� to sum the series�
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�e� Show that the probability of producing n particles is given by

P �n� � ��
n"��n exp�����
This is a Poisson distribution�

�f� Prove the following facts about the Poisson distribution�

�X
n
�

P �n� � �� hNi �
�X
n
�

nP �n� � ��

The �rst identity says that the P �n��s are properly normalized probabilities�
while the second con�rms our proposal for hNi� Compute the mean square #uc�
tuation

�
�N � hNi��

�
�

��� Decay of a scalar particle� Consider the following Lagrangian� involving two
real scalar �elds � and ��

L � �
� �����

� � �
�M

��� � �
� �����

� � �
�m

��� � �����

The last term is an interaction that allows a � particle to decay into two ��s� provided
that M � �m� Assuming that this condition is met� calculate the lifetime of the � to
lowest order in ��

��� Linear sigma model� The interactions of pions at low energy can be described
by a phenomenological model called the linear sigma model� Essentially� this model
consists of N real scalar �elds coupled by a �� interaction that is symmetric under
rotations of the N �elds� More speci�cally� let �i�x�� i � �� � � � � N be a set of N �elds�
governed by the Hamiltonian

H �

Z
d�x
�
�
� �$

i�� � �
� �r�i�� � V ����

�
�

where ��i�� � � ��� and
V ���� � �

�m
���i�� � �

� ���
i���

�

is a function symmetric under rotations of �� For �classical� �eld con�gurations of
�i�x� that are constant in space and time� this term gives the only contribution to H�
hence� V is the �eld potential energy�

�What does this Hamiltonian have to do with the strong interactions� There
are two types of light quarks� u and d� These quarks have identical strong interac�
tions� but di�erent masses� If these quarks are massless� the Hamiltonian of the strong
interactions is invariant to unitary transformations of the ��component object �u� d���

u

d

�
� exp�i� � �
��

�
u

d

�
�

This transformation is called an isospin rotation� If� in addition� the strong interactions
are described by a vector %gluon& �eld �as is true in QCD�� the strong interaction
Hamiltonian is invariant to the isospin rotations done separately on the left�handed
and right�handed components of the quark �elds� Thus� the complete symmetry of
QCD with two massless quarks is SU��� � SU���� It happens that SO���� the group
of rotations in � dimensions� is isomorphic to SU���� SU���� so for N � �� the linear
sigma model has the same symmetry group as the strong interactions��
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�a� Analyze the linear sigma model for m� � � by noticing that� for � � �� the
Hamiltonian given above is exactly N copies of the Klein�Gordon Hamiltonian�
We can then calculate scattering amplitudes as perturbation series in the pa�
rameter �� Show that the propagator is

�i�x� �j�y� � �ij DF �x� y��

where DF is the standard Klein�Gordon propagator for mass m� and that there
is one type of vertex given by

� ��i���ij�kl � �il�jk � �ik�jl��

�That is� the vertex between two ��s and two ��s has the value ���i��� that
between four ��s has the value ���i���� Compute� to leading order in �� the
di�erential cross sections d	
d'� in the center�of�mass frame� for the scattering
processes

���� � ����� ���� � ����� and ���� � ����

as functions of the center�of�mass energy�

�b� Now consider the case m� � �� m� � ���� In this case� V has a local maximum�
rather than a minimum� at �i � �� Since V is a potential energy� this implies
that the ground state of the theory is not near �i � � but rather is obtained by
shifting �i toward the minimum of V � By rotational invariance� we can consider
this shift to be in the Nth direction� Write� then�

�i�x� � �i�x�� i � �� � � � �N � ��
�N �x� � v � 	�x��

where v is a constant chosen to minimize V � �The notation �i suggests a pion
�eld and should not be confused with a canonical momentum�� Show that� in
these new coordinates �and substituting for v its expression in terms of � and ���
we have a theory of a massive 	 �eld and N � � massless pion �elds� interacting
through cubic and quartic potential energy terms which all become small as
�� �� Construct the Feynman rules by assigning values to the propagators and
vertices�

�c� Compute the scattering amplitude for the process

�i�p���
j�p�� � �k�p���

l�p��
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to leading order in �� There are now four Feynman diagrams that contribute�

Show that� at threshold �pi � ��� these diagrams sum to zero� �Hint� It may be
easiest to �rst consider the speci�c process ���� � ����� for which only the �rst
and fourth diagrams are nonzero� before tackling the general case�� Show that�
in the special case N � � �� species of pion�� the term of O�p�� also cancels�

�d� Add to V a symmetry�breaking term�

�V � �a�N �
where a is a �small� constant� �In QCD� a term of this form is produced if the u
and d quarks have the same nonvanishing mass�� Find the new value of v that
minimizes V � and work out the content of the theory about that point� Show that
the pion acquires a mass such that m�

� � a� and show that the pion scattering
amplitude at threshold is now nonvanishing and also proportional to a�

��� Rutherford scattering� The cross section for scattering of an electron by the
Coulomb �eld of a nucleus can be computed� to lowest order� without quantizing the
electromagnetic �eld� Instead� treat the �eld as a given� classical potential A��x�� The
interaction Hamiltonian is

HI �

Z
d�x e����A��

where ��x� is the usual quantized Dirac �eld�

�a� Show that the T �matrix element for electron scattering o� a localized classical
potential is� to lowest order�

hp�jiT jpi � �ie u�p����u�p� � eA��p� � p��

where eA��q� is the four�dimensional Fourier transform of A��x��
�b� If A��x� is time independent� its Fourier transform contains a delta function of

energy� It is then natural to de�ne

hp�jiT jpi � iM � ������Ef �Ei��

where Ei and Ef are the initial and �nal energies of the particle� and to adopt
a new Feynman rule for computingM�

� �ie�� eA��q��

where eA��q� is the three�dimensional Fourier transform of A��x�� Given this
de�nition ofM� show that the cross section for scattering o� a time�independent�
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localized potential is

d	 �
�

vi

�

�Ei

d�pf
�����

�

�Ef
jM�pi � pf �j� ������Ef � Ei��

where vi is the particle�s initial velocity� This formula is a natural modi�cation
of ����	�� Integrate over jpf j to �nd a simple expression for d	
d'�

�c� Specialize to the case of electron scattering from a Coulomb potential �A� �
Ze
��r�� Working in the nonrelativistic limit� derive the Rutherford formula�

d	

d'
�

��Z�

�m�v� sin���
��
�

�With a few calculational tricks from Section ���� you will have no di�culty
evaluating the general cross section in the relativistic case� see Problem �����
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Elementary Processes of

Quantum Electrodynamics

Finally� after three long chapters of formalism� we are ready to perform some
real relativistic calculations� to begin working out the predictions of Quantum
Electrodynamics� First we will return to the process considered in Chapter �
the annihilation of an electron�positron pair into a pair of heavier fermions�
We will study this paradigm process in extreme detail in the next three sec�
tions� then do a few more simple QED calculations in Sections 
�� and 
�
�
The problems at the end of the chapter treat several additional QED pro�
cesses� More complete surveys of QED can be found in the books of Jauch
and Rohrlich ����� and of Berestetskii� Lifshitz� and Pitaevskii ������

��� e�e� � ���� Introduction

The reaction e�e� � ���� is the simplest of all QED processes� but also
one of the most important in high�energy physics� It is fundamental to the
understanding of all reactions in e�e� colliders� and is in fact used to calibrate
such machines� The related process e�e� � qq �a quark�antiquark pair� is
extraordinarily useful in determining the properties of elementary particles�

In this section we will compute the unpolarized cross section for e�e� �
����� to lowest order� In Chapter  we used elementary arguments to guess
the answer �Eq� ����� in the limit where all the fermions are massless� We
now relax that restriction and retain the muon mass in the calculation� Re�
taining the electron mass as well would be easy but pointless� since the ratio
me�m� � ���� is much smaller than the fractional error introduced by ne�
glecting higher�order terms in the perturbation series�

Using the Feynman rules from Section ���� we can at once draw the dia�
gram and write down the amplitude for our process�

� vs
�

�p��
��ie���us�p���ig��

q�

�
ur�k�

��ie���vr��k���

���
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Rearranging this slightly and leaving the spin superscripts implicit� we have

iM�e��p�e��p��� ���k����k��
�
�

ie�

q�

�
v�p����u�p�

��
u�k���v�k

��
�
� �
��

This answer for the amplitude M is simple� but not yet very illuminating�
To compute the di�erential cross section� we need an expression for jMj��

so we must �nd the complex conjugate of M� A bi�spinor product such as
v��u can be complex�conjugated as follows��

v��u
��

� uy����y����yv � uy����y��v � uy����v � u��v�

�This is another advantage of the 0bar� notation�� Thus the squared matrix
element is

jMj� � e�

q�

�
v�p����u�p�u�p���v�p��

��
u�k���v�k

��v�k����u�k�
�
� �
���

At this point we are still free to specify any particular spinors us�p��
vs
�

�p��� and so on� corresponding to any desired spin states of the fermions�
In actual experiments� however� it is di	cult �though not impossible� to re�
tain control over spin states� one would have to prepare the initial state from
polarized materials and�or analyze the �nal state using spin�dependent mul�
tiple scattering� In most experiments the electron and positron beams are
unpolarized� so the measured cross section is an average over the electron and
positron spins s and s�� Muon detectors are normally blind to polarization� so
the measured cross section is a sum over the muon spins r and r��

The expression for jMj� simpli�es considerably when we throw away the
spin information� We want to compute
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X
s



�

X
s�

X
r

X
r�

��M�s� s� � r� r��
����

The spin sums can be performed using the completeness relations from Sec�
tion ���� X

s

us�p�us�p� � p�m�
X
s

vs�p�vs�p� � p�m� �
���

Working with the �rst half of �
���� and writing in spinor indices so we can
freely move the v next to the v� we haveX

s�s�

vs
�

a �p
����abu

s
b�p�u

s
c�p��

�
cdv

s�

d �p
�� � �p� �m�da�

�
ab�p�m�bc�

�
cd

� trace
�
�p� �m����p�m���

�
�

Evaluating the second half of �
��� in the same way� we arrive at the desired
simpli�cation�

�
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X
spins

jMj� � e�

�q�
tr
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tr
h
�k�m����� k��m����

i
�

�
���



��� e�e� � ����� Introduction ���

The spinors u and v have disappeared� leaving us with a much cleaner expres�
sion in terms of � matrices� This trick is very general� Any QED amplitude
involving external fermions� when squared and summed or averaged over spins�
can be converted in this way to traces of products of Dirac matrices�

Trace Technology

This last step would hardly be an improvement if the traces had to be la�
boriously computed by brute force� But Feynman found that they could be
worked out easily by appealing to the algebraic properties of the � matrices�
Since the evaluation of such traces occurs so often in QED calculations� it is
worthwhile to pause and attack the problem systematically� once and for all�

We would like to evaluate traces of products of n gamma matrices� where
n � �� � �� � � � � �For the present problem we need n � �� �� ��� The n � �
case is fairly easy� tr� � �� The trace of one � matrix is also easy� From the
explicit form of the matrices in the chiral representation� we have

tr �� � tr

�
� ��

�� �

�
� ��

It is useful to prove this result in a more abstract way� which generalizes to
an arbitrary odd number of � matrices�

tr �� � tr ���� since ���� � 

� � tr ���� since f��� �g � �

� � tr ���� using cyclic property of trace

� � tr ���

Since the trace of �� is equal to minus itself� it must vanish� For n ��matrices
we would get n minus signs in the second step �as we move the second � all
the way to the right�� so the trace must vanish if n is odd�

To evaluate the trace of two � matrices� we again use the anticommutation
properties and the cyclic property of the trace�

tr ���� � tr
�
�g�� � �� ����

�
�anticommuatation�

� �g�� � tr ���� �cyclicity�

Thus tr ���� � �g�� � The trace of any even number of � matrices can be
evaluated in the same way� Anticommute the �rst � matrix all the way to the
right� then cycle it back to the left� Thus for the trace of four � matrices� we
have

tr
�
��������

�
� tr
�
�g������ � ��������

�
� tr
�
�g������ � ���g���� � �����g�� � ��������

�
�
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Using the cyclic property on the last term and bringing it to the left�hand
side� we �nd

tr
�
��������

�
� g�� tr ���� � g�� tr ���� � g�� tr ����

� �
�
g��g�� � g��g�� � g��g��

�
�

In this manner one can always reduce a trace of n ��matrices to a sum of
traces of �n � �� ��matrices� The case n � � is easy to work out� but has
�fteen terms �the number of ways of grouping the six indices in pairs to make
terms of the form g��g��g�	�� Fortunately� we will not need it in this book�
�If you ever do need to evaluate such complicated traces� it may be easier to
learn to use one of the several computer programs that can perform symbolic
manipulations on Dirac matrices��

Starting in Section 
��� we will often need to evaluate traces involving ��
Since � � i��������� the trace of � times any odd number of other �
matrices is zero� It is also easy to show that the trace of � itself is zero�

tr � � tr
�
�����

�
� � tr

�
�����

�
� � tr

�
�����

�
� � tr ��

The same trick works for tr�������� if we insert two factors of �� for some 	
di�erent from both � and �� The �rst nonvanishing trace involving � contains
four other � matrices� In this case the trick still works unless every � matrix
appears� so tr����������� � � unless ������ is some permutation of ������
From the anticommutation rules it also follows that interchanging any two of
the indices simply changes the sign of the trace� so tr����������� must be
proportional to ����� � The overall constant turns out to be ��i� as you can
easily check by plugging in ������ � ������

Here is a summary of the trace theorems� for convenient reference�

tr��� � �

tr�any odd 1 of ��s� � �

tr������ � �g��

tr���������� � ��g��g�� � g��g�� � g��g���

tr��� � �

tr������� � �

tr����������� � ��i�����

�
�
�

Expressions resulting from use of the last formula can be simpli�ed by means
of the identities

��	���	� � ���
��	����	�� � �����
��	����	�� � ��������� � ����

�
�

� �
���

All of these can be derived by �rst appealing to symmetry arguments� then
evaluating one special case to determine the overall constant�
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Another useful identity allows one to reverse the order of all the � matrices
inside a trace�

tr��������� � � �� � tr�� � � ���������� �
���

To prove this relation� consider the matrix C � ���� �essentially the charge�
conjugation operator�� This matrix satis�es C� �  and C��C � �����T �
Thus if there are n ��matrices inside the trace�

tr����� � � �� � tr�C��C C��C � � ��
� ���n tr�����T ����T � � ��
� tr�� � � ������

since the trace vanishes unless n is even� It is easy to show that the reversal
identity �
��� is also valid when the trace contains one or more factors of ��

When two � matrices inside a trace are dotted together� it is easiest to
eliminate them before evaluating the trace� For example�

���� � g���
��� � �

�g��f��� ��g � g��g
�� � �� �
���

The following contraction identities� all easy to prove using the anticommu�
tation relations� can be used when other � matrices lie in between�

������ � ����
�������� � �g��

���������� � ��������
�
���

Note the reversal of order in the last identity�
All of the � matrix identities proved in this section are collected for ref�

erence in the Appendix�

Unpolarized Cross Section

We now return to the evaluation of the squared matrix element� Eq� �
����
The electron trace is

tr
�
�p� �me��

�� p�me��
�
�
� �
�
p��p� � p��p� � g���p �p� �m�

e�
�
�

The terms with only one factor ofm vanish� since they contain an odd number
of � matrices� Similarly� the muon trace is

tr
�
�k �m�����k� �m����

�
� �
�
k�k

�
� � k�k

�
� � g���k �k� �m�

��
�
�

From now on we will set me � �� as discussed at the beginning of this section�
Dotting these expressions together and collecting terms� we get the simple
result
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To obtain a more explicit formula we must specialize to a particular frame
of reference and express the vectors p� p�� k� k�� and q in terms of the basic kine�
matic variables�energies and angles�in that frame� In practice� the choice
of frame will be dictated by the experimental conditions� In this book� we will
usually make the simplest choice of evaluating cross sections in the center�of�
mass frame� For this choice� the initial and �nal ��momenta for e�e� � ����

can be written as follows�

To compute the squared matrix element we need

q� � �p� p��� � �E�� p �p� � �E��

p �k � p� �k� � E� �Ejkj cos �� p �k� � p� �k � E� �Ejkj cos ��

We can now rewrite Eq� �
��� in terms of E and ��



�

X
spins

jMj� � �e�

�E�

h
E��E � jkj cos ��� �E��E � jkj cos ��� � �m�

�E
�
i

� e�
�

 �
m�
�

E�

�
�
�
� m�

�

E�

�
cos� �

�
� �
��

All that remains is to plug this expression into the cross�section formula
derived in Section ��
� Since there are only two particles in the �nal state and
we are working in the center�of�mass frame� we can use the simpli�ed formula
������� For our problem jvA � vBj � � and EA � EB � Ecm��� so we have

d�

d�
�



�E�
cm

jkj
���Ecm

� 
�

X
spins
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�
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�E�
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r
� m�

�

E�

�
 �
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�

E�

�
�
�
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E�
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�
�

�
���

Integrating over d�� we �nd the total cross section�

�total �
��	�

�E�
cm

r
� m�

�

E�

�
 �



�
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�

E�

�
� �
���
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Figure ���� Energy dependence of the total cross section for e�e� � �����
compared to %phase space& energy dependence�

In the high�energy limit where E 
 m�� these formulae reduce to those given
in Chapter �

d�

d�
��

E�m�

	�

�E�
cm

�
 � cos� �

�
�

�total ��
E�m�

��	�

�E�
cm

�
� �

�

�m�

E

��
� � � �

�
�

�
���

Note that these expressions have the correct dimensions of cross sections�
In the high�energy limit� Ecm is the only dimensionful quantity in the problem�
so dimensional analysis dictates that �total � E��cm � Since we knew from the
beginning that �total � 	�� we only had to work to get the factor of �����

The energy dependence of the total cross�section formula �
��� near
threshold is shown in Fig� 
�� Of course the cross section is zero for Ecm �
�m�� It is interesting to compare the shape of the actual curve to the shape
one would obtain if jMj� did not depend on energy� that is� if all the energy
dependence came from the phase�space factor jkj�E� To test Quantum Elec�
trodynamics� an experiment must be able to resolve deviations from the naive
phase�space prediction� Experimental results from pair production of both
� and � leptons con�rm that these particles behave as QED predicts� Fig�
ure 
�� compares formula �
��� to experimental measurements of the ����

threshold�
Before discussing our result further� let us pause to summarize how we

obtained it� The method extends in a straightforward way to the calculation
of unpolarized cross sections for other QED processes� The general procedure
is as follows�
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Figure ���� The ratio 	�e�e� � �����
	�e�e� � ����� of measured
cross sections near the threshold for ���� pair�production� as measured
by the DELCO collaboration� W� Bacino� et� al�� Phys� Rev� Lett� ��� �
��	�
�� Only a fraction of � decays are included� hence the small overall
scale� The curve shows a �t to the theoretical formula ������ with a small
energy�independent background added� The �t yields m� � ��
�

��
�� MeV�

� Draw the diagram�s� for the desired process�

�� Use the Feynman rules to write down the amplitude M�

�� Square the amplitude and average or sum over spins� using the complete�
ness relations �
���� �For processes involving photons in the �nal state
there is an analogous completeness relation� derived in Section 
�
��

�� Evaluate traces using the trace theorems �
�
�� collect terms and simplify
the answer as much as possible�


� Specialize to a particular frame of reference� and draw a picture of the
kinematic variables in that frame� Express all ��momentum vectors in
terms of a suitably chosen set of variables such as E and ��

�� Plug the resulting expression for jMj� into the cross�section formula
������� and integrate over phase�space variables that are not measured
to obtain a di�erential cross section in the desired form� �In our case
these integrations were over the constrained momenta k� and jkj� and
were performed in the derivation of Eq� ��������

While other calculations �especially those involving loop diagrams� often re�
quire additional tricks� nearly every QED calculation will involve the basic
procedures outlined here�
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Production of Quark�Antiquark Pairs

The asymptotic energy dependence of the e�e� � ���� cross�section formula
sets the scale for all e�e� annihilation cross sections� A particularly important
example is the cross section for

e�e� � hadrons�

that is� the total cross section for production of any number of strongly inter�
acting particles�

In our current understanding of the strong interactions� given by the the�
ory called Quantum Chromodynamics �QCD�� all hadrons are composed of
Dirac fermions called quarks� Quarks appear in a variety of types� called �a�

vors� each with its own mass and electric charge� A quark also carries an
additional quantum number� color� which takes one of three values� Color
serves as the �charge� of QCD� as we will discuss in Chapter ��

According to QCD� the simplest e�e� process that ends in hadrons is

e�e� � qq�

the annihilation of an electron and a positron� through a virtual photon� into a
quark�antiquark pair� After they are created� the quarks interact with one an�
other through their strong forces� producing more quark pairs� Eventually the
quarks and antiquarks combine to form some number of mesons and baryons�

To adapt our results for muon production to handle the case of quarks�
we must make three modi�cations�

� Replace the muon charge e with the quark charge Qjej�
�� Count each quark three times� one for each color�

�� Include the e�ects of the strong interactions of the produced quark and
antiquark�

The �rst two changes are easy to make� For the �rst� it is simply necessary to
know the masses and charges of each �avor of quark� For u� c� and t quarks
we have Q � ���� while for d� s� and b quarks we have Q � ���� The cross�
section formulae are proportional to the square of the charge of the �nal�state
particle� so we can simply insert a factor of Q� into any of these formulae
to obtain the cross section for production of any particular variety of quark�
Counting colors is necessary because experiments measure only the total cross
section for production of all three colors� �The hadrons that are actually de�
tected are colorless�� In any case� this counting is easy� Just multiply the
answer by ��

If you know a little about the strong interaction� however� you might
think this is all a big joke� Surely the third modi�cation is extremely di	cult
to make� and will drastically alter the predictions of QED� The amazing truth
is that in the high�energy limit� the e�ect of the strong interaction on the
quark production process can be completely neglected� As we will discuss in
Part III� the only e�ect of the strong interaction �in this limit� is to dress
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up the �nal�state quarks into bunches of hadrons� This simpli�cation is due
to a phenomenon called asymptotic freedom� it played a crucial role in the
identi�cation of Quantum Chromodynamics as the correct theory of the strong
force�

Thus in the high�energy limit� we expect the cross section for the reaction
e�e� � qq to approach � �Q� � ��	���E�

cm� It is conventional to de�ne

 unit of R � ��	�

�E�
cm

�
���� nbarns

�Ecm in GeV��
� �
�
�

The value of a cross section in units of R is therefore its ratio to the asymptotic
value of the e�e� � ���� cross section predicted by Eq� �
���� Experimen�
tally� the easiest quantity to measure is the total rate for production of all
hadrons� Asymptotically� we expect

��e�e� � hadrons� ��
Ecm��

� �
�P

i
Q�
i

�
R� �
���

where the sum runs over all quarks whose masses are smaller than Ecm���
When Ecm�� is in the vicinity of one of the quark masses� the strong interac�
tions cause large deviations from this formula� The most dramatic such e�ect
is the appearance of bound states just below Ecm � �mq� manifested as very
sharp spikes in the cross section�

Experimental measurements of the cross section for e�e� annihilation to
hadrons between ��
 and �� GeV are shown in Fig� 
��� The data shows three
distinct regions� a low�energy region in which u� d� and s quark pairs are
produced� a region above the threshold for production of c quark pairs� and
a region also above the threshold for b quark pairs� The prediction �
��� is
shown as a set of solid lines� it agrees quite well with the data in each region�
as long as the energy is well away from the thresholds where the high�energy
approximation breaks down� The dotted curves show an improved theoretical
prediction� including higher�order corrections from QCD� which we will discuss
in Section ���� This explanation of the e�e� annihilation cross section is a
remarkable success of QCD� In particular� experimental veri�cation of the
factor of � in �
��� is one piece of evidence for the existence of color�

The angular dependence of the di�erential cross section is also observed
experimentally�! At high energy the hadrons appear in jets� clusters of several
hadrons all moving in approximately the same direction� In most cases there
are two jets� with back�to�back momenta� and these indeed have the angular
dependence � � cos� ���

�The basic features of hadron production in high�energy e�e� annihilation are
reviewed by P� Duinker� Rev� Mod� Phys� ��� �� ��	
���
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Figure ���� Experimental measurements of the total cross section for the
reaction e�e� � hadrons� from the data compilation of M� Swartz� Phys�
Rev� D�� ���
 ��		��� Complete references to the various experiments are
given there� The measurements are compared to theoretical predictions from
Quantum Chromodynamics� as explained in the text� The solid line is the
simple prediction �������

��� e�e� � ���� Helicity Structure

The unpolarized cross section for a reaction is generally easy to calculate
�and to measure� but hard to understand� Where does the � � cos� �� angu�
lar dependence come from� We can answer this question by computing the
e�e� � ���� cross section for each set of spin orientations separately�

First we must choose a basis of polarization states� To get a simple answer
in the high�energy limit� the best choice is to quantize each spin along the
direction of the particle�s motion� that is� to use states of de�nite helicity�
Recall that in the massless limit� the left� and right�handed helicity states
of a Dirac particle live in di�erent representations of the Lorentz group� We
might therefore expect them to behave independently� and in fact they do�

In this section we will compute the polarized e�e� � ���� cross sections�
using the helicity basis� in two di�erent ways� �rst� by using trace technology
but with the addition of helicity projection operators to project out the desired
left� or right�handed spinors� and second� by plugging explicit expressions for
these spinors directly into our formula for the amplitudeM� Throughout this
section we work in the high�energy limit where all fermions are e�ectively
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massless� �The calculation can be done for lower energy� but it is much more
di	cult and no more instructive��y

Our starting point for both methods of calculating the polarized cross
section is the amplitude

iM�e��p�e��p��� ���k����k��
�
�

ie�

q�

�
v�p����u�p�

��
u�k���v�k

��
�
� �
��

We would like to use the spin sum identities to write the squared amplitude
in terms of traces as before� even though we now want to consider only one
set of polarizations at a time� To do this� we note that for massless fermions�
the matrices

 � �

�
�

�
� �
� 

�
�

� �

�
�

�
 �
� �

�
�
���

are projection operators onto right� and left�handed spinors� respectively� Thus
if in �
�� we make the replacement

v�p����u�p� �� v�p����
���

�

�
u�p��

the amplitude for a right�handed electron is unchanged while that for a left�
handed electron becomes zero� Note that since

v�p����
���

�

�
u�p� � vy�p��

���
�

�
����u�p�� �
���

this same replacement imposes the requirement that v�p�� also be a right�
handed spinor� Recall from Section ��
� however� that the right�handed spinor
v�p�� corresponds to a left�handed positron� Thus we see that the annihilation
amplitude vanishes when both the electron and the positron are right�handed�
In general� the amplitude vanishes �in the massless limit� unless the electron
and positron have opposite helicity� or equivalently� unless their spinors have
the same helicity�

Having inserted this projection operator� we are now free to sum over the
electron and positron spins in the squared amplitude� of the four terms in the
sum� only one �the one we want� is nonzero� The electron half of jMj�� for a
right�handed electron and a left�handed positron� is thenX
spins

���v�p�������
�

�
u�p�
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spins
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�i
yThe general formalism for S�matrix elements between states of de�nite helicity is

presented in a beautiful paper of M� Jacob and G� C� Wick� Ann� Phys� �� ��� ��	�	��
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� �
�
p��p� � p��p� � g��p �p� � i���	�p��p	

�
� �
���

The indices in this expression are to be dotted into those of the muon half
of the squared amplitude� For a right�handed �� and a left�handed ��� an
identical calculation yieldsX
spins

���u�k������
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v�k��

���� � �
�
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��g��k �k��i�����k�k��
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����

Dotting �
��� into �
����� we �nd that the squared matrix element for e�Re
�
L �

��R�
�
L in the center�of�mass frame is

jMj� � �e�

q�

h
��p �k��p� �k�� � ��p �k���p� �k�� ���	������p

�
�p	k

�k��
i

�
�e�

q�

h
�p �k��p� �k�� � �p �k���p� �k�� �p �k��p� �k�� � �p �k���p� �k�

i
�

�e�

q�
�p �k���p� �k�

� e�
�
 � cos �

��
� �
���

Plugging this result into ����
� gives the di�erential cross section�

d�

d�

�
e�Re

�
L � ��R�

�
L

�
�

	�

�E�
cm

�
 � cos �

��
� �
����

There is no need to repeat the entire calculation to obtain the other
three nonvanishing helicity amplitudes� For example� the squared amplitude
for e�Re

�
L � ��L�

�
R is identical to �
���� but with � replaced by �� on the

left�hand side� and thus ����� replaced by ������ on the right�hand side�
Propagating this sign though �
���� we easily see that

d�

d�

�
e�Re

�
L � ��L�

�
R

�
�

	�

�E�
cm

�
� cos �

��
� �
����

Similarly�

d�

d�

�
e�Le

�
R � ��R�

�
L

�
�

	�

�E�
cm

�
� cos �

��
�

d�

d�

�
e�Le

�
R � ��L�

�
R

�
�

	�

�E�
cm

�
 � cos �

��
�

�
����

�These two results actually follow from the previous two by parity invariance��
The other twelve helicity cross sections �for instance� e�Le

�
R � ��L�

�
L� are zero�

as we saw from Eq� �
���� Adding up all sixteen contributions� and dividing
by � to average over the electron and positron spins� we recover the unpolarized
cross section in the massless limit� Eq� �
����
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Figure ���� Conservation of angular momentum requires that if the z�
component of angular momentum is measured� it must have the same value
as initially�

Note that the cross section �
���� for e�Re
�
L � ��R�

�
L vanishes at � � ����

This is just what we would expect� since for � � ���� the total angular mo�
mentum of the �nal state is opposite to that of the initial state �see Figure 
����

This completes our �rst calculation of the polarized e�e� � ���� cross
sections� We will now redo the calculation in a manner that is more straight�
forward� more enlightening� and no more di	cult� We will calculate the am�
plitude M �rather than the squared amplitude� directly� using explicit values
for the spinors and � matrices� This method does have its drawbacks� It forces
us to specialize to a particular frame of reference much sooner� so manifest
Lorentz invariance is lost� More pragmatically� it is very cumbersome except
in the nonrelativistic and ultra�relativistic limits�

Consider again the amplitude

M �
e�

q�

�
v�p����u�p�

��
u�k���v�k

��
�
� �
��
�

In the high�energy limit� our general expressions for Dirac spinors become

u�p� �

�p
p � ��p
p � ��

�
��
E��

p
�E

� �
� �� )p � ���
�
� � � )p � ���

�
�

v�p� �

� p
p � ��

�pp � ��
�
��
E��

p
�E

� �
� �� )p � ���

� �
� � � )p � ���

�
�

�
����

A right�handed spinor satis�es �)p � ��� � ��� while a left�handed spinor has
�)p ���� � ��� �Remember once again that for antiparticles� the handedness of
the spinor is the opposite of the handedness of the particle�� We must evaluate
expressions of the form v��u� so we need

���� �

�
� 
 �

��
� ��

�� �

�
�

�
�� �
� ��

�
� �
����
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Thus we see explicitly that the amplitude is zero when one of the spinors is
left�handed and the other is right�handed� In the language of Chapter � the
Clebsch�Gordan coe	cients that couple the vector photon to the product of
such spinors are zero� those coe	cients are just the o��block�diagonal elements
of the matrix ���� �in the chiral representation��

Let us choose p and p� to be in the �z�directions� and �rst consider the
case where the electron is right�handed and the positron is left�handed�

Thus for the electron we have � �
�
�
�

�
� corresponding to spin up in the z�

direction� while for the positron we have � �
�
�
�

�
� also corresponding to �phys�

ical� spin up in the z�directon� Both particles have �)p���� � ��� so the spinors
are

u�p� �
p
�E

�B�
�
�

�

�CA � v�p�� �
p
�E

�B�
�
�
�
�

�CA � �
����

The electron half of the matrix element is therefore

v�p����u�p� � �E
�
�� �����

�

�
� ��E ��� � i� ��� �
����

We can interpret this expression by saying that the virtual photon has circular
polarization in the �z�direction� its polarization vector is �� � ��

p
���)x�i)y��

Next we must calculate the muon half of the matrix element� Let the ��

be emitted at an angle � to the z�axis� and consider �rst the case where it is
right�handed �and the �� is therefore left�handed��

To calculate u�k���v�k�� we could go back to expressions �
����� but then it
would be necessary to �nd the correct spinors � corresponding to polarization
along the muon momentum� It is much easier to use a trick� Since any expres�
sion of the form ���� transforms like a ��vector� we can just rotate the result
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�
����� Rotating that vector by an angle � in the xz�plane� we �nd

u�k���v�k�� �
�
v�k����u�k�

��
�
���E ��� cos �� i��sin ����

� ��E ��� cos ���i��sin ���
�
����

This vector can also be interpreted as the polarization of the virtual pho�
ton� when it has a nonzero overlap with �
����� we get a nonzero amplitude�
Plugging �
���� and �
���� into �
��
�� we see that the amplitude is

M�e�Re
�
L � ��R�

�
L� �

e�

q�
��E���� cos � � � � �e�� � cos ��� �
���

in agreement with ����� and also with �
���� The di�erential cross section for
this set of helicities can now be obtained in the same way as above� yielding
�
�����

We can calculate the other three nonvanishing helicity amplitudes in an
analogous manner� For a left�handed electron and a right�handed positron� we
easily �nd

v�p����u�p� � ��E ��� ��i� �� � ��E �
p
� ����

Perform a rotation to get the vector corresponding to a left�handed �� and a
right�handed ���

u�k���v�k�� � ��E ��� cos �� i� sin ���

Putting the pieces together in various ways yields the remaining amplitudes�

M�e�Le
�
R � ��L�

�
R� � �e�� � cos ���

M�e�Re
�
L � ��L�

�
R� �M�e�Le

�
R � ��R�

�
L� � �e��� cos ���

�
����

��� e�e� � ���� Nonrelativistic Limit

Now let us go to the other end of the energy spectrum� and discuss the re�
action e�e� � ���� in the extreme nonrelativistic limit� When E is barely
larger than m�� our previous result �
��� for the unpolarized di�erential cross
section becomes

d�

d�
��
jkj��

	�

�E�
cm

r
� m�

�

E�
�

	�

�E�
cm

jkj
E
� �
����

We can recover this result� and also learn something about the spin de�
pendence of the reaction� by evaluating the amplitude with explicit spinors�
Once again we begin with the matrix element

M �
e�

q�

�
v�p����u�p�

��
u�k���v�k

��
�
�
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Figure ���� In the nonrelativistic limit the total spin of the system is con�
served� and thus the muons are produced with both spins up along the z�axis�

The electron and positron are still very relativistic� so this expression will be
simplest if we choose them to have de�nite helicity� Let the electron be right�
handed� moving in the �z�direction� and the positron be left�handed� moving
in the �z�direction� Then from Eq� �
���� we have

v�p����u�p� � ��E ��� � i� ��� �
����

In the other half of the matrix element we should use the nonrelativistic
expressions

u�k� �
p
m

�
�

�

�
� v�k�� �

p
m

�
��

���
�
� �
��
�

Keep in mind� in the discussion of this section� that the spinor �� gives the
�ipped spin of the antiparticle� Leaving the muon spinors � and �� undeter�
mined for now� we can easily compute

u�k���v�k�� � m
�
�y� �y

���� �
� ��

��
��

���
�

�

	
� for � � ��
��m�y�i�� for � � i�

�
����

To evaluate M� we simply dot �
���� into �
���� and multiply by e��q� �
e���m�� The result is

M�e�Re
�
L � ����� � ��e��y

�
� 
� �

�
��� �
����

Since there is no angular dependence in this expression� the muons are equally
likely to come out in any direction� More precisely� they are emitted in an
s�wave� their orbital angular momentum is zero� Angular momentum conser�
vation therefore requires that the total spin of the �nal state equal � and
indeed the matrix product gives zero unless both the muon and the antimuon
have spin up along the z�axis �see Fig� 
�
��
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To �nd the total rate for this process� we sum over muon spins to obtain
M� � �e�� which yields the cross section

d�

d�
�e�Re

�
L � ����� �

	�

E�
cm

jkj
E
� �
����

The same expression holds for a left�handed electron and a right�handed
positron� Thus the spin�averaged cross section is just � � ���� times this ex�
pression� in agreement with �
�����

Bound States

Until now we have considered the initial and �nal states of scattering processes
to be states of isolated single particles� Very close to threshold� however� the
Coulomb attraction of the muons should become an important e�ect� Just
below threshold� we can still form ���� pairs in electromagnetic bound states�

The treatment of bound states in quantum �eld theory is a rich and
complex subject� but one that lies mainly beyond the scope of this book�z

Fortunately� many of the familiar bound systems in Nature can be treated �at
least to a good �rst approximation� as nonrelativistic systems� in which the
internal motions are slow� The process of creating the constituent particles out
of the vacuum is still a relativistic e�ect� requiring quantum �eld theory for its
proper description� In this section we will develop a formalism for computing
the amplitudes for creation and annihilation of two�particle� nonrelativistic
bound states� We begin with a computation of the cross section for producing
a ���� bound state in e�e� annihilation�

Consider �rst the case where the spins of the electron and positron both
point up along the z�axis� From the preceding discussion we know that the
resulting muons both have spin up� so the only type of bound state we can
produce will have total spin � also pointing up� The amplitude for producing
free muons in this con�guration is

M� ��� k� � � k� �� � ��e�� �
����

independent of the momenta �which we now call k� and k�� of the muons�
Next we need to know how to write a bound state in terms of free�particle

states� For a general two�body system with equal constituent masses� the
center�of�mass and relative coordinates are

R � �
� �r� � r��� r � r� � r�� �
����

These have conjugate momenta

K � k� � k�� k � �
� �k� � k��� �
���

The total momentum K is zero in the center�of�mass frame� If we know the
force between the particles �for ����� it is just the Coulomb force�� we can

zReviews of this subject can be found in Bodwin� Yennie� and Gregorio� Rev�
Mod� Phys� ��� �� ��	
��� and in Sapirstein and Yennie� in Kinoshita ��		���
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solve the nonrelativistic Schr#odinger equation to �nd the Schr#odinger wave�
function� ��r�� The bound state is just a linear superposition of free states
of de�nite r or k� weighted by this wavefunction� For our purposes it is more
convenient to build this superposition in momentum space� using the Fourier
transform of ��r��

e��k� � Z d�x eik�r��r��
Z

d�k

�����

�� e��k���� � � �
����

If ��r� is normalized conventionally� e��k� gives the amplitude for �nding a
particular value of k� An explicit expression for a bound state with mass
M � �m� momentum K � �� and spin  oriented up is then

jBi �
p
�M

Z
d�k

�����
e��k� p

�m

p
�m

jk ���k �i � �
����

The factors of ��
p
�m� convert our relativistically normalized free�particle

states so that their integral with e��k� is a state of norm � �The factors
should involve

p
�Ek� but for a nonrelativistic bound state� jkj � m�� The

outside factor of
p
�M converts back to the relativistic normalization assumed

by our formula for cross sections� These normalization factors could easily be
modi�ed to describe a bound state with nonzero total momentum K�

Given this expression for the bound state� we can immediately write down
the amplitude for its production�

M���� B� �
p
�M

Z
d�k

�����
e���k� p

�m

p
�m

M���� k � � �k ��� �
����

Since the free�state amplitude from �
���� is independent of the momenta of
the muons� the integral over k gives ������ the position�space wavefunction
evaluated at the origin� It is quite natural that the amplitude for creation of
a two�particle state from a pointlike virtual photon should be proportional to
the value of the wavefunction at zero separation� Assembling the pieces� we
�nd that the amplitude is simply

M���� B� �

r
�

M
���e�������� �
��
�

In a moment we will compute the cross section from this amplitude� First�
however� let us generalize this discussion to treat bound states with more
general spin con�gurations� The analysis leading up to �
���� will cast any S�
matrix element for the production of nonrelativistic fermions with momenta
k and �k into the form of a spin matrix element

iM�something� k�k�� � �y
�
,�k�
�
��� �
����

where ,�k� is some �	� matrix� We now must replace the spinors with a nor�
malized spin wavefunction for the bound state� In the example just completed�
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we replaced

���y �
�
�


�
�  � � �

�
� �
 �

�
� �
����

More generally� a spin� state is obtained by the replacement

���y � p
�
n� � �� �
����

where n is a unit vector� Choosing n � �)x � i)y��
p
� gives back �
����� while

the choices n � �)x � i)y��
p
� and n � )z give the other two spin� states

�� and ��� � ����p�� �The relative minus sign in �
���� for this last case
comes from the rule ����
� for the �ipped spin�� Similarly� the spin�zero
state ��� � ����p� is given by the replacement

���y � p
�
�� �
����

involving the �	 � unit matrix� With these rules� we can convert an S�matrix
element of the form �
���� quite generally into an S�matrix element for pro�
duction of a bound state at rest�

iM�something� B� �

r
�

M

Z
d�k

�����
e���k� tr�n� � �p

�
,�k�
�
� �
�
��

where the trace is taken over ��component spinor indices� For a spin�� bound
state� replace n � � by the unit matrix�

Vector Meson Production and Decay

Equation �
��
� can be straightforwardly converted into a cross section for
production of ���� bound states in e�e� annihilation� To make it easier to
extract all the physics in this equation� let us introduce polarization vectors
for the initial and �nal spin con�gurations� �� � �)x�i)y��

p
�� from Eq� �
�����

and n� from Eq� �
����� Then �
��
� can be rewritten in a more invariant form
as

M�e�Re
�
L � B� �

r
�

M
���e�� �n� � ��������� �
�
�

The bound state spin polarization n is projected parallel to ��� Note that if
the electrons are initially unpolarized� the cross section for production of B
will involve the polarization average



�

�jn� � ��j� � jn� � ��j�� � 

�

�
�nx�� � �ny��

�
� �
�
��

Thus� the bound states produced will still be preferentially polarized along
the e�e� collision axis�
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Assuming an unpolarized electron beam� and summing �
�
�� over the
three possible directions of n� we �nd the following expression for the total
cross section for production of the bound state�

��e�e� � B� �


�



�m



�m

Z
d�K

�����


�EK
����������p�p��K�� �

M
��e��



�
j����j��
�
�
��

Notice that the �body phase space integral can remove only three of the
four delta functions� It is conventional to rewrite the last delta function using
��P � �K�� � �K���P � �K��� Then

��e�e� � B� � ����	�
j����j�
M�

��E�
cm �M��� �
�
��

The last delta function enforces the constraint that the total center�of�mass
energy must equal the bound�state mass� thus� the bound state is produced
as a resonance in e�e� annihilation� If the bound state has a �nite lifetime�
this delta function will be broadened into a resonance peak� In practice� the
intrinsic spread of the e�e� beam energy is often a more important broad�
ening mechanism� In either case� �
�
�� correctly predicts the area under the
resonance peak�

If the bound state B can be produced from e�e�� it can also annihilate
back to e�e�� or to any other su	ciently light lepton pair� According to �������
the total width for this decay mode is given by

,�B � e�e�� �


�M

Z
d/� jMj�� �
�

�

where M is just the complex conjugate of the matrix element �
�
� we used
to compute B production� Thus

, �


�M

Z � 

��

d cos �

�

��e�
M

j����j��jn � �j� � jn � ��j��� �
�
��

Now we must sum over electron polarization states and average over the three
possible values of n� We thus obtain

,�B � e�e�� �
��	�

�

j����j�
M�

� �
�
��

The formula for the decay width of B is very similar to that for the production
cross section� and this is no surprise� Both calculations involve the square of
the same matrix element� summed over initial and �nal polarizations� The two
calculations di�ered only in how we formed the polarization averages� and in
the phase�space factors� By this logic� the relation we have found between the
two quantities�

��e�e� � B� � ��� � �,�B � e�e��
M

� ��E�
cm �M��� �
�
��
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is very general and completely independent of the details of the matrix element
computation� The factor � in �
�
�� came from the orientation average for n�
for a spin�J bound state� this factor would be ��J � ��

The most famous application of this formalism is to bound states not of
muons but of quarks� quarkonium� We saw the experimental evidence for qq
bound states �the J�� and 2� for example� in Fig� 
��� �The resonance peaks
are much too high and too narrow to show in the �gure� but their sizes have
been carefully measured�� Equations �
�
�� and �
�
�� must be multiplied
by a color factor of � to give the production cross section and decay width
for a spin� qq bound state� The value ���� of the qq wavefunction at the
origin cannot be computed from �rst principles� but can be estimated from
a nonrelativistic model of the qq spectrum with a phenomenologically chosen
potential� Alternatively� we can use the formula

,�B�qq�� e�e�� � ��	�Q� j����j�
M�

�
�
��

to measure ���� for a qq bound state� For example� the S spin� state of ss�
the 
 meson� has an e�e� partial width of �� keV and a mass of ��� GeV�
From this we can infer j����j� � ��� fm���� This result is physically reason�
able� since hadronic dimensions are typically � fm�

Our viewpoint in this section has been quite di�erent from that of earlier
sections� Instead of computing everything from �rst principles� we have pieced
together an approximate formula using a bit of quantum �eld theory and a bit
of nonrelativistic quantum mechanics� In principle� however� we could treat
bound states entirely in the relativistic formalism� Consider the annihilation
of an e�e� pair to form a ���� bound state� which subsequently decays back
into e�e�� In our present formalism we might represent this process by the
diagram

The net process is simply e�e� � e�e� �Bhabha scattering�� What would
happen if we tried to compute the Bhabha scattering cross section directly in
QED perturbation theory� Obviously there is no ���� contribution in the
tree�level diagrams�
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As we go to higher orders in the perturbation series� however� we �nd �among
others� the following set of diagrams�

At most values of Ecm� these diagrams give only a small correction to the
tree�level expression� But when Ecm is near the ���� threshold� the dia�
grams involving the exchange of photons within the muon loop contain the
Coulomb interaction between the muons� and therefore become quite large�
One must sum over all such diagrams� and it can be shown that this sum�
mation is equivalent to solving the nonrelativistic Schr#odinger equation�! The
�nal prediction is that the cross section contains a resonance peak� whose area
is given by �
�
�� and whose width is given by �
�
���

��� Crossing Symmetry

Electron�Muon Scattering

Now that we have completed our discussion of the process e�e� � �����
let us consider a di�erent but closely related QED process� electron�muon
scattering� or e��� � e���� The lowest�order Feynman diagram is just the
previous one turned on its side�

�
ie�

q�
u�p����

�u�p��u�p
�
����u�p���

The relation between the processes e�e� � ���� and e��� � e��� be�
comes clear when we compute the squared amplitude� averaged and summed
over spins�



�

X
spins

jMj� � e�

�q�
tr
h
�p���me��

��p��me��
�
i
tr
h
�p���m�����p��m����

i
�

This is exactly the same as our result �
��� for e�e� � ����� with the
replacements

p� p�� p� � �p��� k � p��� k� � �p�� �
����

�This analysis is carried out in Berestetskii� Lifshitz� and Pitaevskii ��	
���
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So instead of evaluating the traces from scratch� we can just make the same
replacements in our previous result� Eq� �
���� Setting me � �� we �nd



�

X
spins

jMj� � �e�

q�

h
�p� �p����p�� �p�� � �p� �p���p�� �p����m�

��p� �p���
i
� �
���

To evaluate this expression� we must work out the kinematics� which will
be completely di�erent� Working in the center�of�mass frame� we make the
following assignments�

The combinations we need are

p� �p� � p�� �p�� � k�E � k�� p�� �p� � p� �p�� � k�E � k cos ���

p� �p�� � k��� cos ��� q� � ��p� �p�� � ��k��� cos ���

Our expression for the squared matrix element now becomes



�

X
spins

jMj� � �e�

k��� cos ���

�
�E�k����E�k cos ����m�

���cos ��
�
� �
����

To �nd the cross section from this expression� we use Eq� ������� which in
the case where one particle is massless takes the simple form�

d�

d�

�
CM

�
jMj�

�����E � k��
� �
����

Thus we have our result for unpolarized electron�muon scattering in the
center�of�mass frame�

d�

d�
�

	�

�k��E�k���� cos ���

�
�E�k����E�k cos ����m�

���cos ��
�
� �
����

where k �
p
E� �m�

�� In the high�energy limit where we can set m� � �� the
di�erential cross section becomes

d�

d�
�

	�

�E�
cm�� cos ���

�
� � � � cos ���

�
� �
��
�

Note the singular behavior

d�

d�
� 

��
as � � � �
����
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of formulae �
���� and �
��
�� This singularity is the same as in the Rutherford
formula �Problem ����� Such behavior is always present in Coulomb scattering�
it arises from the nearly on�shell �that is� q� � �� virtual photon�

Crossing Symmetry

The trick we made use of here� namely the relation between the two processes
e�e� � ���� and e��� � e���� is our �rst example of a type of relation
known as crossing symmetry� In general� the S�matrix for any process involv�
ing a particle with momentum p in the initial state is equal to the S�matrix for
an otherwise identical process but with an antiparticle of momentum k � �p
in the �nal state� That is�

M�
�p� � � � � � � � �� �M�� � � � � � �� 
�k�
�
� �
����

where 
 is the antiparticle of 
 and k � �p� �Note that there is no value of p for
which p and k are both physically allowed� since the particle must have p� � �
and the antiparticle must have k� � �� So technically� we should say that either
amplitude can be obtained from the other by analytic continuation��

Relation �
���� follows directly from the Feynman rules� The diagrams
that contribute to the two amplitudes fall into a natural one�to�one correspon�
dence� where corresponding diagrams di�er only by changing the incoming 

into the outgoing 
� A typical pair of diagrams looks like this�

In the �rst diagram� the momenta qi coming into the vertex from the rest of
the diagram must add up to �p� while in the second diagram they must add
up to k� Thus the two diagrams are equal� except for any possible di�erence in
the external leg factors� if p � �k� If 
 is a spin�zero boson� there is no external
leg factor� so the identity is proved� If 
 is a fermion� the analysis becomes
more subtle� since the relation depends on the relative phase convention for
the external spinors u and v� If we simply replace p by �k in the fermion
polarization sum� we �ndX

u�p�u�p� � p�m � �� k �m� � �
X

v�k�v�k�� �
����

The minus sign can be compensated by changing our phase convention for
v�k�� In practice� it is easiest to cancel by hand one minus sign for each
crossed fermion� With appropriate conventions for the spinors u�p� and v�k��
it is possible to prove the identity �
���� without spin�averaging�
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Mandelstam Variables

It is often useful to express scattering amplitudes in terms of variables that
make it easy to apply crossing relations� For ��body� ��body processes� this
can be done as follows� Label the four external momenta as

We now de�ne three new quantities� the Mandelstam variables �

s � �p� p��� � �k � k����

t � �k � p�� � �k� � p����

u � �k� � p�� � �k � p����

�
����

The de�nitions of t and u appear to be interchangeable �by renaming k � k���
it is conventional to de�ne t as the squared di�erence of the initial and �nal
momenta of the most similar particles� For any process� s is the square of the
total initial ��momentum� Note that if we had de�ned all four momenta to be
ingoing� all signs in these de�nitions would be ��

To illustrate the use of the Mandelstam variables� let us �rst consider
the squared amplitude for e�e� � ����� working in the massless limit for
simplicity� In this limit we have t � ��p � k � ��p� � k� and u � ��p � k� �
��p� � k� while of course s � �p � p��� � q�� Referring to our previous result
�
���� we �nd



�

X
spins

jMj� � �e�

s�

h� t
�

��
�
�u
�

��i
� �
����

To convert to the process e��� � e���� we turn the diagram on its side
and make use of the crossing relations� which become quite simple in terms
of Mandelstam variables� For example� the crossing relations tell us to change
the sign of p�� the positron momentum� and reinterpret it as the momentum
of the outgoing electron� Therefore s � �p � p��� becomes what we would
now call t� the di�erence of the outgoing and incoming electron momenta�
Similarly� t becomes s� while u remains unchanged� Thus for e��� � e����
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we can immediately write down



�

X
spins

jMj� � �e�

t�

h�s
�

��
�
�u
�

��i
� �
���

You can easily check that this agrees with �
��� in the massless limit� Note
that while �
���� and �
��� look quite similar� they are physically very dif�
ferent� The denominator of the �rst is just s� � E�

cm� but that of the second
involves t� which depends on angles and goes to zero as � � ��

When a ��body � ��body diagram contains only one virtual particle� it
is conventional to describe that particle as being in a certain �channel�� The
channel can be read from the form of the Feynman diagram� and each channel
leads to a characteristic angular dependence of the cross section�

s�channel� M� 

s�m�
�

t�channel� M� 

t�m�
�

u�channel� M� 

u�m�
�

In many cases� a single process will receive contributions from more than
one channel� these must be added coherently� For example� the amplitude for
Bhabha scattering� e�e� � e�e�� is the sum of s� and t�channel diagrams�
M�ller scattering� e�e� � e�e�� involves t� and u�channel diagrams�

To get a better feel for s� t� and u� let us evaluate them explicitly in the
center�of�mass frame for particles all of mass m� The kinematics is as usual�
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Thus the Mandelstam variables are

s � �p� p��� � ��E�� � E�
cm�

t � �k � p�� � �p� sin� � � p��cos � � �� � ��p��� cos ���

u � �k� � p�� � �p� sin� � � p��cos � � �� � ��p�� � cos ���

�
����

Thus we see that t � � as � � �� while u � � as � � �� �When the masses
are not all equal� the limiting values of t and u will shift slightly��

Note from �
���� that when all four particles have mass m� the sum of
the Mandelstam variables is s � t � u � �E� � �p� � �m�� This is a special
case of a more general relation� which is often quite useful�

s� t� u �

�X
i
�

m�
i � �
����

where the sum runs over the four external particles� This identity is easy
to prove by adding up the terms on the right�hand side of Eqs� �
����� and
applying momentum conservation in the form �p� p� � k � k��� � ��

��� Compton Scattering

We now move on to consider a somewhat di�erent QED process� Compton
scattering� or e�� � e��� We will calculate the unpolarized cross section
for this reaction� to lowest order in 	� The calculation will employ all the
machinery we have developed so far� including the Mandelstam variables of
the previous section� We will also develop some new technology for dealing
with external photons�

This is our �rst example of a calculation involving two diagrams�

As usual� the Feynman rules tell us exactly how to write down an expression
forM� Note that since the fermion portions of the two diagrams are identical�
there is no relative minus sign between the two terms� Using ���k� and ����k

��
to denote the polarization vectors of the initial and �nal photons� we have

iM � u�p����ie�������k��
i�p� k �m�

�p� k�� �m�
��ie������k�u�p�

� u�p����ie������k� i�p� k
� �m�

�p� k��� �m�
��ie�������k��u�p�
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� �ie�����k�����k�u�p��

���p� k�m���

�p� k�� �m�
�
���p�k��m���

�p� k��� �m�

�
u�p��

We can make a few simpli�cations before squaring this expression� Since
p� � m� and k� � �� the denominators of the propagators are

�p� k�� �m� � �p �k and �p� k��� �m� � ��p �k��
To simplify the numerators� we use a bit of Dirac algebra�

�p�m���u�p� � ��p� � �� p� ��m�u�p�

� �p�u�p�� ���p�m�u�p�

� �p�u�p��

Using this trick on the numerator of each propagator� we obtain

iM � �ie�����k�����k�u�p��

�� k������p�

�p �k �
��� k�������p�

��p �k�
�
u�p�� �
����

Photon Polarization Sums

The next step in the calculation will be to square this expression for M
and sum �or average� over electron and photon polarization states� The sum
over electron polarizations can be performed as before� using the identity
*u�p�u�p� � p � m� Fortunately� there is a similar trick for summing over
photon polarization vectors� The correct prescription is to make the replace�
ment X

polarizations

����� �� �g�� � �
��
�

The arrow indicates that this is not an actual equality� Nevertheless� the re�
placement is valid as long as both sides are dotted into the rest of the expres�
sion for a QED amplitude M�

To derive this formula� let us consider an arbitrary QED process involving
an external photon with momentum k�

� iM�k� � iM��k�����k�� �
����

Since the amplitude always contains ����k�� we have extracted this factor and
de�ned M��k� to be the rest of the amplitude M� The cross section will be
proportional toX

�

������k�M��k�
��� �X

�

�����M��k�M���k��
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For simplicity� we orient k in the ��direction� k� � �k� �� �� k�� Then the two
transverse polarization vectors� over which we are summing� can be chosen to
be

��� � ��� � �� ��� ��� � ��� �� � ���

With these conventions� we haveX
�

������k�M��k�
��� � ��M��k�

��� � ��M��k�
���� �
����

Now recall from Chapter � that external photons are created by the in�
teraction term

R
d�x ej�A�� where j� � ���� is the Dirac vector current�

Therefore we expect M��k� to be given by a matrix element of the Heisen�
berg �eld j��

M��k� �

Z
d�x eik�x hf j j��x� jii � �
����

where the initial and �nal states include all particles except the photon in
question�

+From the classical equations of motion� we know that the current j� is
conserved� ��j

��x� � �� Provided that this property still holds in the quantum
theory� we can dot k� into �
���� to obtain

k�M��k� � �� �
����

The amplitude M vanishes when the polarization vector ���k� is replaced
by k�� This famous relation is known as the Ward identity� It is essentially
a statement of current conservation� which is a consequence of the gauge
symmetry ����� of QED� We will give a formal proof of the Ward identity in
Section ���� and discuss a number of subtle points skimmed over in this quick
�derivation��

It is useful to check explicitly that the Compton amplitude given in �
����
obeys the Ward identity� To do this� replace ���k� by k� or ����k

�� by k��� and
manipulate the Dirac matrix products� In either case �after a bit of algebra�
the terms from the two diagrams cancel each other to give zero�

Returning to our derivation of the polarization sum formula �
��
�� we
note that for k� � �k� �� �� k�� the Ward identity takes the form

kM��k�� kM��k� � �� �
����

Thus M� �M�� and we haveX
�

�����M��k�M���k� � jM�j� � jM�j�

� jM�j� � jM�j� � jM�j� � jM�j�

� �g��M��k�M���k��

That is� we may sum over external photon polarizations by replacing
P

�����
with �g�� �
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Note that this proves �pending our general proof of the Ward identity�
that the unphysical timelike and longitudinal photons can be consistently
omitted from QED calculations� since in any event the squared amplitudes
for producing these states cancel to give zero total probability� The negative
norm of the timelike photon state� a property that troubled us in the discussion
after Eq� ������� plays an essential role in this cancellation�

The Klein�Nishina Formula

The rest of the computation of the Compton scattering cross section is
straightforward� although it helps to be somewhat organized� We want to
average the squared amplitude over the initial electron and photon polariza�
tions� and sum over the �nal electron and photon polarizations� Starting with
expression �
���� for M� we �nd
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jMj� � e�

�
g�� g�� � tr

	
�p��m�

h�� k������p�

�p�k �
�� k�������p�

�p�k�
i

� �p�m�
h�� k������p�

�p�k �
�� k�������p�

�p�k�
i


� e�

�


I

��p�k�� �
II

��p�k���p�k�� �
III

��p�k����p�k� �
IV

��p�k���
�
� �
���

where I� II� III� and IV are complicated traces� Note that IV is the same
as I if we replace k with �k�� Also� since we can reverse the order of the �
matrices inside a trace �Eq� �
����� we see that II � III� Thus we must work
only to compute I and II�

The �rst of the traces is

I � tr
�
�p� �m���� k�� � ���p��� p�m���� k�� � ���p��

�
�

There are � terms inside the trace� but half contain an odd number of �
matrices and therefore vanish� We must now evaluate the other eight terms�
one at a time� For example�

tr
�p��� k�� p�� k��� � tr

�
���p��k���p�k�

� tr
�
�p� k��p �k � k p��

� �p �k tr$p� k%
� ���p �k��p� �k��

By similar use of the contraction identities �
��� and �
���� and other Dirac
algebra such as p p � p� � m�� each term in I can be reduced to a trace of no
more than two � matrices� When the smoke clears� we �nd

I � �
�
�m� � �m�p �p� � �m�p �k � �m�p� �k � ��p �k��p� �k��� �
����
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Although it is not obvious� this expression can be simpli�ed further� To
see how� introduce the Mandelstam variables�

s � �p� k�� � �p �k �m� � �p� �k� �m��

t � �p� � p�� � ��p �p� � �m� � ��k �k��
u � �k� � p�� � ��k� �p�m� � ��k �p� �m��

�
����

Recall from �
���� that momentum conservation implies s�t�u � �m�� Writ�
ing everything in terms of s� t� and u� and using this identity� we eventually
obtain

I � �
�
�m� �m��s�m��� �

� �s�m���u�m��
�
� �
����

Sending k � �k�� we can immediately write

IV � �
�
�m� �m��u�m��� �

� �s�m���u�m��
�
� �
��
�

Evaluating the traces in the numerators II and III requires about the same
amount of work as we have just done� The answer is

II � III � ����m� �m��s�m�� �m��u�m��
�
� �
����

Putting together the pieces of the squared matrix element �
���� and rewriting
s and u in terms of p � k and p � k�� we �nally obtain
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jMj� � �e�

p�k�
p�k �

p�k
p�k� ��m�

� 

p�k�


p�k�
�
�m�

� 

p�k�


p�k�
���

� �
����

To turn this expression into a cross section we must decide on a frame of
reference and draw a picture of the kinematics� Compton scattering is most
often analyzed in the �lab� frame� in which the electron is initially at rest�

We will express the cross section in terms of  and �� We can �nd �� the
energy of the �nal photon� using the following trick�

m� � �p��� � �p� k � k��� � p� � �p � �k � k��� �k � k�

� m� � �m� � ��� ���� cos ���

hence�


�
� 


�



m
�� cos ��� �
����
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The last line is Compton�s formula for the shift in the photon wavelength� For
our purposes� however� it is more useful to solve for ��

� �


 �


m
�� cos ��

� �
����

The phase space integral in this frame isZ
d/� �

Z
d�k�

�����


��
d�p�

�����


�E�
����������k� � p� � k � p�

�

Z
����d� d�

�����


��E�

	 �� ��� �
p
m����������� cos � �  �m�

�

Z
d cos �

��

�

�E�
��� � � �  cos �

E�

���
�



��

Z
d cos �

�

m� �� cos ��

�


��

Z
d cos �

����

m
� �
����

Plugging everything into our general cross�section formula ������ and setting
jvA � vBj � � we �nd

d�

d cos �
�



�



�m
� 

��

����

m
�
�
�
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jMj�
�
�

To evaluate jMj�� we replace p � k � m and p � k� � m� in �
����� The
shortest way to write the �nal result is

d�

d cos �
�
�	�

m�

��


���


�


�
� sin� �

�
� �
���

where �� is given by �
����� This is the �spin�averaged� Klein�Nishina for�

mula� �rst derived in ����y

In the limit  � � we see from �
���� that �� � � so the cross section
becomes

d�

d cos �
�

�	�

m�
� � cos� ��� �total �

��	�

�m�
� �
����

This is the familiar Thomson cross section for scattering of classical electro�
magnetic radiation by a free electron�

yO� Klein and Y� Nishina� Z� Physik� ��� 
� ��	�	��
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High�Energy Behavior

To analyze the high�energy behavior of the Compton scattering cross section�
it is easiest to work in the center�of�mass frame� We can easily construct the
di�erential cross section in this frame from the invariant expression �
�����
The kinematics of the reaction now looks like this�

Plugging these values into �
����� we see that for � � �� the term p�k�p�k�
becomes very large� while the other terms are all of O�� or smaller� Thus for
E 
 m and � � �� we have



�

X
spins

jMj� � �e� � p �k
p �k� � �e� � E � 

E �  cos �
� �
����

The cross section in the CM frame is given by �������

d�

d cos �
�



�
� 

�E
� 

�
� 

������E � �
� �e

��E � �

E �  cos �

� ��	�

�m� � s� � cos ��
�

�
����

Notice that� since s 
 m�� the denominator of �
���� almost vanishes
when the photon is emitted in the backward direction �� � ��� In fact� the
electron mass m could be neglected completely in this formula if it were not
necessary to cut o� this singularity� To integrate over cos �� we can drop the
electron mass term if we supply an equivalent cuto� near � � �� In this way�
we can approximate the total Compton scattering cross section by

�Z
��

d�cos ��
d�

d cos �
� ��	�

s

�Z
����m��s

d�cos ��


� � cos ��
� �
��
�

Thus� we �nd that the total cross section behaves at high energy as

�total �
��	�

s
log
� s

m�

�
� �
����

The main dependence 	��s follows from dimensional analysis� But the singu�
larity associated with backward scattering of photons leads to an enhancement
by an extra logarithm of the energy�
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Let us try to understand the physics of this singularity� The singular term
comes from the square of the u�channel diagram�

� �ie� ���k�����k��u�p����
p� k� �m

�p� k��� �m�
��u�p�� �
����

The amplitude is large at � � � because the denominator of the propagator
is then small ��m�� compared to s� To be more precise� de�ne � � �� �� We
will be interested in values of � that are somewhat larger than m�� but still
small enough that we can approximate � cos� � ����� For � in this range�
the denominator is

�p�k����m� � ��p �k� � ���
�m�

��
�� cos�

�
� ������m��� �
����

This is small compared to s over a wide range of values for �� hence the
enhancement in the total cross section�

Looking back at �
����� we see that for � such that m� � � � � the
squared amplitude is proportional to ���� and hence we expect M � ���
But we have just seen that the denominator of M is proportional to ��� so
there must be a compensating factor of � in the numerator� We can understand
the physical origin of that factor by looking at the amplitude for a particular
set of electron and photon polarizations�

Suppose that the initial electron is right�handed� The dominant term of
�
���� comes from the term that involves �p � k�� in the numerator of the
propagator� Since this term contains three ��matrices in �
���� between the
u and the u� the �nal electron must also be right�handed� The amplitude is
therefore

iM � �ie����k�����k��uyR�p����
� � �p� k��

����� �m��
��uR�p�� �
����

where

uR�p� �
p
�E

�
�



�
and uR�p

�� �
p
�E

�


�

�
� �
����

If the initial photon is left�handed� with ���k� � ��
p
����� ��i� ��� then

�����k� �

�
� �p
� �

�
�

and the combination uyR�p
�������k� vanishes� The initial photon must there�

fore be right�handed� Similarly� the amplitude vanishes unless the �nal photon
is right�handed� The kinematic situation for this set of polarizations is shown
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Figure ���� In the high�energy limit� the �nal photon is most likely to be
emitted at backward angles� Since helicity is conserved� a unit of spin angular
momentum is converted to orbital angular momentum�

in Fig� 
��� Note that the total spin angular momentum of the �nal state is
one unit less than that of the initial state�

Continuing with our calculation� let us consider the numerator of the
propagator in �
����� For � in the range of interest� the dominant term is

����p� k��� � �� � ��
This is the factor of � anticipated above� It indicates that the �nal state is
a p�wave� as required by angular momentum conservaton� Assembling all the
pieces� we obtain

M�e�R�R � e�R�R� � e�
p
�E
p
�

�

���� �m��

p
�E
p
� � �e��

�� �m���
�

�
���
We would �nd the same result in the case where all initial and �nal particles
are left�handed�

Notice that for directly backward scattering� � � �� the matrix element
�
��� vanishes due to the angular momentum zero in the numerator� Thus�
at angles very close to backward� we should also take into account the mass
term in the numerator of the propagator in �
����� This term contains only two
gamma matrices and so converts a right�handed electron into a left�handed
electron� By an analysis similar to the one that led to Eq� �
���� we can
see that this amplitude is nonvanishing only when the initial photon is left�
handed and the �nal photon is right�handed� Following this analysis in more
detail� we �nd

M�e�R�L � e�L�R� �
�e�m�

�� �m���
� �
����
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The reaction with all four helicities reversed gives the same matrix element�
To compare this result to our previous calculations� we should add the

contributions to the cross section from �
��� and �
���� and equal con�
tributions for the reactions involving initial left�handed electrons� and divide
by � to average over initial spins� The unpolarized di�erential cross section
should then be

d�

d cos �
�



�



�E



�



���� ��E � �


�e���

��� �m�����
�

�e�m���

��� �m�����

�
�

��	�

s��� � �m��s�
� �
����

which agrees precisely with Eq� �
�����
The importance of the helicity��ip process �
���� just at the kinematic

endpoint has an interesting experimental consequence� Consider the process
of inverse Compton scattering� a high�energy electron beam colliding with
a low�energy photon beam �for example� a laser beam� to produce a high�
energy photon beam� Let the electrons have energy E and the laser photons
have energy �� let the energy of the scattered photon be E� � yE� and
assume for simplicity that s � �E� 
 m�� Then the computation we have
just done applies to this situation� with the highest energy photons resulting
from scattering that is precisely backward in the center�of�mass frame� By
computing �k �k� in the center�of�mass frame and in the lab frame� it is easy
to show that the �nal photon energy is related to the center�of�mass scattering
angle through

y � 

�
�� cos �� � � ��

�
�

Then Eq� �
���� can be rewritten as a formula for the energy distribution of
backscattered photons near the endpoint�

d�

dy
�

��	�

s���y� �m��s��

h
��y� � m�

s

i
� �
����

where the �rst term in brackets corresponds to the helicity�conserving pro�
cess and the second term to the helicity��ip process� Thus� for example� if
a right�handed polarized laser beam is scattered from an unpolarized high�
energy electron beam� most of the backscattered photons will be right�handed
but the highest�energy photons will be left�handed� This e�ect can be used
experimentally to measure the polarization of an electron beam or to create
high�energy photon sources with adjustable energy distribution and polariza�
tion�
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Pair Annihilation into Photons

We can still obtain one more result from the Compton�scattering amplitude�
Consider the annihilation process

e�e� � ���

given to lowest order by the diagrams

This process is related to Compton scattering by crossing symmetry� we can
obtain the correct amplitude from the Compton amplitude by making the
replacements

p� p� p� � �p� k � �k� k� � k��

Making these substitutions in �
����� we �nd



�

X
spins

jMj� � ��e�

p��k�
p��k� �

p��k�
p��k� � �m�

� 

p��k� �


p��k�
�

�m�
� 

p��k� �


p��k�
���

�

�
��
�

The overall minus sign is the result of the crossing relation �
���� and should
be removed�

Now specialize to the center�of�mass frame� The kinematics is

A routine calculation yields the di�erential cross section�

d�

d cos �
�

��	�

s

�E
p

�E� � p� cos� �

m� � p� sin� �
�

�m�

m� � p� sin� �
� �m�

�m� � p� sin� ���

�
�

�
����
In the high�energy limit� this becomes

d�

d cos �
��
E�m

��	�

s

� � cos� �

sin� �

�
� �
����
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Figure ���� Angular dependence of the cross section for e�e� � �� at
Ecm � �	 GeV� as measured by the HRS collaboration� M� Derrick� et� al��
Phys� Rev� D��� �
� ��	
��� The solid line is the lowest�order theoretical
prediction� Eq� ��������

except when sin � is of order m�p or smaller� Note that since the two photons
are identical� we count all possible �nal states by integrating only over � �
� � ���� Thus the total cross section is computed as

�total �

�Z
�

d�cos ��
d�

d cos �
� �
����

Figure 
�� compares the asymptotic formula �
���� for the di�erential
cross section to measurements of e�e� annihilation into two photons at very
high energy�

Problems

��� Coulomb scattering� Repeat the computation of Problem ���� part �c�� this
time using the full relativistic expression for the matrix element� You should �nd� for
the spin�averaged cross section�

d	

d'
�

��

�jpj�� sin���
��
�
�� � sin�

�

�

�
�

where p is the electron�s �momentum and  is its velocity� This is theMott formula for
Coulomb scattering of relativistic electrons� Now derive it in a second way� by working
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out the cross section for electron�muon scattering� in the muon rest frame� retaining
the electron mass but sending m� ���
��� Bhabha scattering� Compute the di�erential cross section d	
d cos � for
Bhabha scattering� e�e� � e�e�� You may work in the limit Ecm � me� in which
it is permissible to ignore the electron mass� There are two Feynman diagrams� these
must be added in the invariant matrix element before squaring� Be sure that you have
the correct relative sign between these diagrams� The intermediate steps are compli�
cated� but the �nal result is quite simple� In particular� you may �nd it useful to
introduce the Mandelstam variables s� t� and u� Note that� if we ignore the electron
mass� s� t � u � �� You should be able to cast the di�erential cross section into the
form

d	

d cos �
�

���

s

h
u�
�
�

s
�
�

t

��
�
�
t

s

��
�
�
s

t

��i
�

Rewrite this formula in terms of cos � and graph it� What feature of the diagrams
causes the di�erential cross section to diverge as � � ��
��� The spinor product formalism introduced in Problem � provides an e�cient
way to compute tree diagrams involving massless particles� Recall that in Problem �
we de�ned spinor products as follows� Let uL�� uR� be the left� and right�handed
spinors at some �xed lightlike momentum k�� These satisfy

uL�uL� �
�
���
�

�
�k�� uR�uR� �

�
���

�

�
�k�� ���

�These relations are just the projections onto de�nite helicity of the more standard
formula

P
u�u� � �k��� Then de�ne spinors for any other lightlike momentum p by

uL�p� �
�p
�p � k�

�puR�� uR�p� �
�p
�p � k�

�puL�� ���

We showed that these spinors satisfy �pu�p� � �� because there is no m around� they
can be used as spinors for either fermions or antifermions� We de�ned

s�p�� p�� � uR�p��uL�p��� t�p�� p�� � uL�p��uR�p���

and� in a special frame� we proved the properties

t�p�� p�� � �s�p�� p���
�� s�p�� p�� � �s�p�� p��� js�p�� p��j� � �p� � p�� ��

Now let us apply these results�

�a� To warm up� give another proof of the last relation in Eq� �� by using ��� to
rewrite js�p�� p��j� as a trace of Dirac matrices� and then applying the trace
calculus�

�b� Show that� for any string of Dirac matrices�

tr$������ � � �% � tr$� � � ������%
where �� �� �� � � � � �� �� �� � or �� Use this identity to show that

uL�p���
�uL�p�� � uR�p���

�uR�p���

�c� Prove the Fierz identity

uL�p���
�uL�p�� $��%ab � � $uL�p��uL�p�� � uR�p��uR�p��%ab�
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where a� b � �� �� � � are Dirac indices� This can be done by justifying the
following statements� The right�hand side of this equation is a Dirac matrix�
thus� it can be written as a linear combination of the �� � matrices discussed in
Section ��� It satis�es

�$M % � �$M %��

thus� it must have the form

$M % �
�
���
�

�
��V

� �
�
���

�

�
��W

�

where V � and W� are ��vectors� These ��vectors can be computed by trace
technology� for example�

V � �
�

�
tr$��
�
���
�

�
M %�

�d� Consider the process e�e� � ����� to the leading order in �� ignoring the
masses of both the electron and the muon� Consider �rst the case in which the
electron and the �nal muon are both right�handed and the positron and the
�nal antimuon are both left�handed� �Use the spinor vR for the antimuon and
uR for the positron�� Apply the Fierz identity to show that the amplitude can
be evaluated directly in terms of spinor products� Square the amplitude and
reproduce the result for

d	

d cos �
�e�Re

�
L � ��R�

�
L �

given in Eq� ������� Compute the other helicity cross sections for this process
and show that they also reproduce the results found in Section ����

�e� Compute the di�erential cross section for Bhabha scattering of massless elec�
trons� helicity state by helicity state� using the spinor product formalism� The
average over initial helicities� summed over �nal helicities� should reproduce the
result of Problem ���� In the process� you should see how this result arises as
the sum of de�nite�helicity contributions�

��� Positronium lifetimes�

�a� Compute the amplitudeM for e�e� annihilation into � photons in the extreme
nonrelativistic limit �i�e�� keep only the term proportional to zero powers of the
electron and positron �momentum�� Use this result� together with our formal�
ism for fermion�antifermion bound states� to compute the rate of annihilation
of the �S states of positronium into � photons� You should �nd that the spin��
states of positronium do not annihilate into � photons� con�rming the symme�
try argument of Problem �
� For the spin�� state of positronium� you should
�nd a result proportional to the square of the �S wavefunction at the origin� In�
serting the value of this wavefunction from nonrelativistic quantum mechanics�
you should �nd

�

�
� � �

�me

�
	 
��� ��� sec���
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A recent measurementz gives � � ��		� 
 ���� nsec��� the ���( discrepancy is
accounted for by radiative corrections�

�b� Computing the decay rates of higher�l positronium states is somewhat more
di�cult� in the rest of this problem� we will consider the case l � �� First� work
out the terms in the e�e� � �� amplitude proportional to one power of the
�momentum� �For simplicity� work in the center�of�mass frame�� SinceZ

d�p

�����
pi��p� � i

�

�xi
��x�
���
x
�

�

this piece of the amplitude has overlap with P �wave bound states� Show that
the S � �� but not the S � � states� can decay to � photons� Again� this is a
consequence of C�

�c� To compute the decay rates of these P �wave states� we need properly normalized
state vectors� Denote the three P �state wavefunctions by

�i � xi f�jxj�� normalized to

Z
d�x��i �x��j �x� � �ij �

and their Fourier transforms by �i�p�� Show that

jB�k�i �
p
�M

Z
d�p

�����
�i�p� a

y
p�k��

)i by�p�k�� j�i

is a properly normalized bound�state vector if )i denotes a set of three � � �
matrices normalized to X

i

tr�)iy)i� � ��

To build S � � states� we should take each )i to contain a Pauli sigma matrix�
In general� spin�orbit coupling will split the multiplet of S � �� L � � states
according to the total angular momentum J � The states of de�nite J are given
by

J � � � )i �
�p
�
	i�

J � � � )i �
�

�
�ijknj	k�

J � � � )i �
�p

hij	j �

where n is a polarization vector satisfying jnj� � � and hij is a traceless tensor�
for which a typical value might be h�� � � and all other components zero�

�d� Using the expanded form for the e�e� � �� amplitude derived in part �b� and
the explicit form of the S � �� L � �� de�nite�J positronium states found in
part �c�� compute� for each J � the decay rate of the state into two photons�

zD� W� Gidley et� al�� Phys� Rev� Lett� �	� ��� ��	
���
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��� Physics of a massive vector boson� Add to QED a massive photon �eld B�
of mass M � which couples to electrons via

�H �

Z
d�x �g����B���

A massive photon in the initial or �nal state has three possible physical polarizations�
corresponding to the three spacelike unit vectors in the boson�s rest frame� These can
be characterized invariantly� in terms of the boson�s ��momentum k�� as the three

vectors �
�i�
� satisfying

��i� � ��j� � ��ij � k � ��i� � ��
The four vectors �k�
M� �

�i�
� � form a complete orthonormal basis� Because B� couples

to the conserved current ����� the Ward identity implies that k� dotted into the
amplitude for B production gives zero� thus we can replace�X

i

�
�i�
� �

�i��
� � �g�� �

This gives a generalization to massive bosons of the Feynman trick for photon polar�
ization vectors and simpli�es the calculation of B production cross sections� �Warning�
This trick does not work �so simply� for %non�Abelian gauge �elds&�� Let�s do a few
of these computations� using always the approximation of ignoring the mass of the
electron�

�a� Compute the cross section for the process e�e� � B� Compute the lifetime of
the B� assuming that it decays only to electrons� Verify the relation

	�e�e� � B� �
����

M
��B � e�e����M� � s�

discussed in Section ���

�b� Compute the di�erential cross section� in the center�of�mass system� for the
process e�e� � � � B� �This calculation goes over almost unchanged to the
realistic process e�e� � � � Z�� this allows one to measure the number of
decays of the Z� into unobserved �nal states� which is in turn proportional to
the number of neutrino species��

�c� Notice that the cross section of part �b� diverges as � � � or �� Let us analyze
the region near � � �� In this region� the dominant contribution comes from
the t�channel diagram and corresponds intuitively to the emission of a photon
from the electron line before e�e� annihilation into a B� Let us rearrange the
formula in such a way as to support this interpretation� First� note that the
divergence as � � � is cut o� by the electron mass� Let the electron momentum
be p� � �E� �� �� k�� with k � �E� �m�

e�
���� and let the photon momentum be

k� � �xE� xE sin �� �� xE cos ��� Show that the denominator of the propagator
then never becomes smaller than O�m�

e
s�� Now integrate the cross section of
part �b� over forward angles� cutting o� the � integral at �� � �m�

e
s� and
keeping only the leading logarithmic term� proportional to log�s
m�

e�� Show
that� in this approximation� the cross section for forward photon emission can
be written

	�e�e� � � �B� 	
Z
dx f�x� � 	�e�e� � B at E�

cm � ���x�s��
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where the annihilation cross section is evaluated for the collision of a positron
of energy E and an electron of energy �� � x�E� and the function f�x�� the
Weiszacker�Williams distribution function� is given by

f�x� �
�

��

� � ��� x��

x
� log
�

s

m�
e

�
�

This function arises universally in processes in which a photon is emitted
collinearly from an electron line� independent of the subsequent dynamics� We
will meet it again� in another context� in Problem ����

��� This problem extends the spinor product technology of Problem �� to external
photons�

�a� Let k be the momentum of a photon� and let p be another lightlike vector� chosen
so that p�k �� �� Let uR�p�� uL�p� be spinors of de�nite helicity for fermions with
the lightlike momentum p� de�ned according to the conventions of Problem ���
De�ne photon polarization vectors as follows�

����k� �
�p
�p � kuR�k��

�uR�p�� ����k� �
�p
�p � kuL�k��

�uL�p��

Use the identity
uL�p�uL�p� � uR�p�uR�p� � �p

to compute the polarization sum

����
��
� � ����

��� � � g�� �
k�p� � k�p�

p � k �

The second term on the right gives zero when dotted with any photon emission
amplitudeM�� so we have

j�� �Mj� � j�� �Mj� �M�M����g����
thus� we can use the vectors ��� �� to compute photon polarization sums�

�b� Using the polarization vectors just de�ned� and the spinor products and the Fierz
identity from Problem ��� compute the di�erential cross section for a massless
electron and positron to annihilate into � photons� Show that the result agrees
with the massless limit derived in ��������

d	

d cos �
�
����

s

�
� � cos� �

sin� �

�
in the center�of�mass frame� It follows from the result of part �a� that this answer
is independent of the particular vector p used to de�ne the polarization vectors�
however� the calculation is greatly simpli�ed by taking this vector to be the
initial electron ��vector�



Chapter �

Radiative Corrections� Introduction

Now that we have acquired some experience at performing QED calculations�
let us move on to some more complicated problems� Chapter 
 dealt only with
tree�level processes� that is� with diagrams that contain no loops� But all such
processes receive higher�order contributions� known as radiative corrections�

from diagrams that do contain loops� Another source of radiative corrections
in QED is bremsstrahlung� the emission of extra �nal�state photons during a
reaction� In this chapter we will investigate both types of radiative corrections�
and �nd that it is inconsistent to include one without also including the other�

Throughout this chapter� in order to illustrate these ideas in the simplest
possible context� we will consider the process of electron scattering from an�
other� very heavy� particle� We analyzed this process at tree level in Section 
��
and Problem 
�� At the next order in perturbation theory� we encounter the
following four diagrams�

����

The order�	 correction to the cross section comes from the interference term
between these diagrams and the tree�level diagram� There are six additional
one�loop diagrams involving the heavy particle in the loop� but they can be
neglected in the limit where that particle is much heavier than the electron�
since the mass appears in the denominator of the propagator� �Physically�
the heavy particle accelerates less� and therefore radiates less� during the
collision��

Of the four diagrams in ����� the �rst �known as the vertex correction� is
the most intricate and gives the largest variety of new e�ects� For example� it
gives rise to an anomalous magnetic moment for the electron� which we will
compute in Section ����

The next two diagrams of ���� are external leg corrections� We will neglect
them in this chapter because they are not amputated� as required by our
formula ������ for S�matrix elements� We will discuss these diagrams in more

���



��� Chapter � Radiative Corrections� Introduction

detail when we prove that formula in Section ����
The �nal diagram of ���� is called the vacuum polarization� Since it re�

quires more computational machinery than the others� we will not evaluate
this diagram until Section ��
�

Our study of these corrections will be complicated by the fact that they
are ill�de�ned� Each diagram of ���� involves an integration over the unde�
termined loop momentum� and in each case the integral is divergent in the
k � � or ultraviolet region� Fortunately� the in�nite parts of these integrals
will always cancel out of expressions for observable quantities such as cross
sections�

The �rst three diagrams of ���� also contain infrared divergences � in�ni�
ties coming from the k � � end of the loop�momentum integrals� We will see
in Section ��� that these divergences are canceled when we also include the
following bremsstrahlung diagrams�

�����

These diagrams are divergent in the limit where the energy of the radiated
photon tends to zero� In this limit� the photon cannot be observed by any
physical detector� so it makes sense to add the cross section for producing these
low�energy photons to the cross section for scattering without radiation� The
bremsstrahlung diagrams are thus an essential part of the radiative correction�
in this and any other QED process�

Our main goals in the present chapter are to understand bremsstrahlung
of low�energy photons� the vertex correction diagram� and the cancellation of
infrared divergences between these two types of radiative corrections�

��� Soft Bremsstrahlung

Let us begin our study of radiative corrections by analyzing the bremsstrah�
lung process� In this section we will �rst do a classical computation of the
intensity of the low�frequency bremsstrahlung radiation when an electron un�
dergoes a sudden acceleration� We will then compute a closely related quantity
in quantum �eld theory� the cross section for emission of one very soft pho�
ton� given by diagrams ������ We would like to understand how the classical
result arises as a limiting case of the quantum result�
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Classical Computation

Suppose that a classical electron receives a sudden kick at time t � � and
position x � �� causing its ��momentum to change from p to p�� �An in�
�nitely sudden change of momentum is of course an unrealistic idealization�
The precise form of the trajectory during the acceleration does not a�ect the
low�frequency radiation� however� Our calculation will be valid for radiation
with a frequency less than the reciprocal of the scattering time��

�� sudden kick at time t � ��

when particle is at x � �

We can �nd the radiation �eld by writing down the current of this electron�
and considering that current as a source for Maxwell�s equations�

What is the current density of such a particle� For a charged particle at
rest at x � �� the current would be

j��x� � ����� � e �����x�

�

Z
dt ����� � e �����x� y�t�

�
� with y��t� � �t�����

From this we can guess the current for an arbitrary trajectory y�����

j��x� � e

Z
d�

dy����

d�
����
�
x� y���

�
� �����

Note that this expression is independent of the precise way in which the
curve y���� is parametrized� Changing variables from � to ���� gives a factor
of d��d� in the integration measure� which combines with dy��d� via the
chain rule to give dy��d�� We can also prove from ����� that the current is
automatically conserved� For any �test function� f�x� that falls o� at in�nity�
we haveZ

d�x f�x���j
��x� �

Z
d�x f�x� e

Z
d�

dy����

d�
���

���
�
x� y���

�
� �e

Z
d�

dy����

d�

�

�x�
f�x�
���
x
y���

� �e
Z
d�

d

d�
f
�
y���
�

� �e f�y��������
��

� ��

For our process the trajectory is

y���� �

	
�p��m�� for � � ��

�p���m�� for � � ��
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Thus the current can be written

j��x� � e

�Z
�

d�
p��

m
����
�
x� p�

m
�
�
� e

�Z
��

d�
p�

m
����
�
x� p

m
�
�
�

In a moment we will need to know the Fourier transform of this function�
Inserting factors of e��� and e�� to make the integrals converge� we have

'���k� �

Z
d�x eik�xj��x�

� e

�Z
�

d�
p��

m
ei�kp

��m�i��� � e

�Z
��

d�
p�

m
ei�kp�m�i���

� ie
� p��

k � p� � i�
� p�

k � p� i�

�
� �����

We are now ready to solve Maxwell�s equations� In Lorentz gauge ���A� �
�� we must solve ��A� � j�� or in Fourier space�

eA��k� � � 

k�
'���k��

Plugging in ������ we obtain a formula for the vector potential�

A��x� �

Z
d�k

�����
e�ik�x

�ie
k�

� p��

k � p� � i�
� p�

k � p� i�

�
� ���
�

The k� integral can be performed as a contour integral in the complex plane�
The locations of the poles are as follows�

We place the poles at k� � �jkj below the real axis so that �as we shall soon
con�rm� the radiation �eld will satisfy retarded boundary conditions�

For t � � we close the contour upward� picking up the pole at k � p � ��
that is� k� � k � p�p�� The result is

A��x� �

Z
d�k

�����
eik�x e�i�k�p�p

��t ���i���ie�

����k�
p�

p�
�
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In the reference frame where the particle is initially at rest� its momentum
vector is p� � �p���� and the vector potential reduces to

A��x� �

Z
d�k

�����
eik�x

e

jkj� � �����

This is just the Coulomb potential of an unaccelerated charge� As we would
expect� there is no radiation �eld before the particle is scattered�

After scattering �t � ��� we close the contour downward� picking up the
three poles below the real axis� The pole at k� � k �p��p�� gives the Coulomb
potential of the outgoing particle� Thus the other two poles are completely
responsible for the radiation �eld� Their contribution gives

A�
rad�x� �

Z
d�k

�����
�e
�jkj
	
e�ik�x

� p��

k � p� �
p�

k � p
�
� c�c�


����
k�
jkj

� Re

Z
d�k

�����
A��k� e�ik�x�

�����

where the momentum�space amplitude A�k� is given by

A��k� �
�e
jkj
� p��

k � p� �
p�

k � p
�
� �����

�The condition k� � jkj is implicit here and in the rest of this calculation��
To calculate the energy radiated� we must �nd the electric and magnetic

�elds� It is easiest to write E and B as the real parts of complex Fourier
integrals� just as we did for A��

E�x� � Re

Z
d�k

�����
E�k� e�ik�x�

B�x� � Re

Z
d�k

�����
B�k� e�ik�x�

�����

The momentum�space amplitudes E�k� and B�k� of the radiation �elds are
then simply

E�k� � �ikA��k� � ik�A�k��

B�k� � ik	A�k� � )k 	 E�k��
�����

Using the explicit form ����� of A��k�� you can easily check that the electric
�eld is transverse� k � E�k� � ��

Having expressed the �elds in this way� we can compute the energy radi�
ated�

Energy � �
�

Z
d�x
�jE�x�j� � jB�x�j��� �����
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The �rst term is

�
�

Z
d�x

Z
d�k

�����

Z
d�k�

�����

�
E�k�e�ikx � E��k�eikx

�
�
�
E�k��e�ik

�x � E��k��eik
�x
�

� �
�

Z
d�k

�����

�
E�k� �E��k�e��ik�t � �E�k� �E��k� � E��k� �E���k�e�ik�t

�
�

A similar expression involving B�k� holds for the second term� Using �����
and the fact that E�k� is transverse� you can show that the time�dependent
terms cancel between E and B� while the remaining terms add to give

Energy � �
�

Z
d�k

�����
E�k� � E��k�� ����

Since E�k� is transverse� let us introduce two transverse unit polarization
vectors ���k�� � � � �� We can then write the integrand as

E�k� � E��k� �
X
�
���

�����k� � E�k���� � jkj�
X
�
���

�����k� �A�k�
����

Using the explicit form of A�k� ������ we �nally arrive at an expression for
the energy radiated!�

Energy �

Z
d�k

�����

X
�
���

e�

�

���� ���k� �� p�

k � p� �
p

k � p
������� �����

We can freely change �� p�� and p into ��vectors in this expression� Then�
noting that substituting k� for �� would give zero�

k�

� p��

k � p� �
p�

k � p
�
� ��

we �nd that we can perform the sum over polarizations using the trick of
Section 
�
� replacing

P
���

�
� by �g�� � Our result then becomes

Energy �

Z
d�k

�����
e�

�
��g���

� p��

k � p� �
p�

k � p
�� p��

k � p� �
p�

k � p
�

�

Z
d�k

�����
e�

�

�
�p � p�

�k � p���k � p� �
m�

�k � p��� �
m�

�k � p��
�
�

�����

To make this formula more explicit� choose a frame in which p� � p�� � E�
Then the momenta are

k� � �k�k�� p� � E��v�� p�� � E��v���

�This result is also derived in Jackson ��	���� p� ���
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In such a frame our formula becomes

Energy �
e�

�����

Z
dk I�v�v��� �����

where I�v�v�� �which is essentially the di�erential intensity d�Energy��dk� is
given by

I�v�v�� �
Z
d��k

��

�
���v �v��

��)k �v���)k �v�� �
m��E�

��)k �v��� �
m��E�

��)k �v��
�
� ���
�

Since I�v�v�� does not depend on k� we see that the integral over k in �����
is trivial but divergent� This divergence comes from our idealization of an
in�nitely sudden change in momentum� We expect our formula to be valid
only for radiation whose frequency is less than the reciprocal of the scattering
time� For a relativistic electron� another possible cuto� would take e�ect when
individual photons carry away a sizable fraction of the electron�s energy� In
either case our formula is valid in the low�frequency limit� provided that we
cut o� the integral at some maximum frequency kmax� We then have

Energy �
	

�
� kmax � I�v�v��� �����

The integrand of I�v�v�� peaks when )k is parallel to either v or v��

In the extreme relativistic limit� most of the radiated energy comes from
the two peaks in the �rst term of ���
�� Let us evaluate I�v�v�� in this limit�
by concentrating on the regions around these peaks� Break up the integral
into a piece for each peak� and let � � � along the peak in each case� Integrate
over a small region around � � �� as follows�

I�v�v�� �
cos �
�Z

�k�v
v��v

d cos �
� v � v�

�� v cos ���� v � v��

�

cos �
�Z
�k�v�
v��v

d cos �
� v � v�

�� v � v���� v� cos ��
�

�The lower limits on the integrals are not critical� an equally good choice

would be )k � v �  � x� � v � v��� as long as x is neither too close to � nor
too much bigger than � It is then easy to show that the leading term in the
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relativistic limit does not depend on x�� The integrals are easy to perform�
and we obtain

I�v�v�� � log
�� v� � v

� jvj
�
� log

�� v� � v
� jv�j

�
� log

� �E� � p � p���
E��E � p��

�
� � log

� p � p�
�E� � p����

�
� � log

��q�
m�

�
�

�����

where q� � �p� � p���
In conclusion� we have found that the radiated energy at low frequencies

is given by

Energy �
	

�

kmaxZ
�

dk I�v�v�� ��
E�m

�	

�

kmaxZ
�

dk log
��q�
m�

�
� �����

If this energy is made up of photons� each photon contributes energy k� We
would then expect

Number of photons �
	

�

kmaxZ
�

dk


k
I�v�v��� �����

We hope that a quantum�mechanical calculation will con�rm this result�

Quantum Computation

Consider now the quantum�mechanical process in which one photon is radiated
during the scattering of an electron�

Let M� denote the part of the amplitude that comes from the electron�s
interaction with the external �eld� Then the amplitude for the whole process
is

iM � �ieu�p��
�
M��p

�� p� k�
i�p� k �m�

�p� k�� �m�
������k�

� ������k�
i�p� � k �m�

�p� � k�� �m�
M��p

� � k� p�

�
u�p��

������

Since we are interested in connecting with the classical limit� assume that
the photon radiated is soft� jkj � jp� � pj� Then we can approximate

M��p
�� p� k� �M��p

� � k� p� �M��p
�� p�� �����



��� Soft Bremsstrahlung ���

and we can ignore k in the numerators of the propagators� The numerators
can be further simpli�ed with some Dirac algebra� In the �rst term we have

�p�m������ u�p� �
�
�p���� � �������p�m�

�
u�p�

� �p���� u�p��

Similarly� in the second term�

u�p�� ������p� �m� � u�p�� �p������

The denominators of the propagators also simplify�

�p� k�� �m� � ��p � k� �p� � k�� �m� � �p� � k�
So in the soft�photon approximation� the amplitude becomes

iM � u�p��
�M��p

�� p�
�
u�p� �


e
�p� � ��
p� � k �

p � ��
p � k
��
� ������

This is just the amplitude for elastic scattering �without bremsstrahlung��
times a factor �in brackets� for the emission of the photon�

The cross section for our process is also easy to express in terms of the
elastic cross section� just insert an additional phase�space integration for the
photon variable k� Summing over the two photon polarization states� we have

d�
�
p� p� � �

�
� d��p� p�� �

Z
d�k

�����


�k

X
�
���

e�
����p� �����p� �k � p �����

p �k
������ ������

Thus the di�erential probability of radiating a photon with momentum k�
given that the electron scatters from p to p�� is

d�prob� �
d�k

�����

X
�

e�

�k

���� �� �� p�

p� � k �
p

p � k
������� ������

This looks very familiar� if we multiply by the photon energy k to compute
the expected energy radiated� we recover the classical expression ������

But there is a problem� Equation ������ is an expression not for the ex�
pected number of photons radiated� but for the probability of radiating a
single photon� The problem becomes worse if we integrate over the photon
momentum� As in ������ we can integrate only up to the energy at which our
soft�photon approximations break down� a reasonable estimate for this energy
is jqj � jp� p�j� The integral is therefore

Total probability � 	

�

jqjZ
�

dk


k
I�v�v��� ����
�

Since I�v�v�� is independent of k� the integral diverges at its lower limit
�where all our approximations are well justi�ed�� In other words� the total
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probability of radiating a very soft photon is in�nite� This is the famous
problem of infrared divergences in QED perturbation theory�

We can arti�cially make the integral in ����
� well�de�ned by pretending
that the photon has a very small mass �� This mass would then provide a
lower cuto� for the integral� allowing us to write the result of this section as

d�
�
p� p� � ��k�

�
� d��p� p�� � 	

��
log
��q�
��

�
I�v�v��

�
�q���

d��p� p�� � 	
�
log
��q�
��

�
log
��q�
m�

�
�

������

The q� dependence of this result� known as the Sudakov double logarithm� is
physical and will appear again in Section ���� The dependence on �� however�
presents a problem that we must solve� It is not hard to guess that the resolu�
tion of this problem will involve reinterpreting ������ as the expected number
of radiated photons� rather than the probability of radiating a single pho�
ton� We will see in Sections ��� and ��
 how this reinterpretation follows from
the Feynman diagrams� To prepare for that discussion� however� we need to
improve our understanding of the amplitude for scattering without radiation�

��� The Electron Vertex Function Formal Structure

Having brie�y discussed QED radiative corrections due to emission of photons
�bremsstrahlung�� let us now study the correction to electron scattering that
comes from the presence of an additional virtual photon�

������

This will be our �rst experience with a Feynman diagram containing a loop�
Such diagrams give rise to signi�cant and profound complications in quantum
�eld theory�

The result of computing this diagram will be rather complicated� so it
will be useful to think ahead about what form we expect this correction to
take and how to interpret its various possible terms� In this section� we will
consider the general properties of vertex correction diagrams� We will see that
the basic requirements of Lorentz invariance� the discrete symmetries of QED�
and the Ward identity strongly constrain the form of the vertex�
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Consider� then� the class of diagrams

where the gray circle indicates the sum of the lowest�order electron�photon
vertex and all amputated loop corrections� We will call this sum of vertex
diagrams �ie,��p�� p�� Then� according to our master formula ������ for S�
matrix elements� the amplitude for electron scattering from a heavy target
is

iM � ie�
�
u�p�� ,��p�� p�u�p�

� 

q�

�
u�k����u�k�

�
� ������

More generally� the function ,��p�� p� appears in the S�matrix element
for the scattering of an electron from an external electromagnetic �eld� As in
Problem ���� add to the Hamiltonian of QED the interaction

�Hint �

Z
d�x eAcl

� j
�� ������

where j��x� � ��x�����x� is the electromagnetic current and Acl
� is a �xed

classical potential� In the leading order of perturbation theory� the S�matrix
element for scattering from this �eld is

iM ������p�� � p�� � �ieu�p����u�p� � eAcl
� �p

� � p��

where eAcl
� �q� is the Fourier transform of Acl

� �x�� The vertex corrections modify
this expression to

iM ������p�� � p�� � �ieu�p�� ,��p�� p�u�p� � eAcl
� �p

� � p�� ������

In writing ������ and ������� we have deliberately omitted the contribution of
vacuum polarization diagrams� such as the fourth diagram of ����� The reason
for this omission is that these diagrams should be considered corrections to
the electromagnetic �eld itself� while the diagrams included in ,� represent
corrections to the electron�s response to a given applied �eld�y

We can use general arguments to restrict the form of ,��p�� p�� To lowest
order� ,� � ��� In general� ,� is some expression that involves p� p�� ���
and constants such as m� e� and pure numbers� This list is exhaustive� since
no other objects appear in the Feynman rules for evaluating the diagrams
that contribute to ,�� The only other object that could appear in any theory
is ����� �or equivalently� ��� but this is forbidden in any parity�conserving
theory�

yTo justify this statement� we must give a careful de�nition of an applied external
�eld in a quantum �eld theory� We will do this in Chapter ���
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We can narrow down the form of ,� considerably by appealing to Lorentz
invariance� Since ,� transforms as a vector �in the same sense that �� does��
it must be a linear combination of the vectors from the list above� ��� p�� and
p��� Using the combinations p� � p and p� � p for convenience� we have

,� � �� �A � �p���p�� �B � �p���p�� �C� �����

The coe	cients A� B� and C could involve Dirac matrices dotted into vectors�
that is� p or p�� But since p u�p� � m �u�p� and u�p��p� � u�p�� �m� we can
write the coe	cients in terms of ordinary numbers without loss of generality�
The only nontrivial scalar available is q� � ��p� �p � �m�� so A� B� and C
must be functions only of q� �and of constants such as m��

The list of allowed vectors can be further shortened by applying the Ward
identity �
����� q�,

� � �� �Note that our arguments for this identity in Sec�
tion 
�
�and the proof in Section ����do not require q� � ��� Dotting q�
into ������ we �nd that the second term vanishes� as does the �rst when sand�
wiched between u�p�� and u�p�� The third term does not automatically vanish�
so C must be zero�

We can make no further simpli�cations of ����� on general principles� It
is conventional� however� to rewrite ����� by means of the Gordon identity
�see Problem �����

u�p����u�p� � u�p��

p�� � p�

�m
�
i���q�
�m

�
u�p�� ������

This identity allows us to swap the �p� � p� term for one involving ���q� � We
write our �nal result as

,��p�� p� � ��F��q
�� �

i���q�
�m

F��q
��� ������

where F� and F� are unknown functions of q� called form factors�
To lowest order� F� �  and F� � �� In the next section we will compute

the one�loop �order�	� corrections to the form factors� due to the vertex cor�
rection diagram ������� In principle� the form factors can be computed to any
order in perturbation theory�

Since F� and F� contain complete information about the in�uence of
an electromagnetic �eld on the electron� they should� in particular� contain
the electron�s gross electric and magnetic couplings� To identify the electric
charge of the electron� we can use ������ to compute the amplitude for elastic
Coulomb scattering of a nonrelativistic electron from a region of nonzero elec�
trostatic potential� Set Acl

� �x� � �
�x����� Then eAcl
� �q� � �������q��'
�q�����

Inserting this into ������� we �nd

iM � �ieu�p�� ,��p�� p�u�p� � '
�q��
If the electrostatic �eld is very slowly varying over a large �perhaps macro�
scopic� region� 
�q� will be concentrated about q � �� then we can take the
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limit q� � in the spinor matrix element� Only the form factor F� contributes�
Using the nonrelativistic limit of the spinors�

u�p����u�p� � uy�p��u�p� � �m��y��

the amplitude for electron scattering from an electric �eld takes the form

iM � �ieF����'
�q� � �m��y�� ������

This is the Born approximation for scattering from a potential

V �x� � eF����
�x��

Thus F���� is the electric charge of the electron� in units of e� Since F���� � 
already in the leading order of perturbation theory� radiative corrections to
F��q

�� should vanish at q� � ��
By repeating this analysis for an electron scattering from a static vector

potential� we can derive a similar connection between the form factors and the
electron�s magnetic moment�z Set Acl

� �x� � ���Acl�x��� Then the amplitude
for scattering from this �eld is

iM � �ie
h
u�p��

�
�iF� �

i�i�q�
�m

F�

�
u�p�
i eAi

cl�q�� ����
�

The expression in brackets vanishes at q � �� so we must carefully extract from
it a contribution linear in qi� To do this� insert the nonrelativistic expansion
of the spinors u�p�� keeping terms through �rst order in momenta�

u�p� �

�p
p � ��p
p � ��

�
� pm

�
�� p ����m��
� � p ����m��

�
� ������

Then the F� term can be simpli�ed as follows�

u�p���iu�p� � �m��y
�
p� � �
�m

�i � �i
p � �
�m

�
��

Applying the identity �i�j � �ij � i�ijk�k � we �nd a spin�independent term�
proportional to �p��p�� and a spin�dependent term� proportional to �p��p��
The �rst of these terms is the contribution of the operator $p �A�A � p% in
the standard kinetic energy term of nonrelativistic quantum mechanics� The
second is the magnetic moment interaction we are seeking� Retaining only the
latter term� we have

u�p���iu�p� � �m��y
� �i
�m

�ijkqj�k
�
��

The F� term already contains an explicit factor of q� so we can evaluate it
using the leading�order term of the expansion of the spinors� This gives

u�p��
� i

�m
�i�q�

�
u�p� � �m��y

� �i
�m

�ijkqj�k
�
��

zThe following argument contains numerous factors of ���� from raising and
lowering spacelike indices� Be careful in verifying the algebra�
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Thus� the complete term linear in qj in the electron�photon vertex function is

u�p��
�
�iF� �

i�i�q�
�m

F�

�
u�p� �

q��
�m��y

� �i
�m

�ijkqj�k
�
F���� � F����

��
��

Inserting this expression into ����
�� we �nd

iM � �i��m� � e��y
��
�m

�k
�
F���� � F����

��
� 'Bk�q��

where eBk�q� � �i�ijkqi eAj
cl�q�

is the Fourier transform of the magnetic �eld produced by Acl�x��
Again we can interpret M as the Born approximation to the scattering

of the electron from a potential well� The potential is just that of a magnetic
moment interaction�

V �x� � �h�i �B�x��

where
h�i � e

m

�
F���� � F����

�
��y
�

�
��

This expression for the magnetic moment of the electron can be rewritten in
the standard form

� � g
� e

�m

�
S�

where S is the electron spin� The coe	cient g� called the Land�e g�factor� is

g � �
�
F���� � F����

�
� � � �F����� ������

Since the leading order of perturbation theory gives no F� term� QED predicts
g � � � O�	�� The leading term is the standard prediction of the Dirac
equation� In higher orders� however� we will �nd a nonzero F� and thus a small
di�erence between the electron�s magnetic moment and the Dirac value� We
will compute the order�	 contribution to this anomalous magnetic moment

in the next section�
Since our derivation of the structure ������ for the vertex function used

only general symmetry principles� we expect this formula to apply not only
to the electron but to any fermion with electromagnetic interactions� For ex�
ample� the electromagnetic scattering amplitude of the proton should also be
described by two invariant functions of q�� Since the proton is not an ele�
mentary particle� we should not expect the Dirac equation values F� �  and
F� � � to be good approximations to the form factors of the proton� In fact�
both proton form factors depend strongly on q�� However� the description of
the vertex function in term of form factors provides a useful summary of data
on scattering at many energies and angles� The precise transcription between
form factors and cross sections is worked out in Problem ��� In addition� the
general constraints at q� � � that we have just derived apply to the proton�
F���� � � and �F���� � �gp� ��� though the g�factor of the proton di�ers by
��� from the Dirac value�
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��� The Electron Vertex Function Evaluation

Now that we know what form the answer is to take �Eq� �������� we are ready
to evaluate the one�loop contribution to the electron vertex function� Assign
momenta on the diagram as follows�

Applying the Feynman rules� we �nd� to order 	� that ,� � �� � �,�� where

u�p���,��p�� p�u�p�

�

Z
d�k

�����
�ig��

�k�p���i� u�p
����ie��� i�k� �m�

k���m��i�
��

i� k �m�

k��m��i�
��ie���u�p�

� �ie�
Z

d�k

�����
u�p��

�k�� k� �m��� � �m�k � k���
�
u�p�

��k � p�� � i���k�� �m� � i���k� �m� � i��
� ������

In the second line we have used the contraction identity ������ � �����
Note that the �i� terms in the denominators cannot be dropped� they are
necessary for proper evaluation of the loop�momentum integral�

The integral looks impossible� and in fact it will not be easy� The eval�
uation of such integrals requires another piece of computational technology�
known as the method of Feynman parameters �although a very similar method
was introduced earlier by Schwinger��

Feynman Parameters

The goal of this method is to squeeze the three denominator factors of ������
into a single quadratic polynomial in k� raised to the third power� We can then
shift k by a constant to complete the square in this polynomial and evaluate
the remaining spherically symmetric integral without di	culty� The price will
be the introduction of auxiliary parameters to be integrated over�

It is easiest to begin with the simpler case of two factors in the denomi�
nator� We would then use the identity



AB
�

�Z
�

dx
�

xA� ��x�B�� �

�Z
�

dx dy ��x�y�� �
xA� yB%�

� ������
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An example of its use might look like this�



�k�p���k��m��
�

�Z
�

dx dy ��x�y�� �
x�k�p�� � y�k��m��

��
�

�Z
�

dx dy ��x�y�� �
k���xk �p�xp��ym�

�� �
If we now let � � k � xp� we see that the denominator depends only on ���
Integrating over d�k would now be much easier� since d�k � d�� and the
integrand is spherically symmetric with respect to �� The variables x and y
that make this transformation possible are called Feynman parameters�

Our integral ������ involves a denominator with three factors� so we need
a slightly better identity� By di�erentiating ������ with respect to B� it is easy
to prove



ABn
�

�Z
�

dx dy ��x�y�� nyn���
xA� yB%n��

� ������

But this still isn�t quite good enough� The formula we need is



A�A� � � �An
�

�Z
�

dx� � � � dxn ��
P
xi��

�n� �-�
x�A� � x�A� � � � �xnAn

�n � �����
The proof of this identity is by induction� The case n � � is just Eq� �������
the induction step is not di	cult and involves the use of �������

By repeated di�erentiation of ������ you can derive the even more general
identity



Am�
� Am�

� � � �Amn
n

�

�Z
�

dx� � � � dxn ��
P
xi��

Q
xmi��
i�P

xiAi

��mi

,�m� � � � ��mn�

,�m�� � � �,�mn�
�

������
This formula is true even when the mi are not integers� in Section ��
 we
will apply it in such a case�

Evaluation of the Form Factors

Now let us apply formula ����� to the denominator of �������



��k�p���i���k���m��i���k��m��i��
�

�Z
�

dx dy dz ��x�y�z�� �

D�
�
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where the new denominator D is

D � x�k� �m�� � y�k�� �m�� � z�k � p�� � �x� y � z�i�

� k� � �k ��yq � zp� � yq� � zp� � �x� y�m� � i��
������

In the second line we have used x� y � z �  and k� � k � q� Now shift k to
complete the square�

� � k � yq � zp�

After a bit of algebra we �nd that D simpli�es to

D � �� ��� i��

where
� � �xyq� � �� z��m�� ������

Since q� � � for a scattering process� � is positive� we can think of it as an
e�ective mass term�

Next we must express the numerator of ������ in terms of �� This task is
simpli�ed by noting that since D depends only on the magnitude of ��Z

d��

�����
��

D�
� �� ����
�Z

d��

�����
����

D�
�

Z
d��

�����

�
�g

����

D�
� ������

The �rst identity follows from symmetry� To prove the second� note that the
integral vanishes by symmetry unless � � �� Lorentz invariance therefore
requires that we get something proportional to g�� � To check the coe	cient�
contract each side with g�� � Using these identities� we have

Numerator � u�p��
h
k�� k� �m��� � �m�k � k���

i
u�p�

� u�p��
h
� �

��
��� �

��y q � z p������ y�q � z p�
�m��� � �m

�
�� �y�q� � �zp�

�i
u�p��

�Remember that k� � k � q��
Putting the numerator into a useful form is now just a matter of some

tedious Dirac algebra �about a page or two�� This is where our work in the
last section pays o�� since it tells us what kind of an answer to expect� We
eventually want to group everything into two terms� proportional to �� and
i���q� � The most straightforward way to accomplish this is to aim instead for
an expression of the form

�� �A � �p���p�� �B � q� �C�
just as in ������ Attaining this form requires only the anticommutation rela�
tions �for example� p�� � �p���� p� and the Dirac equation �pu�p� � mu�p�
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Figure ���� The contour of the �� integration can be rotated as shown�

and u�p��p� � u�p��m� note that this implies u�p��q u�p� � ��� It is also useful
to remember that x� y � z � � When the smoke clears� we have

Numerator � u�p��
h
�� ��� �

��
� � ��x���y�q� � ���z�z��m�

�
� �p���p�� �mz�z�� � q� �m�z����x�y�

i
u�p��

The coe	cient of q� must vanish according to the Ward identity� as discussed
after Eq� ������ To see that it does� note from ������ that the denominator
is symmetric under x � y� The coe	cient of q� is odd under x � y and
therefore vanishes when integrated over x and y�

Still following our work in the previous section� we now use the Gordon
identity ������ to eliminate �p� � p� in favor of i���q� � Our entire expression
for the O�	� contribution to the electron vertex then becomes

u�p���,��p�� p�u�p� � �ie�
Z

d��

�����

�Z
�

dx dy dz ��x�y�z�� �

D�

	 u�p��
h
�� � �� �

��
� � ��x���y�q� � ���z�z��m�

�
�
i���q�
�m

�
�m�z��z��iu�p�� ������

where as before�

D � �� ��� i�� � � �xyq� � ��z��m� � ��

The decomposition into form factors is now manifest�
With most of the work behind us� our main remaining task is to perform

the momentum integral� It is not di	cult to evaluate the �� integral as a
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contour integral� then do the spatial integrals in spherical coordinates� We
will use an even easier method� making use of a trick called Wick rotation�
Note that if it were not for the minus signs in the Minkowski metric� we could
perform the entire four�dimensional integral in four�dimensional �spherical�
coordinates� To remove the minus signs� consider the contour of integration
in the ���plane �see Fig� ���� The locations of the poles� and the fact that
the integrand falls o� su	ciently rapidly at large j��j� allow us to rotate the
contour counterclockwise by ���� We then de�ne a Euclidean ��momentum
variable �E�

�� � i��E� � � �E � ������

Our rotated contour goes from ��E � �� to �� By simply changing vari�
ables to �E � we can now evaluate the integral in four�dimensional spherical
coordinates�

Let us �rst evaluateZ
d��

�����


$�� ��%m
�

i

���m


�����

Z
d��E



$��E ��%m

�
i���m
�����

Z
d��

�Z
�

d�E
��E

$��E ��%m
�

�Here we need only the case m � �� but the more general result will be useful
for other loop calculations�� The factor

R
d�� is the surface �area� of a four�

dimensional unit sphere� which happens to equal ���� �One way to compute
this area is to use four�dimensional spherical coordinates�

x � �r sin sin � cos
� r sin sin � sin
� r sin cos �� r cos��

The integration measure is then d�x � r� sin�  sin � d
 d� d dr�� The rest of
the integral is straightforward� and we haveZ

d��

�����


$�� ��%m
�

i���m
�����



�m���m���


�m�� � ������

Similarly�Z
d��

�����
��

$�� ��%m
�
i���m��
�����

�

�m���m����m���


�m�� � ���
��

Note that this second result is valid only when m � �� When m � �� the Wick
rotation cannot be justi�ed� and the integral is in any event divergent� But it
is just this case that we need for �������

We will eventually explore the physical meaning of this divergence� but
for the moment we simply introduce an arti�cial prescription to make our
integral �nite� Go back to the original expression for the Feynman integral in
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������� and replace in the photon propagator



�k�p�� � i�
�� 

�k�p�� � i�
� 

�k�p�� � &� � i�
� ���
�

where & is a very large mass� The integrand is una�ected for small k �since
& is large�� but cuts o� smoothly when k �� &� We can think of the second
term as the propagator of a �ctitious heavy photon� whose contribution is
subtracted from that of the ordinary photon� In terms involving the heavy
photon� the numerator algebra is unchanged and the denominator is altered
by

� �� �	 � �xyq� � �� z��m� � z&�� ���
��

The integral ���
�� is then replaced with a convergent integral� which can be
Wick�rotated and evaluated�Z

d��

�����

�
��

$����%�
� ��

$����	%�

�
�

i

�����

�Z
�

d��E

�
��E

$��E��%�
� ��E

$��E��	%�

�

�
i

�����
log
��	

�

�
� ���
��

The convergent terms in ������ are modi�ed by terms of order &��� which we
ignore�

This prescription for rendering Feynman integrals �nite by introducing
�ctitious heavy particles is known as Pauli�Villars regularization� Please note
that the �ctitious photon has no physical signi�cance� and that this method
is only one of many for de�ning the divergent integrals� �We will discuss other
methods in the next chapter� see especially Problem ����� We must hope that
the new parameter & will not appear in our �nal results for observable cross
sections�

Using formulae ������ and ���
�� to evaluate the integrals in ������� we
obtain an explicit� though complicated� expression for the one�loop vertex
correction�

�
	

��

�Z
�

dx dy dz ��x�y�z��

	 u�p��
�
��
h
log

z&�

�
�



�

�
��x���y�q� � ���z�z��m�

�i
�
i���q�
�m

h 
�
�m�z��z�

i�
u�p�� ���
��

The bracketed expressions are our desired corrections to the form factors�
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Before we try to interpret this result� let us summarize the calculational
methods we used� The techniques are common to all loop calculations�

� Draw the diagram�s� and write down the amplitude�

�� Introduce Feynman parameters to combine the denominators of the prop�
agators�

�� Complete the square in the new denominator by shifting to a new loop
momentum variable� ��

�� Write the numerator in terms of �� Drop odd powers of �� and rewrite
even powers using identities like �������


� Perform the momentum integral by means of a Wick rotation and four�
dimensional spherical coordinates�

The momentum integral in the last step will often be divergent� In that case
we must de�ne �or regularize� the integral using the Pauli�Villars prescription
or some other device�

Now that we have parametrized the ultraviolet divergence in ���
��� let
us try to interpret it� Notice that the divergence appears in the worst possible
place� It corrects F��q

� � ��� which should �according to our discussion at the
end of the previous section� be �xed at the value � But this is the only e�ect
of the divergent term� We will therefore adopt a simple but completely ad hoc
�x for this di	culty� Subtract from the above expression a term proportional
to the zeroth�order vertex function �u�p����u�p��� in such a way as to maintain
the condition F���� � � In other words� make the substitution

�F��q
��� �F��q

��� �F���� ���

�

�where �F� denotes the �rst�order correction to F��� The justi�cation of this
procedure involves the minor correction to our S�matrix formula ������ men�
tioned in Section ���� In brief� the term we are subtracting corrects for our
omission of the external leg correction diagrams of ����� We postpone the
justi�cation of this statement until Section ����

There is also an infrared divergence in F��q
��� coming from the �� term�

For example� at q� � � this term is

�Z
�

dx dy dz ��x�y�z�� ��z�z
�

��q����
�

�Z
�

dz

��zZ
�

dy
�� � ��z����z�

m���z��

�

�Z
dz

��
m���z� � �nite terms�

We can cure this disease by pretending that the photon has a small nonzero
mass �� Then in the denominator of the photon propagator� �k � p�� would
become �k� p������ This denominator was multiplied by z in ������� so the
net e�ect is to add a term z�� to �� We will discuss the infrared divergence
further in the next two sections�
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With both of these provisional modi�cations� the form factors are

F��q
�� �  �

	

��

�Z
�

dx dy dz ��x�y�z��

	

log
� m���z��
m���z�� � q�xy

�
�
m����z�z�� � q���x���y�

m���z�� � q�xy � ��z

� m����z�z��
m���z�� � ��z

�
� O�	��� ���
��

F��q
�� �
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�Z
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�m�z��z�
m���z���q�xy

�
�O�	��� ���
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Note that neither the ultraviolet nor the infrared divergence a�ects F��q
���

We can therefore evaluate unambiguously

F��q
� � �� �
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�Z
�

dx dy dz ��x � y � z � �
�m�z�� z�

m��� z��
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�Z
�
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�
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� z
�

	

��
� ���
��

Thus� we get a correction to the g�factor of the electron�

ae � g � �

�
�

	

��
� ������ ���
��

This result was �rst obtained by Schwinger in ����! Experiments give ae �
���
��� Apparently� the unambiguous value that we obtained for F���� is
also� up to higher orders in 	� unambiguously correct�

Precision Tests of QED

Building on the success of the order�	QED prediction for ae� successive gener�
ations of physicists have improved the accuracy of both the theoretical and the
experimental determination of this quantity� The coe	cients of the QED for�
mula for ae are now known through order 	�� The calculation of the order�	�

and higher coe	cients requires a systematic treatment of ultraviolet diver�
gences�

These challenging theoretical calculations have been matched by increas�
ingly imaginative experiments� The most recent measurement of ae uses a
technique� developed by Dehmelt and collaborators� in which individual elec�
trons are trapped in a system of electrostatic and magnetostatic �elds and

�J� Schwinger� Phys� Rev� ��� ���L ��	�
��
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excited to a spin resonance�y Today� the best theoretical and experimental
values of ae agree to eight signi�cant �gures�

High�order QED calculations have also been carried out for several other
quantities� These include transition energies in hydrogen and hydrogen�like
atoms� the anomalous magnetic moment of the muon� and the decay rates of
singlet and triplet positronium� Many of these quantities have also been mea�
sured to high precision� The full set of these comparisons gives a detailed test
of the validity of QED in a variety of settings� The results of these precision
tests are summarized in Table ���

There is some subtlety in reporting the results of precision comparisons
between QED theory and experiment� since theoretical predictions require an
extremely precise value of 	� which can only be obtained from another pre�
cision QED experiment� We therefore quote each comparison between theory
and experiment as an independent determination of 	� Each value of 	 is as�
signed an error that is the composite of the expected uncertainties from theory
and experiment� QED is con�rmed to the extent that the values of 	 from
di�erent sources agree�

The �rst nine entries in Table �� refer to QED calculations in atomic
physics settings� Of these� the hydrogen hyper�ne splitting� measured using
Ramsey�s hydrogen maser� is the most precisely known quantity in physics�
Unfortunately� the in�uence of the internal structure of the proton leads to un�
certainties that limit the accuracy with which this quantity can be predicted
theoretically� The same di	culty applies to the Lamb shift� the splitting be�
tween the j � �� �S and �P levels of hydrogen� The most accurate QED
tests now come from systems that involve no strongly interacting particles�
the electron g�� and the hyper�ne splitting in the e��� atom� muonium� The
last entry in this group gives a new method for determining 	� by convert�
ing a very accurate measurement of the neutron Compton wavelength� using
accurately known mass ratios� to a value of the electron mass� This can be
combined with the known value of the Rydberg energy and accurate QED
formulae to determine 	� The only serious discrepancy among these numbers
comes in the triplet positronium decay rate� however� there is some evidence
that diagrams of relative order 	� give a large correction to the value quoted
in the table�

The next two entries are determinations of 	 from higher�order QED re�
actions at high�energy electron colliders� These high�energy experiments typi�
cally achieve only percent�level accuracy� but their results are consistent with
the precise information available at lower energies�

Finally� the last two entries in the table give two independent measure�
ments of 	 from exotic quantum interference phenomena in condensed�matter
systems� These two e�ects provide a standard resistance and a standard fre�
quency� respectively� which are believed to measure the charge of the electron

yR� Van Dyck� Jr�� P� Schwinberg� and H� Dehmelt� Phys� Rev� Lett� �	� �� ��	
���
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Table ���� Values of 	�� Obtained from Precision QED Experiments

Low�Energy QED�

Electron �g � �� �����
 ��� �
 ����
Muon �g � �� �����
 
 � �
Muonium hyper�ne splitting �����
 ��� ���
Lamb shift ������ � ���
Hydrogen hyper�ne splitting ������ � ���
� �S�3

�S� splitting in positronium ������ ���
�S� positronium decay rate ����� ���
�S� positronium decay rate ����� ���
Neutron compton wavelength ������ ��  �
 ��

High�Energy QED�

��e�e� � e�e�e�e�� ���
 �����
��e�e� � e�e������ ���� ����

Condensed Matter�

Quantum Hall e�ect �����
 ��� � �� ��
AC Josephson e�ect �����
 ��� � �� ��

Each value of � displayed in this table is obtained by �tting an experimental
measurement to a theoretical expression that contains � as a parameter� The
numbers in parentheses are the standard errors in the last displayed digits�
including both theoretical and experimental uncertainties� This table is based
on results presented in the survey of precision QED of Kinoshita ��		��� That
book contains a series of lucid reviews of the remarkable theoretical and ex�
perimental technology that has been developed for the detailed analysis of
QED processes� The �ve most accurate values are updated as given by T� Ki�
noshita in History of Original Ideas and Basic Discoveries in Particle Physics�
H� Newman and T� Ypsilantis� eds� �Plenum Press� New York� �		��� This
latter paper also gives an interesting perspective on the future of precision
QED experiments�

with corrections that are strictly zero for macroscropic systems�z

The entire picture �ts together well beyond any reasonable expectation�
On the evidence presented in this table� QED is the most stringently tested�
and the most dramatically successful�of all physical theories�

zFor a discussion of these e�ects� and their exact relation to �� see D� R� Yennie�
Rev� Mod� Phys� �	� �
� ��	
���
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Now let us confront the infrared divergence in our result ���
�� for F��q
���

The dominant part� in the �� � limit� is

F��q
�� � 	

��

�Z
�

dx dy dz ��x�y�z��

m����z�z�� � q���x���y�

m���z�� � q�xy � ��z

� m����z�z��
m���z�� � ��z

�
� ������

To understand this expression we must do some work to simplify it� extracting
and evaluating the divergent part of the integral� Throughout this section we
will retain only terms that diverge in the limit �� ��

First note that the divergence occurs in the corner of Feynman�parameter
space where z �  �and therefore x � y � ��� In this region we can set z � 
and x � y � � in the numerators of ������� We can also set z �  in the ��

terms in the denominators� Using the delta function to evaluate the x�integral�
we then have

F��q
�� �

	

��

�Z
�

dz

��zZ
�

dy

 ��m� � q�

m���z�� � q�y��z�y� � ��
� ��m�

m���z�� � ��

�
�

�The lower limit on the z�integral is unimportant�� Making the variable
changes

y � ��z��� w � ��z��
this expression becomes

F��q
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�Z
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�Z
�

d�w��

 ��m� � q��
m� � q�������w� � ��
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�Z
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 ��m� � q�

m� � q������ log
�m� � q������

��

�
� � log

�m�

��

��
�

In the limit � � � we can ignore the details of the numerators inside the
logarithms� anything proportional to m� or q� is e�ectively the same� We
therefore write

F��q
�� � � 	

��
fIR�q

�� log
��q� or m�

��

�
�O�	��� �����

where the coe	cient of the divergent logarithm is

fIR�q
�� �

�Z
�

� m� � q���

m� � q������
�
d� � � ������
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Since q� is negative and ����� has a maximum value of ��� the �rst term
is greater than  and hence fIR�q

�� is positive�
How does this in�nite term a�ect the cross section for electron scattering

o� a potential� Since F��q
�� is just the quantity that multiplies �� in the

matrix element� we can �nd the new cross section by making the replacement
e� e � F��q��� The cross section for the process p� p� is therefore

d�

d�
�
� d�
d�

�
�
�
h
� 	

�
fIR�q

�� log
��q� or m�

��

�
�O�	��

i
� ������

where the �rst factor is the tree�level result� Note that the O�	� correction
to the cross section is not only in�nite� but negative� Something is terribly
wrong�

To gain a better understanding of the divergence� let us evaluate the
coe	cient of the divergent logarithm� fIR�q

��� in the limit �q� ��� In this
limit� we �nd a second logarithm�

�Z
�

d�
�q���

�q������ �m�
� �

�

Z
�

d�
�q�

�q�� �m�
�
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from � � 

�

� log
��q�
m�

�
� ������

The form factor in this limit is therefore

F���q� ��� � � 	

��
log
��q�
m�

�
log
��q�
��

�
�O�	��� ����
�

Note that the numerator in the second logarithm is �q�� not m�� this expres�
sion contains not only the correct coe	cient of log������ but also the correct
coe	cient of log��q���

The same double logarithm of �q� appeared in the cross section for soft
bremsstrahlung� Eq� ������� This correspondence points to a resolution of the
infrared divergence problem� Comparing ����
� with ������� we �nd in the
limit �q� ��
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The separate cross sections are divergent� but their sum is independent of �
and therefore �nite�

In fact� neither the elastic cross section nor the soft bremsstrahlung cross
section can be measured individually� only their sum is physically observable�
In any real experiment� a photon detector can detect photons only down to
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some minimum limiting energy E�� The probability that a scattering event
occurs and this detector does not see a photon is the sum

d�

d�
�p� p�� �

d�

d�

�
p� p� � ��k � E��

� � � d�
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�
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The divergent part of this �measured� cross section is� d�
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We have just seen that I�v�v�� � �fIR�q
�� when �q� 
 m�� If the same

relation holds for general q�� the measured cross section becomes� d�
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which depends on the experimental conditions� but no longer on ��� The
infrared divergences from soft bremsstrahlung and from F��q

�� cancel each
other� yielding a �nite cross section for the quantity that can actually be
measured�

We must still verify the identity I�v�v�� � �fIR�q
�� for arbitrary values

of q�� From ����� we have

I�v�v�� �
Z
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The last two terms are easy to evaluate�Z
d�k
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In the �rst term� we can combine the denominators with a Feynman parameter
and perform the integral in the same way�Z

d�k
��



�)k � p���)k � p� �

�Z
�

d�

Z
d�k
��

�
�)k � p� � ����)k � p��

�

�Z
�

d�
�

�p� � ����p�� �

�Z
�

d�


m� � �����q� �

�In the last step we have used �p � p� � �m� � q��� Putting all the terms of
������ together� we �nd

I�v�v�� �
�Z

�

� �m� � q�

m� � �����q�
�
d� � � � �fIR�q

��� ������
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just what we need to cancel the infrared divergence�
Although Eq� ������ demonstrates the cancellation of the infrared diver�

gence� this result has little practical use� An experimentalist would want to
know the precise dependence on q�� which we did not evaluate carefully� Re�
call from ����
�� however� that we were careful to obtain the correct coe	cient
of log���q�� in the limit �q� 
 m�� In that limit� therefore� ������ becomes� d�

d�

�
measured

�
� d�
d�

�
�

h
� 	

�
log
��q�
m�

�
log
��q�
E�
�

�
�O�	��

i
� �����

This result is unambiguous and useful� Note that the O�	� correction again
involves the Sudakov double logarithm�

��� Summation and Interpretation

of Infrared Divergences

The discussion of infrared divergences in the previous section su	ces for re�
moving the in�nities from our bremsstrahlung and vertex�correction calcula�
tions� There are still� however� three points that we have not addressed�

� We have not demonstrated the cancellation of infrared divergences beyond
the leading order�

�� The correction to the measured cross section that we found after the
infrared cancellation �Eqs� ������ and ������ can be made arbitrarily
negative by making photon detectors with a su	ciently low threshold E��

�� We have not yet reproduced the classical result ����� for the number of
photons radiated during a collision�

The solutions of the second and third problems will follow immediately from
that of the �rst� to which we now turn�

A complete treatment of infrared divergences to all orders is beyond the
scope of this book�! We will discuss here only the terms with the largest
logarithmic enhancement at each order of perturbation theory� In general�
these terms are of order 

	

�
log
��q�
��

�
log
��q�
m�

��n
������

in the nth order of perturbation theory� Our �nal physical conclusions were
�rst presented by Bloch and Nordsieck in a prescient paper written before the
invention of relativistic perturbation theory�y We will follow a modern� and
simpli�ed� version of the analysis due to Weinberg�z

�The de�nitive treatment is given in D� Yennie� S� Frautschi� and H� Suura� Ann�
Phys� ��� �	 ��	����

yF� Bloch and A� Nordsieck� Phys� Rev� ��� �� ��	���
zS� Weinberg� Phys� Rev� ��
� B��� ��	����
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Infrared divergences arise from photons with �soft� momenta� real pho�
tons with energy less than some cuto� E�� and virtual photons with �after
Wick rotation� k� � E�

� � A typical higher�order diagram will involve numer�
ous real and virtual photons� But to �nd a divergence� we need more than
a soft photon� we need a singular denominator in an electron propagator�
Consider� for example� the following two diagrams�

The �rst diagram� in which the electron emits a soft photon followed by a
hard photon� has no infrared divergence� since the momenta in both electron
propagators are far from the mass shell� If the soft photon is emitted last�
however� the denominator of the adjacent propagator is �p� � k�� � m� �
�p� � k� which vanishes as k � �� Thus the second diagram does contain a
divergence� We would like� then� to consider diagrams in which an arbitrary
hard process� possibly involving emission of hard and soft photons� is modi�ed
by the addition of soft real and virtual photons on the electron legs�

Following Weinberg� we will add up the contributions of all such diagrams�
The only new di	culty in this calculation will be in the combinatorics of
counting all the ways in which the photons can appear�

First consider the outgoing electron line�
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We attach n photons to the line� with momenta k� � � � kn� For the moment we
do not care whether these are external photons� virtual photons connected to
each other� or virtual photons connected to vertices on the incoming electron
line� The Dirac structure of this diagram is

u�p����ie���� i�p
� � k� �m�

�p� �k� ��ie���� i�p� � k� � k� �m�

�p� ��k� � k�� �O�k��

� � � ��ie��n� i�p
� � k� � � � �� kn �m�

�p� ��k� � � � � kn� �O�k��

�
iMhard

� � � � � ������

We will assume that all the ki are small� dropping the O�k�� terms in the
denominators� We will also drop the ki terms in the numerators� just as in
our treatment of bremsstrahlung in Section ��� Also� as we did there� we can
push the factors of �p� �m� to the left and use u�p����p� �m� � ��

u�p�� ����p� �m� ����p� �m� � � � � u�p�� �p��� ����p� �m� � � �
� u�p�� �p��� �p��� � � � �

This turns expression ������ into

u�p��
�
e
p���

p� �k�

��
e

p���

p� ��k� � k��

�
� � �
�
e

p��n

p� ��k� � � � �� kn�

�
� � � � ������

Still working with only the outgoing electron line� we must now sum over
all possible orderings of the momenta k� � � � kn� �This procedure will overcount
when two of the photons are attached together to form a single virtual photon�
We will deal with this overcounting later�� There are n- di�erent diagrams to
sum� corresponding to the n- permutations of the n photon momenta� Let �
denote one such permutation� so that ��i� is the number between  and n that
i is taken to� �For example� if � denotes the permutation that takes  � ��
��  and �� �� then ��� � �� ���� � � and ���� � ���

Armed with this notation� we can perform the sum over permutations by
means of the following identity�X

all permu�
tations �



p �k����


p � �k���� � k�����
� � � 

p ��k���� � k���� � � � �� k��n��

�


p �k�


p �k� � � �


p �kn � ����
�

The proof of this formula proceeds by induction on n� For n � � we haveX
�



p �k����


p � �k�����k�����
�



p �k�


p ��k��k�� �


p �k�


p ��k��k��

�


p �k�


p �k� �
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For the induction step� notice that the last factor on the left�hand side of
����
� is the same for every permutation �� Pulling this factor outside the
sum� the left�hand side becomes

LHS �


p �P k

X
�



p �k����


p ��k�����k�����
� � � 

p ��k���� � � � �� k��n����
�

For any given �� the quantity being summed is independent of k��n�� Letting
i � ��n�� we can now write X

�

�

nX
i
�

X
���i�

�

where ���i� is the set of all permutations on the remaining n �  integers�
Assuming by induction that ����
� is true for n� � we have

LHS �


p �P k

nX
i
�



p � k�


p � k� � � �


p � ki��


p � ki�� � � �


p � kn �

If we now multiply and divide each term in this sum by p �ki� we easily obtain
our desired result ����
��

Applying ����
� to ������� we �nd

� u�p��
�
e
p���

p� � k�
��

e
p���

p� � k�
�
� � �
�
e
p��n

p� � kn
�
� ������

where the blob denotes a sum over all possible orders of inserting the n photon
lines�

A similar set of manipulations simpli�es the sum over soft photon inser�
tions on the initial electron line� There� however� the propagator momenta are
p� k�� p� k� � k�� and so on�

We therefore get an extra minus sign in the factor for each photon� since
�p�*k�� �m� � ��p � *k�
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Now consider diagrams containing a total of n soft photons� connected in
any possible order to the initial or �nal electron lines� The sum over all such
diagrams can be written

� u�p�� iMhard u�p�

� e
� p���

p� � k� �
p��

p � k�
�
� e
� p���

p� � k� �
p��

p � k�
�

� � � e
� p��n

p� � kn �
p�n

p � kn
�
�

������

By multiplying out all the factors� you can see that we get the correct term
for each possible way of dividing the n photons between the two lines�

Next we must decide which photons are real and which are virtual�
We can make a virtual photon by picking two photon momenta ki and kj �

setting kj � �ki � k� multiplying by the photon propagator� and integrating
over k� For each virtual photon we then obtain the expression

e�

�

Z
d�k

�����
�i

k� � i�

� p�

p� � k �
p

p � k
�
�
� p�

�p� � k �
p

�p � k
�
� X� ������

The factor of �� is required because our procedure has counted each Feynman
diagram twice� interchanging ki and kj gives back the same diagram� It is
possible to evaluate this expression by careful contour integration� but there
is an easier way� Notice that this approximation scheme assigns to the diagram
with one loop and no external photons the value

u�p��
�
iMhard

�
u�p� �X�

Thus� X must be precisely the infrared limit of the one�loop correction to the
form factor� as displayed in ������

X � � 	

��
fIR�q

�� log
��q�
��

�
� ������

A direct derivation of this result from ������ is given in Weinberg�s paper cited
above� Note that result ������ followed in our argument of the previous sec�
tion only after the subtraction at q� � �� and so we should worry whether
������ is consistent with the corresponding subtraction of the nth�order dia�
gram� In addition� some of the diagrams we are summing contain external�leg
corrections� which we have not discussed� Here we simply remark that nei�
ther of these subtleties a�ects the �nal answer� the proof requires the heavy
machinery in the paper of Yennie� Frautschi� and Suura�

If there are m virtual photons we get m factors like ������� and also an
additional symmetry factor of �m- since interchanging virtual photons with
each other does not change the diagram� We can then sum over m to obtain



��� Summation and Interpretation of Infrared Divergences �
�

the complete correction due to the presence of arbitrarily many soft virtual
photons�

	
�X
m
�

Xm

m-
� u�p��

�
iMhard

�
u�p� exp�X�� ������

If in addition to them virtual photons we also emit a real photon� we must
multiply by its polarization vector� sum over polarizations� and integrate the
squared matrix element over the photon�s phase space� This gives an additional
factor Z

d�k

�����


�k
e���g���

� p��

p� � k �
p�

p � k
�� p��

p� � k �
p�

p � k
�
� Y �����

in the cross section� Assuming that the energy of the photon is greater than
� and less than E� �the detector threshold�� this expression is simply

Y �
	

�
I�v�v�� log

�E�

�

�
�
	

�
fIR�q

�� log
�E�

�

��

�
� ������

If n real photons are emitted we get n such factors� and also a symmetry
factor of �n- since there are n identical bosons in the �nal state� The cross
section for emission of any number of soft photons is therefore

�X
n
�

d�

d�
�p� p� � n�� �

d�

d�
�p� p�� �

�X
n
�



n-
Yn �

d�

d�
�p� p�� � exp�Y��

������
Combining our results for virtual and real photons gives our �nal result

for the measured cross section� to all orders in 	� for the process p � p��
�any number of photons with k � E���� d�
d�

�
meas�

�
� d�
d�

�
�
	 exp��X�	 exp�Y�

�
� d�
d�

�
�
	 exp

h
�	
�
fIR�q

�� log
��q�
��

�i
	 exp

h	
�
fIR�q

�� log
�E�

�

��

�i
�
� d�
d�

�
�
	 exp

h
�	
�
fIR�q

�� log
��q�
E�
�

�i
� ������

The correction factor depends on the detector sensitivity E�� but is indepen�
dent of the infrared cuto� �� Note that if we expand this result to O�	��
we recover our earlier result ������� Now� however� the correction factor is
controlled in magnitude�always between � and �

In the limit �q� 
 m�� our result becomes� d�
d�

�
meas�

�
� d�
d�

�
�
	
����exph� 	

��
log
��q�
m�

�
log
��q�
E�
�

�i������ ����
�



�
� Chapter � Radiative Corrections� Introduction

In this limit� the probability of scattering without emitting a hard photon
decreases faster than any power of q�� The exponential correction factor� con�
taining the Sudakov double logarithm� is known as the Sudakov form factor�

To conclude this section� let us calculate the probability� in the same ap�
proximation� that some hard scattering process is accompanied by the produc�
tion of n soft photons� all with energies between E� and E�� The phase�space
integral for these photons gives log�E��E�� instead of log�E����� If we as�
sign photons with energy greater than E� to the �hard� part of the process�
we �nd that the cross section is given by ������� times the additional factor

Prob�n� with E��E�E�� �


n-

h	
�
fIR�q

�� log
�E�

�

E��

�in
	 exp

h
�	
�
fIR�q

�� log
�E�

�

E��

�i
�

������

This expression has the form of a Poisson distribution�

P �n� �


n-
�ne���

with

� � hni � 	

�
log
�E�

E�

�
I�v�v���

This is precisely the semiclassical estimate of the number of radiated photons
that we made in Eq� ������

Problems

��� Rosenbluth formula� As discussed Section ���� the exact electromagnetic in�
teraction vertex for a Dirac fermion can be written quite generally in terms of two
form factors F��q

�� and F��q
���

� u�p��
h
��F��q

�� �
i	��q�
�m

F��q
��
i
u�p��

where q � p��p and 	�� � �
� i��

�� �� �� If the fermion is a strongly interacting particle
such as the proton� the form factors re#ect the structure that results from the strong
interactions and so are not easy to compute from �rst principles� However� these form
factors can be determined experimentally� Consider the scattering of an electron with
energy E � me from a proton initially at rest� Show that the above expression for
the vertex leads to the following expression �the Rosenbluth formula� for the elastic
scattering cross section� computed to leading order in � but to all orders in the strong
interactions�

d	

d cos �
�

���
h
�F �

� � q�

�m�F
�
� � cos

� �
� � q�

�m� �F� � F��
� sin� �

�

i
�E�$� � �E

m sin
� �
� % sin

� �
�

�
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where � is the lab�frame scattering angle and F� and F� are to be evaluated at the
q� associated with elastic scattering at this angle� By measuring �d	
d cos �� as a
function of angle� it is thus possible to extract F� and F�� Note that when F� � � and
F� � �� the Rosenbluth formula reduces to the Mott formula �in the massless limit�
for scattering o� a point particle �see Problem �����

��� Equivalent photon approximation� Consider the process in which electrons
of very high energy scatter from a target� In leading order in �� the electron is connected
to the target by one photon propagator� If the initial and �nal energies of the electron
are E and E�� the photon will carry momentum q such that q� 	 ��EE��� � cos ���
In the limit of forward scattering� whatever the energy loss� the photon momentum
approaches q� � �� thus the reaction is highly peaked in the forward direction� It is
tempting to guess that� in this limit� the virtual photon becomes a real photon� Let us
investigate in what sense that is true�

�a� The matrix element for the scattering process can be written as

M � ��ie�u�p����u�p��ig��
q�

bM��q��

where bM� represents the �in general� complicated� coupling of the virtual photon
to the target� Let us analyze the structure of the piece u�p����u�p�� Let q �
�q��q�� and de�ne !q � �q���q�� We can expand the spinor product as�

u�p����u�p� � A �q� �B � !q� � C ���� �D ���� �
where A� B� C� D are functions of the scattering angle and energy loss and �i
are two unit vectors transverse to q� By dotting this expression with q�� show
that the coe�cient B is at most of order ��� This will mean that we can ignore
it in the rest of the analysis� The coe�cient A is large� but it is also irrelevant�
since� by the Ward identity� q� bM� � ��

�b� Working in the frame where p � �E� �� �� E�� compute explicitly

u�p��� � �iu�p�
using massless electrons� u�p� and u�p�� spinors of de�nite helicity� and ��� ��
unit vectors parallel and perpendicular to the plane of scattering� We need this
quantity only for scattering near the forward direction� and we need only the
term of order �� Note� however� that for � in the plane of scattering� the small *
component of � also gives a term of order � which must be taken into account�

�c� Now write the expression for the electron scattering cross section� in terms of

j bM�j� and the integral over phase space on the target side� This expression
must be integrated over the �nal electron momentum p�� The integral over p��
is an integral over the energy loss of the electron� Show that the integral over
p�� diverges logarithmically as p

�
� or � � ��

�d� The divergence as � � � appears because we have ignored the electron mass in
too many places� Show that reintroducing the electron mass in the expression
for q��

q� � ���EE� � pp� cos �� � �m��

cuts o� the divergence and yields a factor of log�s
m�� in its place�
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�e� Assembling all the factors� and assuming that the target cross sections are inde�
pendent of the photon polarization� show that the largest part of the electron�
target scattering cross section is given by considering the electron to be the
source of a beam of real photons with energy distribution �x � E�
E��

N��x�dx �
dx

x

�

��
$� � ��� x��% log

�
s

m�

�
�

This is the Weizsacker�Williams equivalent photon approximation� This phe�
nomenon allows us� for example� to study photon�photon scattering using e�e�
collisions� Notice that the distribution we have found here is the same one that
appeared in Problem ��� when we considered soft photon emission before elec�
tron scattering� It should be clear that a parallel general derivation can be con�
structed for that case�

��� Exotic contributions to g� �� Any particle that couples to the electron can
produce a correction to the electron�photon form factors and� in particular� a correction
to g��� Because the electron g�� agrees with QED to high accuracy� these corrections
allow us to constrain the properties of hypothetical new particles�

�a� The uni�ed theory of weak and electromagnetic interactions contains a scalar
particle h called the Higgs boson� which couples to the electron according to

Hint �

Z
d�x

�p
�
h���

Compute the contribution of a virtual Higgs boson to the electron �g � ��� in
terms of � and the mass mh of the Higgs boson�

�b� QED accounts extremely well for the electron�s anomalous magnetic moment� If
a � �g � ��
��

jaexpt� � aQEDj � �� ������
What limits does this place on � and mh� In the simplest version of the elec�
troweak theory� � �  � ���� and mh � �� GeV� Show that these values are
not excluded� The coupling of the Higgs boson to the muon is larger by a fac�
tor �m�
me�� � � �� ����� Thus� although our experimental knowledge of the
muon anomalous magnetic moment is not as precise�

jaexpt� � aQEDj � � �����
one can still obtain a stronger limit on mh� Is it strong enough�

�c� Some more complex versions of this theory contain a pseudoscalar particle called
the axion� which couples to the electron according to

Hint �

Z
d�x

i�p
�
a����

The axion may be as light as the electron� or lighter� and may couple more
strongly than the Higgs boson� Compute the contribution of a virtual axion to
the g � � of the electron� and work out the excluded values of � and ma�
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Radiative Corrections�

Some Formal Developments

We cheated four times in the last three chapters�! stating �and sometimes
motivating� a result but postponing its proof� Those results were�

� The formula for decay rates in terms of S�matrix elements� Eq� �������

�� The master formula for S�matrix elements in terms of Feynman diagrams�
Eq� �������

�� The Ward identity� Eq� �
�����

�� The ad hoc subtraction to remove the ultraviolet divergence in the vertex�
correction diagram� Eq� ���

��

It is time now to return to these issues and give them a proper treatment� In
Sections ��� through ��� we will derive all four of these results� The knowledge
we gain along the way will help us interpret the three remaining loop correc�
tions for electron scattering from a heavy target shown in ����� the external
leg corrections and the vacuum polarization� We will evaluate the former in
Section �� and the latter in Section ��
�

This chapter will be more abstract than the two preceding ones� Its main
theme will be the singularities of Feynman diagrams viewed as analytic func�
tions of their external momenta� We will �nd� however� that this apparently
esoteric subject is rich in physical implications� and that it illuminates the rela�
tion between Feynman diagrams and the general principles of quantum theory�

��� Field�Strength Renormalization

In this section we will investigate the analytic structure of the two�point cor�
relation function�

h�jT
�x�
�y� j�i or h�jT��x���y� j�i �
In a free �eld theory� the two�point function h�jT
�x�
�y� j�i has a simple
interpretation� It is the amplitude for a particle to propagate from y to x� To
what extent does this interpretation carry over into an interacting theory�

�A �fth cheat� postulating rather than deriving the photon propagator� will be
remedied in Chapter 	�

���



��� Chapter � Radiative Corrections� Some Formal Developments

Our analysis of the two�point function will rely only on general principles
of relativity and quantum mechanics� it will not depend on the nature of
the interactions or on an expansion in perturbation theory� We will� however�
restrict our consideration to scalar �elds� Similar results can be obtained for
correlation functions of �elds with spin� we will display the analogous result
for Dirac �elds at the end of the analysis�

To dissect the two�point function h�jT
�x�
�y� j�i we will insert the
identity operator� in the form of a sum over a complete set of states� between

�x� and 
�y�� We choose these states to be eigenstates of the full interacting
Hamiltonian� H � Since the momentum operator P commutes with H � we
can also choose the states to be eigenstates of P� But we can also make
a stronger use of Lorentz invariance� Let j��i be an eigenstate of H with
momentum zero� P j��i � �� Then all the boosts of j��i are also eigenstates
of H � and these have all possible ��momenta� Conversely� any eigenstate of H
with de�nite momentum can be written as the boost of some zero�momentum
eigenstate j��i� The eigenvalues of the ��momentum operator P� � �H�P�
organize themselves into hyperboloids� as shown in Fig� ���

Recall from Chapter � that the completeness relation for the one�particle
states is �

�
�
��particle �

Z
d�p

�����


�Ep
jpi hpj � ����

We can write an analogous completeness relation for the entire Hilbert space
with the aid of a bit of notation� Let j�pi be the boost of j��i with momen�
tum p� and assume that the states j�pi� like the one�particle states jpi� are
relativistically normalized� Let Ep��� �

pjpj� �m�
�� where m� is the �mass�

of the states j�pi� that is� the energy of the state j��i� Then the desired com�
pleteness relation is

� � j�i h�j�
X
�

Z
d�p

�����


�Ep���
j�pi h�pj � �����

where the sum runs over all zero�momentum states j��i�
We now insert this expansion between the operators in the two�point

function� Assume for now that x� � y�� Let us drop the uninteresting constant
term h�j
�x� j�i h�j
�y� j�i� �This term is usually zero by symmetry� for
higher�spin �elds� it is zero by Lorentz invariance�� The two�point function is
then

h�j
�x�
�y� j�i �
X
�

Z
d�p

�����


�Ep���
h�j
�x� j�pi h�pj
�y� j�i � �����
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Figure ���� The eigenvalues of the ��momentum operator P� � �H�P� oc�
cupy a set of hyperboloids in energy�momentum space� For a typical theory
the states consist of one or more particles of mass m� Thus there is a hyper�
boloid of one�particle states and a continuum of hyperboloids of two�particle
states� three�particle states� and so on� There may also be one or more bound�
state hyperboloids below the threshold for creation of two free particles�

We can manipulate the matrix elements as follows�

h�j
�x� j�pi � h�j eiP �x
���e�iP �x j�pi
� h�j
��� j�pi e�ip�x

��
p�
Ep

� h�j
��� j��i e�ip�x
��
p�
Ep

�

�����

The last equality is a result of the Lorentz invariance of h�j and 
���� Insert
factors of U��U � where U is the unitary operator that implements a Lorentz
boost from p to �� and use U
���U�� � 
���� �For a �eld with spin� we would
need to keep track of its nontrivial Lorentz transformation�� Introducing an
integration over p�� our expression for the two�point function �still for x� � y��
becomes

h�j
�x�
�y� j�i �
X
�

Z
d�p

�����
i

p��m�
��i�

e�ip��x�y�
��h�j
��� j��i���� ���
�

Note the appearance of the Feynman propagator� DF �x � y�� but with m
replaced by m��
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Figure ���� The spectral function ��M�� for a typical interacting �eld the�
ory� The one�particle states contribute a delta function at m� �the square of
the particle�s mass�� Multiparticle states have a continuous spectrum begin�
ning at ��m��� There may also be bound states�

Analogous expressions hold for the case y� � x�� Both cases can be sum�
marized in the following general representation of the two�point function �the
K�all�en�Lehmann spectral representation��

h�jT
�x�
�y� j�i �
�Z
�

dM�

��
��M��DF �x� y�M��� �����

where ��M�� is a positive spectral density function�

��M�� �
X
�

������M� �m�
��
��h�j
��� j��i���� �����

The spectral density ��M�� for a typical theory is plotted in Fig� ����
Note that the one�particle states contribute an isolated delta function to the
spectral density�

��M�� � �� ��M� �m�� � Z � �nothing else until M� �� ��m���� �����

where Z is some number given by the squared matrix element in ������ We
refer to Z as the �eld�strength renormalization	 The quantity m is the exact
mass of a single particle�the exact energy eigenvalue at rest� This quantity
will in general di�er from the value of the mass parameter that appears in the
Lagrangian� We will refer to the parameter in the Lagrangian as m�� the bare
mass� and refer to m as the physical mass of the 
 boson� Only the physical
mass m is directly observable�

The spectral decomposition ����� yields the following form for the Fourier
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Figure ���� Analytic structure in the complex p��plane of the Fourier trans�
form of the two�point function for a typical theory� The one�particle states
contribute an isolated pole at the square of the particle mass� States of two
or more free particles give a branch cut� while bound states give additional
poles�

transform of the two�point function�Z
d�x eip�x h�jT
�x�
��� j�i �

�Z
�

dM�

��
��M��

i

p��M��i�

�
iZ

p��m��i�
�

�Z
��m�

dM�

��
��M��

i

p��M��i�
�

�����

The analytic structure of this function in the complex p��plane is shown in
Fig� ���� The �rst term gives an isolated simple pole at p� � m�� while the
second term contributes a branch cut beginning at p� � ��m��� If there are
any two�particle bound states� these will appear as additional delta functions
in ��M�� and thus as additional poles below the cut�

In Section ���� we found an explicit result for the two�point correlation
function in the theory of a free scalar �eld�Z

d�x eip�x h�jT
�x�
��� j�i � i

p��m��i�
� �����

We interpreted this formula� for x� � �� as the amplitude for a particle to
propagate from � to x� Equation ����� shows that the two�point function
takes a similar form in the most general theory of an interacting scalar �eld�
The general expression is essentially a sum of scalar propagation amplitudes
for states created from the vacuum by the �eld operator 
���� There are
two di�erences between ����� and ������ First� Eq� ����� contains the �eld�
strength renormalization factor Z � j h��j
��� j�i j�� the probability for 
���
to create a given state from the vacuum� In ������ this factor is included
implicitly� since hpj
��� j�i �  in free �eld theory� Second� Eq� ����� contains
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contributions from multiparticle intermediate states with a continuous mass
spectrum� In free �eld theory� 
��� can create only a single particle from the
vacuum� With these two di�erences� ����� is a direct generalization of ������

It will be important in our later analysis that the contributions to �����
from one�particle and multiparticle intermediate states can be distinguished
by the strength of their analytic singularities� The poles in p� come only from
one�particle intermediate states� while multiparticle intermediate states give
weaker branch cut singularities� We will see in the next section that this rather
formal observation generalizes to higher�point correlation functions and plays
a crucial role in our derivation of the diagrammatic formula for S�matrix
elements�

The analysis of this section generalizes directly to two�point functions of
higher�spin �elds� The main complication comes in the generalization of the
manipulation ������ since now the �eld has a nontrivial transformation law
under boosts� In general� several invariant spectral functions are required to
represent the multiparticle states� But this complication does not a�ect the
major result that a pole in p� can arise only from the contribution of a single�
particle state created by the �eld operator� The two�point function of Dirac
�elds� for example� has the structureZ

d�x eip�x h�jT��x����� j�i � iZ�
P

s u
s�p�us�p�

p� �m� � i�
� � � �

�
iZ��p�m�

p� �m� � i�
� � � � �

����

where the omitted terms give the multiparticle branch cut� As in the scalar
case� the constant Z� is the probability for the quantum �eld to create or
annihilate an exact one�particle eigenstate of H �

h�j���� jp� si �
p
Z� u

s�p�� �����

�For an antiparticle� replace u with v�� At the pole� the Dirac two�point func�
tion is exactly that of a free �eld with the physical mass� aside from the
rescaling factor Z��

An Example� The Electron Self�Energy

This nonperturbative analysis of the two�point correlation function has been
very di�erent from our usual direct analysis of Feynman diagrams� But since
this derivation was done in complete generality� the singularity structure of
the two�point function that it implies ought also to be visible in a Feynman
diagram computation� In the rest of this section we will explicitly check our
results for the electron two�point function in QED�

The electron two�point function is equal to the sum of diagrams

h�jT��x���y� j�i � �����
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Each of these diagrams� according to the Feynman rules for correlation func�
tions� contains a factor of eip��x�y� for the two external points and an inte�
gration

R
�d�p������� over the momentum p carried by the initial and �nal

propagators� We will consistently omit these factors in this section� in other
words� each diagram will denote the corresponding term in the Fourier trans�
form of the two�point function�

The �rst diagram is just the free��eld propagator�

�
i�p�m��

p� �m�
� � i�

� �����

Throughout this calculation� we will write m� instead of m as the mass in the
electron propagator� This makes explicit the fact noted above that the mass
appearing in the Lagrangian di�ers� in general� from the observable rest energy
of a particle� However� if a perturbation expansion is applicable� the leading�
order expression for the propagator should approximate the exact expression�
Indeed� the function ����� has a pole� of just the form of ����� at p� � m�

��
We therefore expect that the complete expression for the two�point function
also has a pole of this form� at a slightly shifted location m� � m�

� �O�	��
The second diagram in ������ called the electron self�energy� is somewhat

more complicated�

�
i�p�m��

p� �m�
�

��i*��p�
� i�p�m��

p� �m�
�

� ���
�

where

�i*��p� � ��ie��
Z

d�k

�����
��

i�k �m��

k� �m�
� � i�

��
�i

�p�k�� � �� � i�
� �����

�The notation *� indicates that this is the second�order �in e� contribution to
a quantity * that we will de�ne below�� The integral *� has an infrared
divergence� which we have regularized by adding a small photon mass ��
Outside this integral� the diagram seems to have a double pole at p� � m�

��
All in all� the form of this correction is quite unpleasant� But let us press on
and try to evaluate *��p� using the calculational techniques developed for the
vertex correction in the Section ����

First introduce a Feynman parameter to combine the two denominators�



k��m�
��i�



�p�k������i� �

�Z
�

dx
�

k���xk �p�xp��x�����x�m�
��i�
�� �
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Now complete the square and de�ne a shifted momentum � � k�xp� Dropping
the term linear in � from the numerator� we have

�i*��p� � �e�
�Z

�

dx

Z
d��

�����
��xp� �m�

$�� ��� i�%�
� �����

where � � �x��x�p��x�����x�m�
�� The integral over � is divergent� To

evaluate it� we �rst regulate it using the Pauli�Villars procedure ���
��



�p�k�� � �� � i�
� 

�p�k�� � �� � i�
� 

�p�k�� � &� � i�
�

The second term will have the same form as ������ but with � replaced by &�
As in Section ���� we now Wick�rotate and substitute the Euclidean variable
��E � �i��� This givesZ

d��

�����


$�� ��%�
� i

�����

�Z
�

d��E

�
��E

$��E ��%�
� ��E

$��E ��	%�

�

�
i

�����
log
��	

�

�
� �����

where

�	 � �x��x�p� � x&� � ��x�m�
� ��
	��

x&��

The �nal result is therefore

*��p� �
	

��

�Z
�

dx ��m� � xp� log
�

x&�

��x�m�
� � x�� � x��x�p�

�
� �����

Before discussing the divergences in this expression� let us work out its
analytic behavior as a function of p�� The logarithm in ����� has a branch
cut when its argument becomes negative� and for any �xed x this will occur
for su	ciently large p�� More exactly� the cut begins at the point where

��x�m�
� � x�� � x��x�p� � ��

Solving this equation for x� we �nd

x �


�
�

m�
�

�p�
� ��

�p�
�
s

�p� �m�
� � ����

�p�
� m�

�

p�

�


�
�

m�
�

�p�
� ��

�p�
� 

�p�

q�
p� � �m�����

��
p� � �m�����

�
� ������

The branch cut of *��p
�� begins at the minimum value of p� such that this

equation has a real solution for x between � and � This occurs when p� �
�m� � ���� that is� at the threshold for creation of a two�particle �electron
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plus photon� state� In fact� it is a simple exercise in relativistic kinematics to
show that the square root in ������� written in the form

k �


�
p
p�

q�
p� � �m� � ���

��
p� � �m� � ���

�
�

is precisely the momentum in the center�of�mass frame for two particles of
mass m� and � and total energy

p
p�� It is natural that this momentum be�

comes real at the two�particle threshold� The location of the branch cut is
exactly where we would expect from the K#all4en�Lehmann spectral represen�
tation�y

We have now located the two�particle branch cut predicted by the K#all4en�
Lehmann representation� but we have not found the expected simple pole at
p� � m�� To �nd it we must actually include an in�nite series of Feynman
diagrams� Fortunately� this series will be easily summed�

Let us de�ne a one�particle irreducible �PI� diagram to be any diagram
that cannot be split in two by removing a single line�

Let �i*�p� denote the sum of all PI diagrams with two external fermion
lines�

�����

�Although each diagram has two external lines� the Feynman propagators for
these lines are not to be included in the expression for *�p��� To leading order
in 	 we see that * � *��

The Fourier transform of the two�point function can now be written asZ
d�x h�jT��x����� j�i eip�x �

�

�
i�p�m��

p� �m�
�

�
i�p�m��

p� �m�
�

��i*� i�p�m��

p� �m�
�

� � � � � ������

yIn real QED� � � � and the two�particle branch cut merges with the one�particle
pole� This subtlety plays a role in the full treatment of the cancellation of infrared
divergences� but it is beyond the scope of our present analysis�
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The �rst diagram has a simple pole at p� � m�
�� Each diagram in the second

class has a double pole at p� � m�
�� Each diagram in the third class has a

triple pole� The behavior near p� � m�
� gets worse and worse as we include

more and more diagrams� But fortunately� the sum of all the diagrams forms
a geometric series� Note that *�p� commutes with p� since *�p� is a function
only of pure numbers and p� In fact� we can consider *�p� to be a function
of p� writing p� � �p��� Then we can rewrite each electron propagator as
i��p�m�� and express the above series asZ

d�x h�jT��x����� j�i eip�x

�
i

p�m�
�

i

p�m�

� *�p�
p�m�

�
�

i

p�m�

� *� p�
p�m�

��
� � � �

�
i

p�m� � *�p� � ������

The full propagator has a simple pole� which is shifted away from m� by *� p��
The location of this pole� the physical mass m� is the solution of the

equation �p�m� �*� p�� ��
�p
m

� �� ������

Notice that� if *� p� is de�ned by the convention ������ then a positive con�
tribution to * yields a positive shift of the electron mass� Close to the pole�
the denominator of ������ has the form

�p�m� �
�
� d*

dp

����
�p
m

�
�O��p�m��

�
� ����
�

Thus the full electron propagator has a single�particle pole of just the form
����� with m given by ������ and

Z��� � � d*

dp
����
�p
m

� ������

Our explicit calculation of *� allows us to compute the �rst corrections
to m and Z�� Let us begin with m� To order 	� the mass shift is

�m � m�m� � *��p � m� � *��p � m��� ������

Thus� using ������

�m �
	

��
m�

�Z
�

dx ��� x� log

�
x&�

��x��m�
� � x��

�
� ������

The mass shift is ultraviolet divergent� the divergent term has the form

�m ��
	��

�	

��
m� log

�
&�

m�
�

�
� ������



��� Field�Strength Renormalization ���

Is it a problem that m di�ers from m� by a divergent quantity� This question
has two levels� those of concept and practice�

On the conceptual level� we should fully expect the mass of the electron
to be modi�ed by its coupling to the electromagnetic �eld� In classical elec�
trodynamics� the rest energy of any charge is increased by the energy of its
electrostatic �eld� and this energy shift diverges in the case of a point charge�Z

d�r �
� jEj� �

Z
d�r



�

�
e

��r�

��
�

	

�

Z
dr

r�
� 	&� ������

In fact� it is puzzling why the divergence in ������ is so weak� logarithmic in
& rather than linear as in ������� To understand this feature� suppose that m�

were set to �� Then the two helicity components of the electron �eld �L and
�R would not be coupled by any term in the QED Hamiltonian� This would
imply that perturbative corrections could never induce a coupling of �L and
�R� nor� in particular� an electron mass term� In other words� �m must vanish
when m� � �� The mass shift must therefore be proportional to m�� and so�
by dimensional analysis� it can depend only logarithmically on &�

On a practical level� the in�nite mass shift casts doubt on our perturbative
calculations� For example� all of the theoretical results in Chapter 
 should
technically involve m� rather than m� To compare theory to experiment we
must eliminate m� in favor of m� using the relation m� � m�O�	�� Since the
�small� O�	� correction is in�nite� the validity of this procedure is far from
obvious� The validity of perturbation theory would be more plausible if we
could compute Feynman diagrams using the propagator i��p�m�� which has
the correct pole location� instead of i��p�m��� In Chapter � we will see how
to rearrange the perturbation series in such a way that m� is systematically
eliminated in favor of m and the zeroth�order propagator has its pole at the
physical mass� In the remainder of this chapter� we will continue to simply
replace m� by m in expressions for order�	 corrections�

Finally� let us examine the perturbative correction to Z�� From ������� we
�nd that the order�	 correction �Z� � �Z� � � is

�Z� �
d*�

dp

����
�p
m

�
	

��

�Z
�

dx


�x log x&�

��x��m� � x��
� ����x� x��x�m�

��x��m� � x��

�
�

�����

This expression is also logarithmically ultraviolet divergent� We will discuss
the observability of this divergent term at the end of Section ���� However� it
is interesting to note� even before that discussion� that ����� is very similar
in form to the value of the ad hoc subtraction that we made in our calculation
of the electron vertex correction in Section ���� From Eq� ���
��� the value of
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this subtraction was

�F���� �
	

��

�Z
�

dx dy dz ��x�y�z��

	

log
� z&�

��z��m� � z��

�
�

���z�z��m�

��z��m� � z��

�

�
	

��

�Z
�

dz ��z�

log
� z&�

��z��m� � z��

�
�

���z�z��m�

��z��m� � z��

�
� ������

Using the integration by parts

�Z
�

dz ���z� log
� &�

��z��m� � z��

�
� �

�Z
�

dz z��z� ���z�m
� � ��

��z��m� � z��

�

�Z
�

dz


��z�� ��z���z��m�

��z��m� � z��

�
�

it is not hard to show that �F���� � �Z� � �� This identity will play a crucial
role in justifying the ad hoc subtraction of Section ����

��� The LSZ Reduction Formula

In the last section we saw that the Fourier transform of the two�point corre�
lation function� considered as an analytic function of p�� has a simple pole at
the mass of the one�particle state�Z

d�x eip�x h�jT
�x�
��� j�i �
p��m�

iZ

p� �m� � i�
� ������

�Here and throughout this section we use the symbol � to mean that the poles
of both sides are identical� there are additional �nite terms� given in this case
by Eq� ������� In this section we will generalize this result to higher correlation
functions� We will derive a general relation between correlation functions and
S�matrix elements �rst obtained by Lehmann� Symanzik� and Zimmermann
and known as the LSZ reduction formula�z This result� combined with our
Feynman rules for computing correlation functions� will justify Eq� �������
our master formula for S�matrix elements in terms of Feynman diagrams� For
simplicity� we will carry out the whole analysis for the case of scalar �elds�

zH� Lehmann� K� Symanzik� andW� Zimmermann� Nuovo Cimento �� ���� ��	����
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The strategy of the argument will be as follows� To calculate the S�matrix
element for a ��body � n�body scattering process� we begin with the corre�
lation function of n � � Heisenberg �elds� Fourier�transforming with respect
to the coordinate of any one of these �elds� we will �nd a pole of the form
������ in the Fourier�transform variable p�� We will argue that the one�particle
states associated with these poles are in fact asymptotic states� that is� states
given by the limit of well�separated wavepackets as they become concentrated
around de�nite momenta� Taking the limit in which all n� � external parti�
cles go on�shell� we can then interpret the coe	cient of the multiple pole as
an S�matrix element�

To begin� let us Fourier�transform the �n � ���point correlation function
with respect to one argument x� We must then analyze the integralZ

d�x eip�x h�jT�
�x�
�z��
�z�� � � �� j�i �
We would like to identify poles in the variable p�� To do this� divide the
integral over x� into three regions�

Z
dx� �

�Z
T�

dx� �

T�Z
T�

dx� �

T�Z
��

dx�� ������

where T� is much greater than all the z�i and T� is much less than all the z�i �
Call these three intervals regions I� II� and III� Since region II is bounded and
the integrand depends on p� through the analytic function exp�ip�x��� the
contribution from this region will be analytic in p�� However� regions I and
III� which are unbounded� may develop singularities in p��

Consider �rst region I� Here x� is the latest time� so 
�x� stands �rst in
the time ordering� Insert a complete set of intermediate states in the form of
������

� �
X
�

Z
d�q

�����


�Eq���
j�qi h�qj �

The integral over region I then becomes

�Z
T�

dx�
Z
d�x eip

�x�e�ip�x
X
�

Z
d�q

�����


�Eq���
h�j
�x� j�qi

	 h�qjT
�

�z��
�z�� � � �

� j�i �
����
�

Using Eq� ������

h�j
�x� j�qi � h�j
��� j��i e�iq�x
��
q�
Eq���

�
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and including a factor e��x
�

to insure that the integral is well de�ned� this
integral becomesX

�

�Z
T�

dx�
Z

d�q

�����


�Eq���
eip

�x�e�iq
�x�e��x

� h�j
��� j��i ����������p� q�

	 h�qjT
�

�z�� � � �

� j�i
�
X
�



�Ep���

iei�p
��Ep�i��T�

p� �Ep��� � i�
h�j
��� j��i h�pjT

�

�z�� � � �

� j�i � ������

The denominator is just that of Eq� ���
�� p� � m�
�� There is an analytic

singularity in p�� as in Section ��� this singularity will be either a pole or
a branch cut depending upon whether or not the rest energy m� is isolated�
The one�particle state corresponds to an isolated energy value p� � Ep �p
jpj� �m�� and at this point Eq� ������ has a pole�Z

d�x eip�x h�jT�
�x�
�z�� � � �� j�i
�

p���Ep

i

p� �m� � i�

p
Z hpjT�
�z�� � � �� j�i � ������

The factor
p
Z is the same �eld strength renormalization factor as in Eq� ������

since it replaces the same matrix element as in ������
To evaluate the contribution from region III� we would put 
�x� last in the

operator ordering� then insert a complete set of states between T
�

�z�� � � �

�
and 
�x�� Repeating the above argument produces a pole as p� � �Ep�Z

d�x eip�x h�jT�
�x�
�z�� � � �� j�i
�

p���Ep
h�jT�
�z�� � � �� j�pipZ i

p� �m� � i�
�

������

Next we would like to Fourier�transform with respect to the remaining
�eld coordinates� To keep the various external particles from interfering� how�
ever� we must isolate them from each other in space� Let us therefore repeat
the preceding calculation using a wavepacket rather than a simple Fourier
transform� In Eq� ����
�� replaceZ

d�x eip
�x�e�ip�x �

Z
d�k

�����

Z
d�x eip

�x�e�ik�x ��k�� ������

where ��k� is a narrow distribution centered on k � p� This distribution con�
strains x to lie within a band� whose spatial extent is that of the wavepacket�
about the trajectory of a particle with momentum p� With this modi�cation�
the right�hand side of ������ has a more complicated singularity structure�X

�

Z
d�k

�����
��k�



�Ek���

i

p� �Ek��� � i�
h�j
��� j��i h�kjT

�

�z�� � � �

� j�i
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�
p���Ep

Z
d�k

�����
��k�

i

'p� �m� � i�

p
Z hkjT�
�z�� � � �� j�i � ������

where� in the second line� 'p � �p��k�� The one�particle singularity is now a
branch cut� whose length is the width in momentum space of the wavepacket
��k�� However� if ��k� de�nes the momentum narrowly� this branch cut
is very short� and ������ has a well�de�ned limit in which ��k� tends to
����������k � p� and the singularity of ������ sharpens up to the pole of
������� The singularity due to single�particle states in the far past� Eq� �������
is modi�ed in the same way�

Now consider integrating each of the coordinates in the �n � ���point
correlation function against a wavepacket� to form!�Y

i

Z
d�ki
�����

Z
d�xi e

i�pi�xi�i�ki�
�
h�jT�
�x��
�x�� � � �� j�i � �����

The wavepackets should be chosen to overlap in a region around x � � and to
separate in the far past and the far future� To analyze this integral� we choose
a large positive time T� such that all of the wavepackets are well separated
for x�i � T�� and we choose a large negative time T� such that all of the
wavepackets are well separated for x�i � T�� Then we can break up each of
of the integrals over x�i into three regions as in ������� The integral of any x�i
over the bounded region II leads to an expression analytic in the corresponding
energy pi�� so we can concentrate on the case in which all of the x�i are placed
at large past or future times�

For de�niteness� consider the contribution in which only two of the time
coordinates� x�� and x��� are in the future� In this case� the �elds 
�x�� and

�x�� stand to the left of the other �elds in time order� Inserting a complete
set of states j�Ki� the integrations in ����� over the coordinates of these two
�elds take the form

X
�

Z
d�K

�����


�EK

� Y
i
���

Z
d�ki
�����

Z
d�xi e

i�pi�xi�i�ki�
�

	 h�jT�
�x��
�x��� j�Ki h�KjT�
�x�� � � �� j�i �
The state j�Ki is annihilated by two �eld operators constrained to lie in
distant wavepackets� It must therefore consist of two distinct excitations of
the vacuum at two distinct locations� If these excitations are well separated�

�As in Section ���� the product symbol applies symbolically to the integrations as
well as to the other factors within the parentheses� the xi integrals apply to what lies
outside the parentheses as well�
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they should be independent of one another� so we can approximateX
�

Z
d�K

�����


�EK
h�jT�
�x��
�x��� j�Ki h�Kj

�
X
�����

Z
d�q�
�����



�Eq�

Z
d�q�
�����



�Eq�
h�j
�x�� j�q�i h�j
�x�� j�q�i h�q� �q� j �

The sums over �� and �� in the this equation run over all zero�momentum
states� but only single�particle states will contribute the poles we are looking
for� In this case� the integrals over x�� and q� produce a sharp singularity in
p�� of the form of ������� and the integrals over x�� and q� produce the same
singular behavior in p��� The term in ����� with both singularities is� Y

i
���

Z
d�ki
�����

�i�ki�
i

'p�i�m��i�
�
p
Z

�
hk�k�jT

�

�x�� � � �

� j�i �
In the limit in which the wavepackets tend to delta functions concentrated at
de�nite momenta p� and p�� this expression tends to� Y

i
���

i

pi��m��i�
�
p
Z

�
outhp�p�jT

�

�x�� � � �

� j�i �
The state hp�p�j is precisely an out state as de�ned in Section ��
� since it
is the de�nite�momentum limit of a state of particles constrained to well�
separated wavepackets� Applying the same analysis to the times x�i in the far
past gives the result that the coe	cient of the maximally singular term in
the corresponding p�i is a matrix element with an in state� This most singular
term in ����� thus has the form� Y

i
���

i

pi��m��i�
�
p
Z

�� Y
i
�����

i

pi��m��i�
�
p
Z

�
outhp�p�j�p� � � �iin�

The last factor is just an S�matrix element�
We have now shown that we can extract the value of an S�matrix ele�

ment by folding the corresponding vacuum expectation value of �elds with
wavepackets� extracting the leading singularities in the energies p�i � and then
taking the limit as these wavepackets become delta functions of momenta�
However� the computation would be made much simpler if we could do these
operations in the reverse order��rst letting the wavepackets become delta
functions� returning us to the simple Fourier transform� and then extracting
the singularities� In fact� the result for the leading singularity is not changed
by this switch of the order of operations� It is� however� rather subtle to argue
this point� Roughly� the explanation is the following� In the language of the
analysis just completed� new singularities might arise because� in the Fourier
transform� x� and x� can become close together in the far future� However�
in this region� the exponential factor is close to exp$i�p��p�� � x�%� and thus
the new singularities are single poles in the variable �p�� � p���� rather than
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being products of poles in the two separate energy variables� A more care�
ful argument �unfortunately� couched in a rather di�erent language� can be
found in the original paper of Lehmann� Symanzik� and Zimmermann cited
at the beginning of this section�

Given the ability to make this reversal in the order of operations� we
obtain a precise relation between Fourier transforms of correlation functions
and S�matrix elements� This is the LSZ reduction formula�

nY
�

Z
d�xi e

ipi�xi
mY
�

Z
d�yj e

�ikj �yj h�jT�
�x�� � � �
�xn�
�y�� � � �
�ym�
� j�i

�
each p�i��Epi
each k�j��Ekj

� nY
i
�

p
Z i

p�i�m��i�

�� mY
j
�

p
Z i

k�j�m��i�

�
hp� � � �pnjS jk� � � �kmi �

������
The quantity Z that appears in this equation is exactly the �eld�strength
renormalization constant� de�ned in Section �� as the residue of the single�
particle pole in the two�point function of �elds� Each distinct particle will
have a distinct renormalization factor Z� obtained from its own two�point
function� For higher�spin �elds� each factor of

p
Z comes with a polarization

factor such as us�p�� as in Eq� ������ The polarization s must be summed
over in the second line of �������

In words� the LSZ formula says that an S�matrix element can be computed
as follows� Compute the appropriate Fourier�transformed correlation function�
look at the region of momentum space where the external particles are near
the mass shell� and identify the coe	cient of the multiparticle pole� For �elds
with spin� one must also multiply by a polarization spinor �like us�p�� or
vector �like �r�k�� to project out the desired spin state�

Our next goal is to express this procedure in the language of Feynman
diagrams� Let us analyze the relation between the diagrammatic expansion of
the scalar �eld four�point function and the S�matrix element for ��particle�
��particle scattering� We will consider explicitly the fully connected Feynman
diagrams contributing to the correlator� By a similar analysis� it is easy to
con�rm that disconnected diagrams should be disregarded because they do
not have the singularity structure� with a product of four poles� indicated on
the right�hand side of �������

The exact four�point function� �Y
�

Z
d�xi e

ipi�xi
�� �Y

�

Z
d�yi e

�iki�yi
�
h�jT�
�x��
�x��
�y��
�y��� j�i

has the general form shown in Fig� ���� In this �gure� we have indicated
explicitly the diagrammatic corrections on each leg� the shaded circle in the
center represents the sum of all amputated four�point diagrams�

We can sum up the corrections to each external leg just as we did for the
electron propagator in the previous section� Let �iM��p�� denote the sum of



��� Chapter � Radiative Corrections� Some Formal Developments

Figure ���� Structure of the exact four�point function in scalar �eld theory�

all one�particle�irreducible �PI� insertions into the scalar propagator�

Then the exact propagator can be written as a geometric series and summed
as in Eq� �������

�

�
i

p� �m�
�

�
i

p� �m�
�

��iM�
� i

p� �m�
�

� � � �

�
i

p� �m�
� �M��p��

� ������

Notice that� as in the case of the electron propagator� our sign convention
for the PI self�energy M��p�� implies that a positive contribution to M��p��
corresponds to a positive shift of the scalar particle mass� If we expand each
resummed propagator about the physical particle pole� we see that each ex�
ternal leg of the four�point amplitude contributes

i

p� �m�
� �M�

�
p��Ep

iZ

p� �m�
� �regular�� ������

Thus� the sum of diagrams contains a product of four poles�

iZ

p�� �m�

iZ

p�� �m�

iZ

k�� �m�

iZ

k�� �m�
�

This is exactly the singularity on the second line of ������� Comparing the
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coe	cients of this product of poles� we �nd the relation

hp�p�jS jk�k�i �
�p

Z
��

�

where the shaded circle is the sum of amputated four�point diagrams and Z
is the �eld�strength renormalization factor�

An identical analysis can be applied to the Fourier transform of the �n�
���point correlator in a general �eld theory� The relation between S�matrix
elements and Feynman diagrams then takes the form

hp� � � �pnjS jk�k�i �
�p

Z
�n��

� ����
�

�If the external particles are of di�erent species� each has its own renormal�
ization factor

p
Z� if the particles have nonzero spin� there will be additional

polarization factors such as us�k� on the right�hand side�� This is almost pre�
cisely the diagrammatic formula for the S�matrix that we wrote down in
Section ���� The only new feature is the appearance of the renormalization
factors

p
Z� The Z factors are irrelevant for calculations at the leading order

of perturbation theory� but are important in the calculation of higher�order
corrections�

Up to this point� we have performed only one full calculation of a higher�
order correction� the computation of the order�	 corrections to the electron
form factors� We did not take into account the e�ects of the electron �eld�
strength renormalization� Let us now add in this factor and examine its e�ects�

Since the expressions ������ and ������ for electron scattering from a heavy
target were derived using our previous� incorrect formula for S�matrix ele�
ments� we should correct these formulae by inserting factors of

p
Z� for the

initial and �nal electrons� Equation ������ for the structure of the exact vertex
should then read

Z�,
��p�� p� � ��F��q

�� �
i���q�
�m

F��q
��� ������

with ,��p�� p� the sum of amputated electron�photon vertex diagrams�
We can use this equation to reevaluate the form factors to order 	� Since

Z� �  �O�	� and F� begins in order 	� our previous computation of F� is
una�ected� To compute F�� write the left�hand side of ������ as

Z�,
� � � � �Z����

� � �,�� � �� � �,� � �� ��Z��
where �Z� and �,� denote the order�	 corrections to these quantities� Com�
paring to the right�hand side of ������� we see that F��q

�� receives a new
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contribution equal to �Z�� Now let �F��q
�� denote the �unsubtracted� correc�

tion to the form factor that we computed in Section ���� and recall from the
end of Section �� that �Z� � ��F����� Then

F��q
�� �  � �F��q

�� � �Z� �  �
�
�F��q

��� �F����
�
�

This is exactly the result we claimed� but did not prove� in Section ���� The
inclusion of �eld�strength renormalization justi�es the subtraction procedure
that we applied on an ad hoc basis there�

At this level of analysis� it is di	cult to see how the cancellation of di�
vergences in F� will persist to higher orders� Worse� though we argued in
Section ��� for the general result F���� � � our veri�cation of this result in
order 	 seems to depend on a numerical coincidence�

We can state this problem carefully as follows� De�ne a second rescaling
factor Z� by the relation

,��q � �� � Z��� ��� ������

where ,� is the complete amputated vertex function� To �nd F���� � �
we must prove the identity Z� � Z�� so that the vertex rescaling exactly
compensates the electron �eld�strength renormalization� We will prove this
identity to all orders in perturbation theory at the end Section ����

We conclude our discussion of the LSZ reduction formula with one fur�
ther formal observation� The LSZ formula distinguishes in and out particles
only by the sign of the Fourier transform momentum p�i or k�i � This means
that� by analytically continuing the residue of the pole in p� from positive
to negative p�� we can convert the S�matrix element with 
�p� in the �nal
state into the S�matrix element with the antiparticle 
���p� in the initial
state� This is exactly the statement of crossing symmetry � which we derived
diagrammatically in Section 
���

h� � �
�p�jS j� � �i
��
p
�k � h� � �jS j
��k� � � �i �

Since the proof of the LSZ formula does not depend on perturbation theory� we
see that the crossing symmetry of the S�matrix is a general result of quantum
theory� not merely a property of Feynman diagrams�

��� The Optical Theorem

In Section �� we saw that the two�point correlation function of quantum
�elds� viewed as an analytic function of the momentum p�� has branch cut
singularities associated with multiparticle intermediate states� This conclusion
should not be surprising to those familiar with nonrelativistic scattering the�
ory� since it is already true there that the scattering amplitude� as a function
of energy� has a branch cut on the positive real axis� The imaginary part of
the scattering amplitude appears as a discontinuity across this branch cut� By
the optical theorem� the imaginary part of the forward scattering amplitude is



�� The Optical Theorem ���

Figure ���� The optical theorem� The imaginary part of a forward scattering
amplitude arises from a sum of contributions from all possible intermediate�
state particles�

proportional to the total cross section� We will now prove the �eld�theoretic
version of the optical theorem and illustrate how it arises in Feynman diagram
calculations�

The optical theorem is a straightforward consequence of the unitarity of
the S�matrix� SyS � � Inserting S �  � iT as in ������� we have

�i�T � T y� � T yT� ������

Let us take the matrix element of this equation between two�particle states
jp�p�i and jk�k�i� To evaluate the right�hand side� insert a complete set of
intermediate states�

hp�p�jT yT jk�k�i �
X
n

� nY
i
�

Z
d�qi
�����



�Ei

�
hp�p�jT y jfqigi hfqigjT jk�k�i�

Now express the T �matrix elements as invariant matrix elements M times
��momentum�conserving delta functions� Identity ������ then becomes

� i
�M�k�k� � p�p���M��p�p� � k�k��

�
�
X
n

� nY
i
�

Z
d�qi
�����



�Ei

�
M��p�p� � fqig�M�k�k� � fqig�

	 ����������k��k��
P
i
qi��

times an overall delta function ����������k��k��p��p��� Let us abbreviate
this identity as

�i�M�a� b��M��b� a�
�
�
X
f

Z
d/f M��b� f�M�a� f�� ������

where the sum runs over all possible sets f of �nal�state particles� Although
we have so far assumed that a and b are two�particle states� they could equally
well be one�particle or multiparticle asymptotic states�

For the important special case of forward scattering� we can set pi �
ki to obtain a simpler identity� shown pictorially in Fig� ��
� Supplying the
kinematic factors required by ������ to build a cross section� we obtain the
standard form of the optical theorem�

ImM�k�� k� � k�� k�� � �Ecmpcm�tot�k�� k� � anything�� ���
��
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where Ecm is the total center�of�mass energy and pcm is the momentum of ei�
ther particle in the center�of�mass frame� This equation relates the forward
scattering amplitude to the total cross section for production of all �nal states�
Since the imaginary part of the forward scattering amplitude gives the atten�
uation of the forward�going wave as the beam passes through the target� it is
natural that this quantity should be proportional to the probability of scat�
tering� Identity ���
�� gives the precise connection�

The Optical Theorem for Feynman Diagrams

Let us now investigate how this identity for the imaginary part of an S�
matrix element arises in the Feynman diagram expansion� It is easily checked
�in QED� for example� that each diagram contributing to an S�matrix element
M is purely real unless some denominators vanish� so that the i� prescription
for treating the poles becomes relevant� A Feynman diagram thus yields an
imaginary part for M only when the virtual particles in the diagram go on�
shell� We will now show how to isolate and compute this imaginary part�

For our present purposes� let us de�ne M by the Feynman rules for per�
turbation theory� This allows us to consider M�s� as an analytic function of
the complex variable s � E�

cm� even though S�matrix elements are de�ned
only for external particles with real momenta�

We �rst demonstrate that the appearance of an imaginary part of M�s�
always requires a branch cut singularity� Let s� be the threshold energy for
production of the lightest multiparticle state� For real s below s� the interme�
diate state cannot go on�shell� so M�s� is real� Thus� for real s � s�� we have
the identity

M�s� �
�M�s��

��
� ���
�

Each side of this equation is an analytic function of s� so it can be analytically
continued to the entire complex s plane� In particular� near the real axis for
s � s�� Eq� ���
� implies

ReM�s� i�� � ReM�s� i���

ImM�s� i�� � � ImM�s� i���

There is a branch cut across the real axis� starting at the threshold energy s��
the discontinuity across the cut is

DiscM�s� � �i ImM�s� i���

Usually it is easier to compute the discontinuity of a diagram than to compute
the imaginary part directly� The i� prescription in the Feynman propagator
indicates that physical scattering amplitudes should be evaluated above the
cut� at s� i��

We already saw in Section �� that the electron self�energy diagram has
a branch cut beginning at the physical electron�photon threshold� Let us now
study more general one�loop diagrams� and show that their discontinuities
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give precisely the imaginary parts required by ������� The generalization of
this result to multiloop diagrams has been proven by Cutkosky�y who showed
in the process that the discontinuity of a Feynman diagram across its branch
cut is always given by a simple set of cutting rules�z

We begin by checking ������ in 
� theory� Since the right�hand side of
������ begins in order ��� we expect that ImM should also receive its �rst
contribution from higher�order diagrams� Consider� then� the order��� dia�
gram

with a loop in the s�channel� �It is easy to check that the corresponding t� and
u�channel diagrams have no branch cut singularities for s above threshold��
The total momentum is k � k� � k�� and for simplicity we have chosen the
symmetrical routing of momenta shown above� The value of this Feynman
diagram is

i�M �
��

�

Z
d�q

�����


�k��� q�� �m� � i�



�k�� � q�� �m� � i�
� ���
��

When this integral is evaluated using the methods of Section ���� the Wick
rotation produces an extra factor of i� so that� below threshold� �M is purely
real�

We would like to verify that the integral ���
�� has a discontinuity across
the real axis in the physical region k� � �m� It is easiest to identify this
discontinuity by computing the integral for k� � �m� then increasing k� by
analytic continuation� It is not di	cult to compute the integral directly using
Feynman parameters �see Problem ���� However� it is illuminating to use a
less direct approach� as follows�

Let us work in the center�of�mass frame� where k � �k����� Then the
integrand of ���
�� has four poles in the integration variable q�� at the locations

q� � �
�k

� � �Eq � i��� q� � � �
�k

� � �Eq � i���

yR� E� Cutkosky� J� Math� Phys� �� ��	 ��	����
zThese rules are simple only for singularities in the physical region� Away from

the physical region� the singularities of three� and higher�point amplitudes can become
quite intricate� This subject is reviewed in R� J� Eden� P� V� Landsho�� D� I� Olive�
and J� C� Polkinghorne� The Analytic S�Matrix �Cambridge University Press� �	����
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Two of these poles lie above the real q� axis and two lie below� as shown�

We will close the integration contour downward and pick up the residues of the
poles in the lower half�plane� Of these� only the pole at q� � �����k� � Eq
will contribute to the discontinuity� Note that picking up the residue of this
pole is equivalent to replacing



�k�� � q�� �m� � i�
� ���i���k�� � q�� �m�

�
���
��

under the dq� integral�
The contribution of this pole yields the integral

i�M �� ��i
��

�

Z
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�Eq
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q
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�Z
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dEqEqjqj 
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k��k� � �Eq�
�

���
��

The integrand in the second line has a pole at Eq � k���� When k� � �m�
this pole does not lie on the integration contour� so �M is manifestly real�
When k� � �m� however� the pole lies just above or below the contour of
integration� depending upon whether k� is given a small positive or negative
imaginary part�

Thus the integral acquires a discontinuity between k� � i� and k� � i�� To
compute this discontinuity� apply



k� � �Eq � i�
� P



k� � �Eq
� i���k� � �Eq�

�where P denotes the principal value�� The discontinuity is given by replacing
the pole with a delta function� This in turn is equivalent to replacing the
original propagator by a delta function�



�k��� q�� �m� � i�
� ���i���k��� q�� �m�

�
� ���

�
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Figure ���� Two contributions to the optical theorem for Bhabha scattering�

Let us now retrace our steps and see what we have proved� Go back to
the original integral ���
��� relabel the momenta on the two propagators as
p�� p� and substituteZ

d�q

�����
�

Z
d�p�
�����

Z
d�p�
�����

����������p� � p� � k��

We have shown that the discontinuity of the integral is computed by replacing
each of the two propagators by a delta function�



p�i �m� � i�
� ���i��p�i �m��� ���
��

The discontinuity ofM comes only from the region of the d�q integral in which
the two delta functions are simultaneously satis�ed� By integrating over the
delta functions� we put the momenta pi on shell and convert the integrals
d�pi into integrals over relativistic phase space� What is left over in expres�
sion ���
�� is just the factor ��� the square of the leading�order scattering
amplitude� and the symmetry factor ����� which can be reinterpreted as the
symmetry factor for identical bosons in the �nal state� Thus we have shown
that� to order �� on each side of the equation�

DiscM�k� � �i ImM�k�

�
i

�

Z
d�p�
�����



�E�

d�p�
�����



�E�

��M�k�
�������������p� � p� � k��

This explicitly veri�es ������ to order �� in 
� theory�
The preceding argument made no essential use of the fact that the two

propagators in the diagram had equal masses� or of the fact that these propa�
gators connected to a simple point vertex� Indeed� the analysis can be applied
to an arbitrary one�loop diagram� Whenever� in the region of momentum in�
tegration of the diagram� two propagators can simultaneously go on�shell� we
can follow the argument above to compute a nonzero discontinuity of M�
The value of this discontinuity is given by making the substitution ���
�� for
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each of the two propagators� For example� in the order�	� Bhabha scattering
diagrams shown in Fig� ���� we can compute the imaginary parts by cutting
through the diagrams as shown and putting the cut propagators on shell using
���
��� The poles of the additional propagators in the diagrams do not con�
tribute to the discontinuities� By integrating over the delta functions as in the
previous paragraph� we derive the indicated relations between the imaginary
parts of these diagrams and contributions to the total cross section�

Cutkosky proved that this method of computing discontinuities is com�
pletely general� The physical discontinuity of any Feynman diagram is given
by the following algorithm�

� Cut through the diagram in all possible ways such that the cut propaga�
tors can simultaneously be put on shell�

�� For each cut� replace ��p��m��i��� ���i��p��m�� in each cut prop�
agator� then perform the loop integrals�

�� Sum the contributions of all possible cuts�

Using these cutting rules� it is possible to prove the optical theorem ������ to
all orders in perturbation theory�

Unstable Particles

The cutting rules imply that the generalized optical theorem ������ is true
not only for S�matrix elements� but for any amplitudesM that we can de�ne
in terms of Feynman diagrams� This fact is extremely useful for dealing with
unstable particles� which never appear in asymptotic states�

Recall from Eq� ������ that the exact two�point function for a scalar par�
ticle has the form

�
i

p� �m�
� �M��p��

�

We de�ned the quantity �iM��p�� as the sum of all PI insertions into the
boson propagator� but we can equally well think of it as the sum of all am�
putated diagrams for �particle � �particle �scattering�� The LSZ formula
then implies

M�p� p� � �ZM��p��� ���
��

We can use this relation and the generalized optical theorem ������ to discuss
the imaginary part of M��p���

First consider the familiar case where the scalar boson is stable� In this
case� there is no possible �nal state that can contribute to the right�hand side
of ������� Thus M��p�� is real� The position of the pole in the propagator is
determined by the equation m� �m�

� �M��m�� � �� which has a real�valued
solution m� The pole therefore lies on the real p� axis� below the multiparticle
branch cut�

Often� however� a particle can decay into two or more lighter particles�
In this case M��p�� will acquire an imaginary part� so we must modify our
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de�nitions slightly� Let us de�ne the particle�s mass m by the condition

m� �m�
� �ReM��m�� � �� ���
��

Then the pole in the propagator is displaced from the real axis�

� iZ

p� �m� � iZ ImM��p��
�

If this propagator appears in the s channel of a Feynman diagram� the cross
section one computes� in the vicinity of the pole� will have the form

� �
���� 

s�m� � iZ ImM��s�

������ ���
��

This expression closely resembles the relativistic Breit�Wigner formula ������
for the cross section in the region of a resonance�

� �
���� 

p� �m� � im,

������ ������

The massm de�ned by ���
�� is the position of the resonance� If ImM��m�� is
small� so that the resonance in ���
�� is narrow� we can approximate ImM��s�
as ImM��m�� over the width of the resonance� then ���
�� will have precisely
the Breit�Wigner form� In this case� we can identify

, � �Z

m
ImM��m��� �����

If the resonance is broad� it will show deviations from the Breit�Wigner shape�
generally becoming narrower on the leading edge and broader on the trailing
edge�

To compute ImM�� and hence ,� we could use the de�nition of M� as the
sum of PI insertions into the propagator� The imaginary parts of the relevant
loop diagrams give the decay rate� But the optical theorem ������� generalized
to Feynman diagrams by the Cutkosky rules� simpli�es this procedure� If we
take ���
�� as the de�nition of the matrix element M�p � p�� and similarly
de�ne the decay matrix elements M�p� f� through their Feynman diagram
expansions� then ������ implies

Z ImM��p�� � � ImM�p� p� � �

�

X
f

Z
d/f jM�p� f�j�� ������

where the sum runs over all possible �nal states f � The decay rate is therefore

, �


�m

X
f

Z
d/f jM�p� f�j�� ������

as quoted in Eq� �������
We stress once again that our derivation of this equation applies only

to the case of a long�lived unstable particle� so that , � m� For a broad
resonance� the full energy dependence of M��p�� must be taken into account�
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��� The Ward�Takahashi Identity

Of the loose ends listed at the beginning of this chapter� only one remains� the
proof of the Ward identity� Recall from Section 
�
 that this identity states
the following� IfM�k� � ���k�M��k� is the amplitude for some QED process
involving an external photon with momentum k� then this amplitude vanishes
if we replace �� with k��

k�M��k� � �� ������

To prove this assertion� it is useful to prove a more general identity for QED
correlation functions� called theWard�Takahashi identity� To discuss this more
general case we will letM denote a Fourier�transformed correlation function�
in which the external momenta are not necessarily on�shell� The right�hand
side of ������ will contain nonzero terms in this case� but when we apply the
LSZ formula to extract an S�matrix element� those terms will not contribute�

We will prove the Ward�Takahashi identity order by order in 	� by looking
directly at the Feynman diagrams that contribute to M�k�� The identity is
generally not true for individual Feynman diagrams� we must sum over the
diagrams for M�k� at any given order�

Consider a typical diagram for a typical amplitude M�k��

If we remove the photon ��k�� we obtain a simpler diagram which is part
of a simpler amplitude M�� If we reinsert the photon somewhere else inside
the simpler diagram� we again obtain a contribution to M�k�� The crucial
observation is that by summing over all the diagrams that contribute to M��
then summing over all possible points of insertion in each of these diagrams�
we obtain M�k�� The Ward�Takahashi identity is true individually for each
diagram contributing to M�� once we sum over insertion points� this is what
we will prove�

When we insert our photon into one of the diagrams ofM�� it must attach
either to an electron line that runs out of the diagram to two external points�
or to an internal electron loop� Let us consider each of these cases in turn�

First suppose that the electron line runs between external points� Before
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we insert our photon ��k�� the line looks like this�

The electron propagators have momenta p� p� � p� q�� p� � p� � q�� and so
on up to p� � pn�� � qn� If there are n vertices� we can insert our photon in
n�  di�erent places� Suppose we insert it after the ith vertex�

The electron propagators to the left of the new photon then have their mo�
menta increased by k�

Let us now look at the values of these diagrams� with the polarization
vector ���k� replaced by k�� The product of k� with the new vertex is conve�
niently written�

�iek��� � �ie��pi � k �m�� �pi �m�
�
�

Multiplying by the adjacent electron propagators� we obtain

i

pi�k�m
�
�iek

� i

pi�m
� e

�
i

pi�m
� i

pi�k�m
�
� ����
�

The diagram with the photon inserted at position i therefore has the structure

� � � �
�

i

pi���k�m
�
��i��

�
i

pi�m
� i

pi� k�m
�
��i

	
�

i

pi���m
�
��i�� � � � �

Similarly� the diagram with the photon inserted at position i �  has the
structure

� � � �
�

i

pi��� k�m
�
��i��

�
i

pi�k�m
�
��i

	
�

i

pi���m
� i

pi��� k�m
�
��i�� � � � �

Note that the �rst term of this expression cancels the second term of the
previous expression� A similar cancellation occurs between any other pair of
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diagrams with adjacent insertions� When we sum over all possible insertion
points along the line� everything cancels except the unpaired terms at the
ends� The unpaired term coming from insertion after the last vertex �on the
far left� is just e times the value of the original diagram� the other unpaired
term� from insertion before the �rst vertex� is identical except for a minus sign
and the replacement of p by p � k everywhere� Diagrammatically� our result
is

������

where we have renamed p� � k � q for the sake of symmetry�
In each diagram on the left�hand side of ������� the momentum entering

the electron line is p and the momentum exiting is q� According to the LSZ
formula� we can extract from each diagram a contribution to an S�matrix
element by taking the coe	cient of the product of poles�

i

q�m
��

i

p�m
�
�

The terms on the right�hand side of ������ each contain one of these poles�
but neither contains both poles� Thus the right�hand side of ������ contributes
nothing to the S�matrix�!

To complete the proof of the Ward�Takahashi identity� we must consider
the case in which our photon attaches to an internal electron loop� Before the
insertion of the photon� a typical loop looks like this�

�This step of the argument is straightforward only if we have arranged the per�
turbation series so that the propagator contains m rather than m�� We will do this in
Chapter ���
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The electron propagators have momenta p�� p�� q� � p�� and so on up to pn�
Suppose now that we insert the photon ��k� between vertices i and i� �

We now have an additional momentum k running around the loop from the
new vertex� by convention� this momentum exits at vertex �

To evaluate the sum over all such insertions into the loop� apply iden�
tity ����
� to each diagram� For the diagram in which the photon is inserted
between vertices  and �� we obtain

�e
Z

d�p�
�����

tr

�
i

pn�k�m
�
��n � � �

�
i

p��k�m
�
���

	
�

i

p��m
� i

p��k�m
�
���
�
�

The �rst term will be canceled by one of the terms from the diagram with
the photon inserted between vertices � and �� Similar cancellations take place
between terms from other pairs of adjacent insertions� When we sum over all
n insertion points we are left with

�e
Z

d�p�
�����

tr

�
i

pn�m
�
��n
�

i

pn���m
�
��n�� � � �

�
i

p��m
�
���

�
�

i

pn�k�m
�
��n
�

i

pn���k�m
�
��n�� � � �

�
i

p��k�m
�
���
�
�

������
Shifting the integration variable from p� to p� � k in the second term� we see
that the two remaining terms cancel� Thus the diagrams in which the photon
is inserted along a closed loop add up to zero�

We are now ready to assemble the pieces of the proof� Suppose that the
amplitudeM has �n external electron lines� n incoming and n outgoing� Label



��� Chapter � Radiative Corrections� Some Formal Developments

the incoming momenta pi and the outgoing momenta qi�

M�k� p� � � � pn� q� � � � qn� �

�The amplitude can also involve an arbitrary number of additional external
photons�� The amplitudeM� lacks the photon ��k� but is otherwise identical�
To form k�M� from M� we must sum over all diagrams that contribute to
M�� and for each diagram� sum over all points at which the photon could be
inserted� Summing over insertion points along an internal loop in any diagram
gives zero� Summing over insertion points along a through�going line in any
diagram gives a contribution of the form ������� Summing over all insertion
points for any particular diagram� we obtain

where the shaded circle represents any particular diagram that contributes
to M�� Summing over all such diagrams� we �nally obtain

k�M�
�
k� p� � � � pn� q� � � � qn

�
� e
X
i

h
M�

�
p� � � � pn� q� � � � �qi�k� � � �

�
�M�

�
p� � � � �pi�k� � � � � q� � � � qn

�i
�

������

This is the Ward�Takahashi identity for correlation functions in QED� We saw
below ������ that the right�hand side does not contribute to the S�matrix� thus
in the special case whereM is an S�matrix element� Eq� ������ reduces to the
Ward identity �������

Before discussing this identity further� we should mention a potential �aw
in the above proof� In order to �nd the necessary cancellation in Eq� �������
we had to shift the integration variable by a constant� If the integral diverges�
however� this shift is not permissible� Similarly� there may be divergent loop�
momentum integrals in the expressions leading to Eq� ������� Here there is
no explicit shift in the proof� but in practice one does generally perform a
shift while evaluating the integrals� In either case� ultraviolet divergences can
potentially invalidate the Ward�Takahashi identity� We will see an example of
this problem� as well as a general solution to it� in the next section�
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The simplest example of the Ward�Takahashi identity involves� on the left�
hand side� the three�point function with one entering and one exiting electron
and one external photon�

The quantities on the right�hand side are exact electron propagators� evalu�
ated at p and �p� k� respectively� Label these quantities S�p� and S�p� k��
from Eq� �������

S�p� �
i

p�m�*�p�
�

The full three�point amplitude on the left�hand side can be rewritten� just
as in Eq� ������� as a product of full propagators for the entering and exiting
electrons� times an amputated scattering diagram� In this case� the amputated
function is just the vertex ,��p � k� p�� Then the Ward�Takahashi identity
reads�

S�p� k�
��iek�,��p� k� p�

�
S�p� � e�S�p�� S�p� k���

To simplify this equation� multiply� on the left and right respectively� by the
Dirac matrices S���p� k� and S���p�� This gives

�ik�,��p� k� p� � S���p� k�� S���p�� ������

Often the term Ward�Takahashi identity is used to mean only this special
case�

We can use identity ������ to obtain the general relation between the
renormalization factors Z� and Z�� We de�ned Z� in ������ by the relation

,��p� k� p�� Z��� �� as k � ��

We de�ned Z� as the residue of the pole in S�p��

S�p� � iZ�
p�m

�

Setting p near mass shell and expanding ������ about k � �� we �nd for the
�rst�order terms on the left and right

�iZ��� k � �iZ��� k�
that is�

Z� � Z�� ������

Thus� the Ward�Takahashi identity guarantees the exact cancellation of in��
nite rescaling factors in the electron scattering amplitude that we found at
the end of Section ���� When combined with the correct formal expression
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������ for the electron form factors� this identity guarantees that F���� � 
to all orders in perturbation theory�

Often� in the literature� the terms Ward identity� current conservation�
and gauge invariance are used interchangeably� This is quite natural� since
the Ward identity is the diagrammatic expression of the conservation of the
electric current� which is in turn a consequence of gauge invariance� In this
book� however� we will distinguish these three concepts� By gauge invariance

we mean the fundamental symmetry of the Lagrangian� by current conserva�

tion we mean the equation of motion that follows from this symmetry� and
by the Ward identity we mean the diagrammatic identity that imposes the
symmetry on quantum mechanical amplitudes�

��� Renormalization of the Electric Charge

At the beginning of Chapter � we set out to study the order�	 radiative
corrections to electron scattering from a heavy target� We evaluated �at least
in the classical limit� the bremsstrahlung diagrams�

and also the corrections due to virtual photons�

Our discussion of �eld�strength renormalization in this chapter has �nally
clari�ed the role of the last two diagrams� In particular� we have seen that
the Ward identity� through the relation Z� � Z�� insures that the sum of the
virtual photon corrections vanishes as the momentum transfer q goes to zero�

There is one remaining type of radiative correction to this process�

This is the order�	 vacuum polarization diagram� also known as the photon

self�energy� It can be viewed as a modi�cation to the photon structure by a
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virtual electron�positron pair� This diagram will alter the e�ective �eld A��x�
seen by the scattered electron� It can potentially shift the overall strength of
this �eld� and can also change its dependence on x �or in Fourier space� on
q�� In this section we will compute this diagram� and see that it has both of
these e�ects�

Overview of Charge Renormalization

Before beginning a detailed calculation� let�s ask what kind of an answer we
expect and what its interpretation will be� The interesting part of the diagram
is the electron loop�

� ��ie�����
Z

d�k

�����
tr


��

i

k �m
��

i

k � q �m

�
� i/��

� �q�� �����

�The fermion loop factor of ��� was derived in Eq� �������� More generally�
let us de�ne i/���q� to be the sum of all �particle�irreducible insertions into
the photon propagator�

� i/���q�� ������

so that /��
� �q� is the second�order �in e� contribution to /���q��

The only tensors that can appear in /���q� are g�� and q�q� � The Ward
identity� however� tells us that q�/

���q� � �� This implies that /���q� is
proportional to the projector �g�� � q�q��q��� Furthermore� we expect that
/���q� will not have a pole at q� � �� the only obvious source of such a pole
would be a single�massless�particle intermediate state� which cannot occur in
any PI diagram�y It is therefore convenient to extract the tensor structure
from /�� in the following way�

/���q� � �q�g�� � q�q��/�q��� ������

where /�q�� is regular at q� � ��
Using this notation� the exact photon two�point function is

�

�
�ig��
q�

�
�ig��
q�

h
i�q�g�� � q�q��/�q��

i�ig��
q�

� � � �

yOne can prove that there is no such pole� but the proof is nontrivial� Schwinger
has shown that� in two spacetime dimensions� the singularity in $� due to a pair of
massless fermions is a pole rather than a cut� this is a famous counterexample to our
argument� There is no such problem in four dimensions�
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�
�ig��
q�

�
�ig��
q�

��
�/�q

�� �
�ig��
q�

��
��

�
�/

��q�� � � � � �

where ��
� � ��� � q�q��q

�� Noting that ��
��

�
� � ��

� � we can simplify this
expression to

�
�ig��
q�

�
�ig��
q�

�
��� �

q�q�
q�

��
/�q�� � /��q�� � � � ��

�
�i

q�
�
�/�q��

��g�� � q�q�
q�

�
�
�i
q�

�q�q�
q�

�
� ������

In any S�matrix element calculation� at least one end of this exact prop�
agator will connect to a fermion line� When we sum over all places along the
line where it could connect� we must �nd� according to the Ward identity�
that terms proportional to q� or q� vanish� For the purposes of computing
S�matrix elements� therefore� we can abbreviate

�
�ig��

q�
�
�/�q��

� � ����
�

Notice that as long as /�q�� is regular at q� � �� the exact propagator always
has a pole at q� � �� In other words� the photon remains absolutely massless
at all orders in perturbation theory� This claim depends strongly on our use of
the Ward identity in ������� If� for example� /���q� contained a term M�g��

�with no compensating q�q� term�� the photon mass would be shifted to M �
The residue of the q� � � pole is



�/���
� Z��

The amplitude for any low�q� scattering process will be shifted by this factor�
relative to the tree�level approximation�

��

or � � � e
�g��
q�

� � � �� � � � Z� e
�g��
q�

� � � �

Since a factor of e lies at each end of the photon propagator� we can con�
veniently account for this shift by making the replacement e � p

Z� e� This
replacement is called charge renormalization� it is in many ways analogous to
the mass renormalization introduced in Section ��� Note in particular that
the �physical� electron charge measured in experiments is

p
Z� e� We will

therefore shift our notation and call this quantity simply e� From now on we
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will refer to the �bare� charge �the quantity that multiplies A���
�� in the

Lagrangian� as e�� We then have

�physical charge� � e �
p
Z� e� �

p
Z� � �bare charge�� ������

To lowest order� Z� �  and e � e��
In addition to this constant shift in the strength of the electric charge�

/�q�� has another e�ect� Consider a scattering process with nonzero q�� and
suppose that we have computed /�q�� to leading order in 	� /�q�� � /��q

���
The amplitude for the process will then involve the quantity

�ig��
q�

�
e��

�/�q��

�
�
O���

�ig��
q�

�
e�

� �/��q���/����
���

�Swapping e� for e�� does not matter to lowest order�� The quantity in paren�
theses can be interpreted as a q��dependent electric charge� The full e�ect of
replacing the tree�level photon propagator with the exact photon propagator
is therefore to replace

	� � 	e��q
�� �

e�����

�/�q��
�
O���

	

� �/��q���/����
� � ������

�To leading order we could just as well bring the /�terms into the numerator�
but we will see in Chapter � that in this form� the expression is true to all
orders when /� is replaced by /��

Computation of 	�

Having worked so hard to interpret /��q
��� we had better calculate it� Going

back to ������ we have

i/��
� �q� � ���ie��

Z
d�k

�����
tr


��

i�k �m�

k� �m�
��

i�k � q �m�

�k � q�� �m�

�

� ��e�
Z

d�k

�����
k��k�q�� � k��k�q�� � g��

�
k ��k�q��m�

��
k� �m�

��
�k�q�� �m�

� � ������

We have written e and m instead of e� and m� for convenience� since the
di�erence would give only an order�	� contribution to /�� �

Now introduce a Feynman parameter to combine the denominator factors�

�
k� �m�

��
�k�q�� �m�

� � �Z
�

dx


�k� � �xk �q � xq� �m���

�

�Z
�

dx
�

�� � x��x�q� �m�
�� �
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where � � k � xq� In terms of �� the numerator of ������ is

Numerator � ����� � g���� � �x��x�q�q� � g��
�
m� � x��x�q��

� �terms linear in ���

Performing a Wick rotation and substituting �� � i��E� we obtain

i/��
� �q� � ��ie�

�Z
�

dx

Z
d��E
�����

	 � �
�g

����E�g����E��x��x�q�q� �g��
�
m��x��x�q��

���E ����
�

������

where � � m� � x��x�q�� This integral is very badly ultraviolet divergent�
If we were to cut it o� at �E � &� we would �nd for the leading term�

i/��
� �q� � e�&�g�� �

with no compensating q�q� term� This result violates the Ward identity� it
would give the photon an in�nite mass M � e&�

Our proof of the Ward identity has failed� in precisely the way anticipated
at the end of the previous section� The shift of the integration variable in ������
is not permissible when the integral is divergent� In our present calculation�
the failure of the Ward identity is catastrophic� It leads to an in�nite photon
mass�z in con�ict with experiment� Fortunately� there is a way to rescue the
Ward identity�

In the above analysis we regulated the divergent integral in the most
straightforward and most naive way� by cutting it o� at a large momentum &�
But other regulators are possible� and some will in fact preserve the Ward iden�
tity� In our computations of the vertex and electron self�energy diagrams� we
used a Pauli�Villars regulator� This regulator preserved the relation Z� � Z��
a consequence of the Ward identity� a naive cuto� does not �see Problem �����
We could �x our present computation by introducing Pauli�Villars fermions�
Unfortunately� several sets of fermions are required� making the method rather
complicated�! We will use a simpler method� dimensional regularization� due
to �t Hooft and Veltman�y Dimensional regularization preserves the symme�
tries of QED and also of a wide class of more general theories�

The question of which regulator to use has no a priori answer in quantum
�eld theory� Often the choice has no e�ect on the predictions of the theory�

zWe could still make the observed photon mass zero by adding a compensating
in�nite photon mass term to the Lagrangian� More generally� we could add terms to
the Lagrangian to make the Ward identity valid for any n�point correlation function�
This procedure would give the same results as the one we are about to follow� but
would be much more complicated�

�This method is presented in Bjorken and Drell ��	���� p� ����
yG� �t Hooft and M� J� G� Veltman� Nucl� Phys� B��� �
	 ��	����
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When two regulators give di�erent answers for observable quantities� it is gen�
erally because some symmetry �such as the Ward identity� is being violated
by one �or both� of them� In these cases we take the symmetry to be funda�
mental and demand that it be preserved by the regulator� But the validity of
this choice cannot be proven� we are adopting the symmetry as a new axiom�

Dimensional Regularization

The idea of dimensional regularization is very simple to state� Compute the
Feynman diagram as an analytic function of the dimensionality of space�
time� d� For su	ciently small d� any loop�momentum integral will converge
and therefore the Ward identity can be proved� The �nal expression for any
observable quantity should have a well�de�ned limit as d� ��

Let us do a practice calculation to see how this technique works� We
consider spacetime to have one time dimension and �d� � space dimensions�
Then we can Wick�rotate Feynman integrals as before� to give integrals over
a d�dimensional Euclidean space� A typical example isZ

dd�E
����d



���E ����
�

Z
d�d

����d
�
�Z
�

d�E
�d��E

���E ����
� ������

The �rst factor in ������ contains the area of a unit sphere in d dimensions�
To compute it� use the following trick�

�
p
��d �

�Z
dx e�x

�

�d
�

Z
ddx exp

�
�

dP
i
�

x�i

�

�

Z
d�d

�Z
�

dx xd��e�x
�

�

�Z
d�d

�
� ��

�Z
�

d�x�� �x��
d
���e��x

��

�

�Z
d�d

�
� ��,�d����

So the area of a d�dimensional unit sphere isZ
d�d �

��d��

,�d���
� �����

This formula reproduces the familiar special cases�

d ,�d���
R
d�d


p
� �

�  ��

�
p
��� ��

�  ���
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The second factor in ������ is

�Z
�

d�
�d��

��� ����
�



�

�Z
�

d����
����

d
���

��� ����

�


�

� 
�

���d
�

�Z
�

dx x��
d
� ��x� d����

where we have substituted x � ����� � �� in the second line� Using the
de�nition of the beta function�

�Z
�

dx x�����x�	�� � B�	� �� �
,�	�,���

,�	 � ��
� ������

we can easily evaluate the integral over x� The �nal result for the d�dimensional
integral is Z

dd�E
����d



���E ����
�



����d��
,���d

� �

,���

� 
�

���d
�
�

Since ,�z� has isolated poles at z � �� �� ��� � � � � this integral has
isolated poles at d � �� �� �� � � � � To �nd the behavior near d � �� de�ne
� � �� d� and use the approximationz

,���d
� � � ,����� �

�

�
� � �O���� ������

where � � �
��� is the Euler�Mascheroni constant� �This constant will always
cancel in observable quantities�� The integral is thenZ

dd�E
����d



���E ����
��
d��



�����

��
�
� log�� � � log���� �O���

�
� ������

When we de�ned this integral with a Pauli�Villars regulator in Eq� ������ we
found Z

d��E
�����



���E ����
��
	��



�����

�
log

x&�

�
�O�&���

�
�

Thus the �� pole in dimensional regularization corresponds to a logarith�
mic divergence in the momentum integral� Note the curious fact that ������

zThis expansion follows immediately from the in�nite product representation

�

��z�
� ze�z

�Q
n
�

�
� �

z

n

�
e�z�n�
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involves the logarithm of �� a dimensionful quantity� The scale of the loga�
rithm is hidden in the �� term� and appears explicitly when the divergence
is canceled�

You can easily verify the more general integration formulae�Z
dd�E
����d



���E ���n
�



����d��
,�n�d

� �

,�n�

� 
�

�n�d
�
� ����
�

Z
dd�E
����d

��E
���E ���n

�


����d��
d

�

,�n�d
���

,�n�

� 
�

�n�d
��

� ������

In d dimensions� g�� obeys g��g
�� � d� Thus� if the numerator of a symmetric

integrand contains ���� � we should replace

���� � 

d
�� g�� � ������

in analogy with Eq� ������� In QED� the Dirac matrices can be manipulated
as a set of d matrices satisfying

f��� ��g � �g�� � tr$% � �� ������

In manipulating Eq� ������� these rules give the same result as the purely
four�dimensional rules� However� in the evaluation of other diagrams� there
are additional contributions of order �� In particular� the contraction identities
�
��� are modi�ed in d � �� � to

������ � ���� ����

�������� � �g�� � �����

���������� � �������� � ��������

������

These extra terms can contribute to the �nal value of the Feynman diagram
if they multiply a factor ��� from a divergent integral� In QED at one�loop
order� such extra terms appear in the vertex and self�energy diagrams but
cancel when these diagrams are combined to compute an observable quantity�

Computation of 	�� Continued

Now let us apply these dimensional regularization formulae to the momentum
integral in ������� The unpleasant terms with �� in the numerator giveZ

dd�E
����d

�� �
d � �g����E
���E ����

�
�

����d��
��d

� �,��d
� �
� 
�

��d
�
g��

�


����d��
,���d

� �
� 
�

���d
� � ���g����

We would have expected a pole at d � �� since the quadratic divergence in �
dimensions becomes a logarithmic divergence in � dimensions� But the pole
cancels� The Ward identity is working�
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Evaluating the remaining terms in ������ and using � � m� � x��x�q��
we obtain

i/��
� �q� � ��ie�

�Z
�

dx


����d��
,���d

� �

���d��

	 �g����m� � x��x�q��� g��
�
m� � x��x�q��� �x��x�q�q��

� �q�g�� � q�q�� � i/��q
���

where

/��q
�� �

��e�
����d��

�Z
�

dx x��x� ,���
d
� �

���d�� ������

�
d��

��	

�

�Z
�

dx x��x�
��
�
� log�� � � log����

�
�� � �� d��

With dimensional regularization� /��
� �q� indeed takes the form required by

the Ward identity� But it is still logarithmically divergent�
We can now compute the order�	 shift in the electric charge�

e� � e��
e��

� �Z� �
O���

/���� � � �	

���
�

The bare charge is in�nitely larger than the observed charge� But this dif�
ference is not observable� What can be observed is the q� dependence of the
e�ective electric charge ������� This quantity depends on the di�erence

b/��q
�� � /��q

���/���� � ��	

�

�Z
�

dx x��x� log
� m�

m� � x��x�q�
�
� �����

which is independent of � in the limit � � �� For the rest of this section we
will investigate what physics this expression contains�

Interpretation of 	�

First consider the analytic structure of b/��q
��� For q� � �� as is the case when

the photon propagator is in the t� or u�channel� b/��q
�� is manifestly real and

analytic� But for an s�channel process� q� will be positive� The logarithm
function has a branch cut when its argument becomes negative� that is� when

m� � x��x�q� � ��

The product x��x� is at most ��� so b/��q
�� has a branch cut beginning at

q� � �m��

at the threshold for creation of a real electron�positron pair�
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Let us calculate the imaginary part of b/� for q� � �m�� For any �xed q��
the x�values that contribute are between the points x � �

� � �
��� where � �p

� �m��q�� Since Im$log��X � i��% � ��� we have

Im
�b/��q

� � i��
�
� ��	

�
����

�
��

�
�	Z

�
�� �

�	

dx x��x�

� ��	
	��Z

�	��

dy � �� � y�� �y � x� �
� �

� �	
�

s
� �m�

q�

�
 �

�m�

q�

�
� ������

This dependence on q� is exactly the same as in Eq� �
���� the cross section for
production of a fermion�antifermion pair� That is just what we would expect
from the unitarity relation shown in Fig� ����b�� the cut through the diagram
for forward Bhabha scattering gives the total cross section for e�e� � ff �
The parameter � is precisely the velocity of the fermions in the center�of�mass
frame�

Next let us examine how b/��q
�� modi�es the electromagnetic interaction�

as determined by Eq� ������� In the nonrelativistic limit it makes sense to
compute the potential V �r�� For the interaction between unlike charges� we
have� in analogy with Eq� �������

V �x� �

Z
d�q

�����
eiq�x

�e�
jqj��� b/���jqj��

� � ������

Expanding b/� for jq�j � m�� we obtain

V �x� � �	
r
� �	�


m�
�����x�� ������

The correction term indicates that the electromagnetic force becomes much
stronger at small distances� This e�ect can be measured in the hydrogen atom�
where the energy levels are shifted by

�E �

Z
d�x
����x���� ��� �	�


m�
�����x�

�
� � �	�


m�

����������
The wavefunction ��x� is nonzero at the origin only for s�wave states� For the
�S state� the shift is

�E � � �	�


m�
� 	

�m�

��
� �	

m

���
� ����	 ��� eV�

This is a �small� part of the Lamb shift splitting listed in Table ���
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Figure ���� Contour for evaluating the e�ective strength of the electromag�
netic interaction in the nonrelativistic limit� The pole at Q � i� gives the
Coulomb potential� The branch cut gives the order�� correction due to vac�
uum polarization�

The delta function in Eq� ������ is only an approximation� to �nd the true
range of the correction term� we write Eq� ������ in the form

V �x� �
ie�

�����r

�Z
��

dQ
QeiQr

Q� � ��
�
 � b/���Q��

�
�Q � jqj��

where we have inserted a photon mass � to regulate the Coulomb potential� To
perform this integral we push the contour upward �see Fig� ����� The leading
contribution comes from the pole at Q � i�� giving the Coulomb potential�
�	�r� But there is an additional contribution from the branch cut� which
begins at Q � �mi� The real part of the integrand is the same on both sides
of the cut� so the only contribution to the integral comes from the imaginary
part of b/�� De�ning q � �iQ� we �nd that the contribution from the cut is

�V �r� �
�e�

�����r
� �

�Z
�m

dq
e�qr

q
Im
�b/��q

� � i��
�

� �	
r

�

�

�Z
�m

dq
e�qr

q

	

�

s
� �m�

q�

�
 �

�m�

q�

�
�

When r 
 �m� this integral is dominated by the region where q � �m�
Approximating the integrand in this region and substituting t � q � �m� we
�nd

�V �r� � �	
r
� �
�

�Z
�

dt
e��t��m�r

�m

	

�

r
t

m

��
�

�
�O�t�
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e��mr
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�
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Figure ���� Virtual e�e� pairs are e�ectively dipoles of length � �
m�
which screen the bare charge of the electron�

so that

V �r� � �	
r

�
 �

	

�
p
�

e��mr

�mr����
� � � �

�
� ����
�

Thus the range of the correction term is roughly the electron Compton wave�
length� �m� Since hydrogen wavefunctions are nearly constant on this scale�
the delta function in Eq� ������ was a good approximation� The radiative
correction to V �r� is called the Uehling potential�

We can interpret the correction as being due to screening� At r �� �m�
virtual e�e� pairs make the vacuum a dielectric medium in which the apparent
charge is less than the true charge �see Fig� ����� At smaller distances we begin
to penetrate the polarization cloud and see the bare charge� This phenomenon
is known as vacuum polarization�

Now consider the opposite limit� small distance or �q� 
 m�� Equation
����� then becomes

b/��q
�� � �	

�

�Z
�

dx x��x�
h
log
��q�
m�

�
� log

�
x��x���O�m�

q�
�i

�
	

��

h
log
��q�
m�

�
� 


�
�O�m�

q�
�i
�

The e�ective coupling constant in this limit is therefore

	e��q
�� �

	

� 	

��
log
� �q�
Am�

� � ������

where A � exp�
���� The e�ective electric charge becomes much larger
at small distances� as we penetrate the screening cloud of virtual electron�
positron pairs�
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Figure ��	� Di�erential cross section for Bhabha scattering� e�e� � e�e��
at Ecm � �	 GeV� as measured by the HRS collaboration� M� Derrick� et� al��
Phys� Rev� D��� �
� ��	
��� The upper curve is the order��� prediction
derived in Problem ���� plus a very small ���(� correction due to the weak
interaction� The lower curve includes all QED radiative corrections to order
�� except the vacuum polarization contribution� note that these corrections
depend on the experimental conditions� as explained in Chapter �� The middle
curve includes the vacuum polarization contribution as well� which increases
the e�ective value of �� by about ��( at this energy�

The combined vacuum polarization e�ect of the electron and of heavier
quarks and leptons causes the value of 	e��q

�� to increase by about 
� from
q � � to q � ��GeV� and this e�ect is observed in high�energy experiments�
Figure ��� shows the cross section for Bhabha scattering at Ecm � ��GeV�
and a comparison to QED with and without the vacuum polarization diagram�

We can write 	e� as a function of r by setting q � �r� The behavior of
	e��r� for all r is sketched in Fig� ���� The idea of a distance�dependent �or
�scale�dependent� or �running�� coupling constant will be a major theme of
the rest of this book�

 



Problems ���

Figure ���
� A qualitative sketch of the e�ective electromagnetic coupling
constant generated by the one�loop vacuum polarization diagram� as a func�
tion of distance� The horizontal scale covers many orders of magnitude�

Problems

��� In Section �� we used an indirect method to analyze the one�loop s�channel
diagram for boson�boson scattering in �� theory� To verify our indirect analysis� eval�
uate all three one�loop diagrams� using the standard method of Feynman parameters�
Check the validity of the optical theorem�

��� Alternative regulators in QED� In Section ���� we saw that the Ward identity
can be violated by an improperly chosen regulator� Let us check the validity of the
identity Z� � Z�� to order �� for several choices of the regulator� We have already
veri�ed that the relation holds for Pauli�Villars regularization�

�a� Recompute �Z� and �Z�� de�ning the integrals ����	� and ������ by simply plac�
ing an upper limit + on the integration over �E � Show that� with this de�nition�
�Z� �� �Z��

�b� Recompute �Z� and �Z�� de�ning the integrals ����	� and ������ by dimensional
regularization� You may take the Dirac matrices to be � � � as usual� but note
that� in d dimensions�

g���
��� � d�

Show that� with this de�nition� �Z� � �Z��

��� Consider a theory of elementary fermions that couple both to QED and to a
Yukawa �eld ��

Hint �

Z
d�x

�p
�
��� �

Z
d�x eA� ��

���

�a� Verify that the contribution to Z� from the vertex diagram with a virtual �
equals the contribution to Z� from the diagram with a virtual �� Use dimensional
regularization� Is the Ward identity generally true in this theory�
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�b� Now consider the renormalization of the ��� vertex� Show that the rescaling
of this vertex at q� � � is not canceled by the correction to Z�� �It su�ces to
compute the ultraviolet�divergent parts of the diagrams�� In this theory� the ver�
tex and �eld�strength rescaling give additional shifts of the observable coupling
constant relative to its bare value�
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Radiation of Gluon Jets

Although we have discussed QED radiative corrections at length in the last
two chapters� so far we have made no attempt to compute a full radiatively
corrected cross section� The reason is of course that such calculations are quite
lengthy� Nevertheless it would be dishonest to pretend that one understands
radiative corrections after computing only isolated e�ects as we have done�
This ��nal project� is an attempt to remedy this situation� The project is the
computation of one of the simplest� but most important� radiatively corrected
cross sections� You should �nish Chapter � before starting this project� but
you need not have read Chapter ��

Strongly interacting particles�pions� kaons� and protons�are produced
in e�e� annihilation when the virtual photon creates a pair of quarks� If one
ignores the e�ects of the strong interactions� it is easy to calculate the total
cross section for quark pair production� In this �nal project� we will analyze
the �rst corrections to this formula due to the strong interactions�

Let us represent the strong interactions by the following simple model�
Introduce a new massless vector particle� the gluon� which couples universally
to quarks�

�H �

Z
d�x g�fi�

��fiB��

Here f labels the type ���avor�� of the quark �u� d� s� c� etc�� and i � � �� �
labels the color� The strong coupling constant g is independent of �avor and
color� The electromagnetic coupling of quarks depends on the �avor� since the
u and c quarks have charge Qf � ���� while the d and s quarks have charge
Qf � ���� By analogy to 	� let us de�ne

	g �
g�

��
�

In this exercise� we will compute the radiative corrections to quark pair pro�
duction proportional to 	g �

This model of the strong interactions of quarks does not quite agree with
the currently accepted theory of the strong interactions� quantum chromody�
namics �QCD�� However� all of the results that we will derive here are also

��	
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correct in QCD with the replacement

	g � �

�
	s�

We will verify this claim in Chapter ��
Throughout this exercise� you may ignore the masses of quarks� You may

also ignore the mass of the electron� and average over electron and positron
polarizations� To control infrared divergences� it will be necessary to assume
that the gluons have a small nonzero mass �� which can be taken to zero
only at the end of the calculation� However �as we discussed in Problem 
�
��
it is consistent to sum over polarization states of this massive boson by the
replacement� X

����� � �g�� �
this also implies that we may use the propagator

B� B� �
�ig��

k� � �� � i�
�


a� Recall from Section 
� that� to lowest order in 	 and neglecting the
e�ects of gluons� the total cross section for production of a pair of quarks
of �avor f is

��e�e� � qq� �
��	�

�s
� �Q�

f �

Compute the diagram contributing to e�e� � qq involving one virtual
gluon� Reduce this expression to an integral over Feynman parameters�
and renormalize it by subtraction at q� � �� following the prescription
used in Eq� ���

�� Notice that the resulting expression can be considered
as a correction to F��q

�� for the quark� Argue that� for massless quarks�
to all orders in 	g� the total cross section for production of a quark pair
unaccompanied by gluons is

��e�e� � qq� �
��	�

�s
� ���F��q� � s�

����
with F��q

� � �� � Qf �


b� Before we attempt to evaluate the Feynman parameter integrals in part
�a�� let us put this contribution aside and study the process e�e� �
qqg� quark pair production with an additional gluon emitted� Before we
compute the cross section� it will be useful to work out some kinematics�
Let q be the total ��momentum of the reaction� let k� and k� be the ��
momenta of the �nal quark and antiquark� and let k� be the ��momentum
of the gluon� De�ne

xi �
�ki � q
q�

� i � � �� ��
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this is the ratio of the center�of�mass energy of particle i to the maximum
available energy� Then show �i�

P
xi � �� �ii� all other Lorentz scalars

involving only the �nal�state momenta can be computed in terms of the
xi and the particle masses� and �iii� the complete integral over ��body
phase space can be written asZ

d/� �
Y
i

Z
d�ki
�����



�Ei
����������q �P

i
ki� �

q�

����

Z
dx� dx��

Find the region of integration for x� and x� if the quark and antiquark
are massless but the gluon has mass ��


c� Draw the Feynman diagrams for the process e�e� � qqg� to leading
order in 	 and 	g � and compute the di�erential cross section� You may
throw away the information concerning the correlation between the initial
beam axis and the directions of the �nal particles� This is conveniently
done as follows� The usual trace tricks for evaluating the square of the
matrix element give for this process a result of the structureZ

d/�


�

X
jMj� � L��

Z
d/� H

�� �

where L�� represents the electron trace and H�� represents the quark
trace� If we integrate over all parameters of the �nal state except x� and
x�� which are scalars� the only preferred ��vector characterizing the �nal
state is q�� On the other hand� H�� satis�es

q�H�� � H��q
� � ��

Why is this true� �There is an argument based on general principles�
however� you might �nd it a useful check on your calculation to verify
this property explicitly�� Since� after integrating over �nal�state vectors�R
H�� depends only on q� and scalars� it can only have the formZ

d/�H
�� �

�
g�� � q�q�

q�

�
�H�

where H is a scalar� With this information� show that

L��

Z
d/�H

�� �


�

�
g��L��

� � Z d/�

�
g��H��

�
�

Using this trick� derive the di�erential cross section

d�

dx�dx�
�e�e� � qqg� �

��	�

�s
� �Q�

f �
	g
��

x�� � x��
��x����x��

in the limit � � �� If we assume that each original �nal�state particle is
realized physically as a jet of strongly interacting particles� this formula
gives the probability for observing three�jet events in e�e� annihilation
and the kinematic distribution of these events� The form of the distribu�
tion in the xi is an absolute prediction� and it agrees with experiment� The
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normalization of this distribution is a measure of the strong�interaction
coupling constant�


d� Now replace � � � in the formula of part �c� for the di�erential cross
section� and carefully integrate over the region found in part �b�� You
may assume �� � q�� In this limit� you will �nd infrared�divergent terms
of order log�q����� and also log��q������ �nite terms of order � and
terms explicitly suppressed by powers of ����q��� You may drop terms
of the last type throughout this calculation� For the moment� collect and
evaluate only the infrared�divergent terms�


e� Now analyze the Feynman parameter integral obtained in part �a�� again
working in the limit �� � q�� Note that this integral has singularities in
the region of integration� These should be controlled by evaluating the
integral for q spacelike and then analytically continuing into the physical
region� That is� write Q� � �q�� evaluate the integral for Q� � �� and
then carefully analytically continue the result to Q� � �q�� i�� Combine
the result with the answer from part �d� to form the total cross section for
e�e� � strongly interacting particles� to order 	g � Show that all infrared�
divergent logarithms cancel out of this quantity� so that this total cross
section is well�de�ned in the limit �� ��


f� Finally� collect the terms of order  from the integrations of parts �d� and
�e� and combine them� To evaluate certain of these terms� you may �nd
the following formula useful�

�Z
�

dx
log��x�

x
� ��

�

�
�

�It is not hard to prove this�� Show that the total cross section is given�
to this order in 	g� by

��e�e� � qq or qqg� �
��	�

�s
� �Q�

f �
�
 �

�	g
��

�
�

This formula gives a second way of measuring the strong�interaction cou�
pling constant� The experimental results agree �within the current exper�
imental errors� with the results obtained by the method of part �c�� We
will discuss the measurement of 	s more fully in Section ����
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Chapter �

Invitation� Ultraviolet Cuto�s

and Critical Fluctuations

The main purpose of Part II of this book is to develop a general theory of
renormalization� This theory will explain the origin of ultraviolet divergences
in �eld theory and will indicate when these divergences can be removed sys�
tematically� It will also give a way to convert the divergences of Feynman
diagrams from a problem into a tool� We will apply this tool to study the
asymptotic large� or small�momentum behavior of �eld theory amplitudes�

When we �rst encountered an ultraviolet divergence in the calculation of
the one�loop vertex correction in Section ���� it seemed an aberration that
ought to disappear before it caused us too much discomfort� In Chapter � we
saw further examples of ultraviolet�divergent diagrams� enough to convince us
that such divergences occur ubiquitously in Feynman diagram computations�
Thus it is necessary for anyone studying �eld theory to develop a point of
view toward these divergences� Most people begin with the belief that any
theory that contains divergences must be nonsense� But this viewpoint is
overly restrictive� since it excludes not only quantum �eld theory but even
the classical electrodynamics of point particles�

With some experience� one might adopt a more permissive attitude of
peaceful coexistence with the divergences� One can accept a theory with di�
vergences� as long as they do not appear in physical predictions� In Chapter �
we saw that all of the divergences that appear in the one�loop radiative cor�
rections to electron scattering from a heavy target can be eliminated by con�
sistently eliminating the bare values of the mass and charge of the electron in
favor of their measured physical values� In Chapter �� we will argue that all
of the ultraviolet divergences of QED� in all orders of perturbation theory� can
be eliminated in this way� Thus� as long as one is willing to consider the mass
and charge of the electron as measured parameters� the predictions of QED
perturbation theory will always be free of divergences� We will also show in
Chapter � that QED belongs to a well�de�ned class of �eld theories in which
all ultraviolet divergences are removed after a �xed small number of physical
parameters are taken from experiment� These theories� called renormalizable

quantum �eld theories� are the only ones in which perturbation theory gives
well�de�ned predictions�

Ideally� though� one should take the further step of trying to understand

���
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physically why the divergences appear and why their e�ects are more se�
vere in some theories than in others� This direct approach to the divergence
problem was pioneered in the ���s by Kenneth Wilson� The crucial insights
needed to solve this problem emerged from a correspondence� discovered by
Wilson and others� between quantum �eld theory and the statistical physics
of magnets and �uids� Wilson�s approach to renormalization is the subject
of Chapter �� The present chapter gives a brief introduction to the issues
in condensed matter physics that have provided insight into the problem of
ultraviolet divergences�

Formal and Physical Cuto�s

Ultraviolet divergences signal that quantities calculated in a quantum �eld
theory depend on some very large momentum scale� the ultraviolet cuto��
Equivalently� in position space� divergent quantities depend on some very
small distance scale�

The idea of a small�distance cuto� in the continuum description of a sys�
tem occurs in classical �eld theories as well� Typically the cuto� is at the
scale of atomic distances� where the continuum description no longer applies�
However� the size of the cuto� manifests itself in certain parameters of the
continuum theory� In �uid dynamics� for instance� parameters such as the
viscosity and the speed of sound are of just the size one would expect by com�
bining typical atomic radii and velocities� Similarly� in a magnet� the magnetic
susceptibility can be estimated by assuming that the energy cost of �ipping
an electron spin is on the order of a tenth of an eV� as we would expect from
atomic physics� Each of these systems possesses a natural ultraviolet cuto�
at the scale of an atom� by understanding the physics at the atomic scale� we
can compute the parameters that determine the physics on larger scales�

In quantum �eld theory� however� we have no precise knowledge of the
fundamental physics at very short distance scales� Thus� we can only measure
parameters such as the physical charge and mass of the electron� not compute
them from �rst principles� The presence of ultraviolet divergences in the rela�
tions between these physical parameters and their bare values is a sign that
these parameters are controlled by the unknown short�distance physics�

Whether we know the fundamental physics at small distance scales or
not� we need two kinds of information in order to write an e�ective theory for
large�distance phenomena� First� we must know how many parameters from
the small distance scale are relevant to large�distance physics� Second� and
more importantly� we must know what degrees of freedom from the underlying
theory appear at large distances�

In �uid mechanics� it is something of a miracle� from the atomic point of
view� that any large�distance degrees of freedom even exist� Nevertheless� the
equations that express the transport of energy and mass over large distances
do have smooth� coherent solutions� The large�distance degrees of freedom are
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the �ows that transport these conserved quantities� and sound waves of long
wavelength�

In quantum �eld theory� the large�distance physics involves only those
particles that have masses that are very small compared to the fundamental
cuto� scale� These particles and their dynamics are the quantum analogues of
the large�scale �ows in �uid mechanics� The simplest way to naturally arrange
for such particles to appear is to make use of particles that naturally have zero
mass� So far in this book� we have encountered two types of particles whose
mass is precisely zero� the photon and the chiral fermion� �In Chapter 
we will meet one further naturally massless particle� the Goldstone boson��
We might argue that QED exists as a theory on scales much larger than
its cuto� because the photon is naturally massless and because the left� and
right�handed electrons are very close to being chiral fermions�

There is another way that particles of zero or almost zero mass can arise
in quantum �eld theory� We can simply tune the parameters of a scalar �eld
theory so that the scalar particles have masses small compared to the cut�
o�� This method of introducing particles with small mass seems arbitrary
and unnatural� Nevertheless� it has an analogue in statistical mechanics that
is genuinely interesting in that discipline and can teach us some important
lessons�

Normally� in a condensed matter system� the thermal �uctuations are
correlated only over atomic distances� Under special circumstances� however�
they can have much longer range� The clearest example of this phenomenon
occurs in a ferromagnet� At high temperature� the electron spins in a magnet
are disorganized and �uctuating� but at low temperature� these spins align to
a �xed direction�! Let us think about how this alignment builds up as the
temperature of the magnet is lowered� As the magnet cools from high tem�
perature� clusters of correlated spins become larger and larger� At a certain
point�the temperature of magnetization�the entire sample becomes a sin�
gle large cluster with a well�de�ned macroscopic orientation� Just above this
temperature� the magnet contains large clusters of spins with a common orien�
tation� which in turn belong to still larger clusters� such that the orientations
on the very largest scale are still randomized through the sample� This situ�
ation is illustrated in Fig� ��� Similar behavior occurs in the vicinity of any
other second�order phase transition� for example� the order�disorder transi�
tion in binary alloys� the critical point in �uids� or the super�uid transition
in Helium���

The natural description of these very long wavelength �uctuations is in
terms of a �uctuating continuum �eld� At the lowest intuitive level� we might

�In a real ferromagnet� the long�range magnetic dipole�dipole interaction causes
the state of uniform magnetization to break up into an array of magnetic domains�
In this book� we will ignore this interaction and think of a magnetic spin as a pure
orientation� It is this idealized system that is directly analogous to a quantum �eld
theory�
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Figure ���� Clusters of oriented spins near the critical point of a ferromag�
net�

substitute quantum for statistical �uctuations and try to describe this sys�
tem as a quantum �eld theory� In Section ��� we will derive a somewhat more
subtle relation that makes a precise connection between the statistical and
the quantum systems� Through this connection� the behavior of any statis�
tical system near a second�order phase transition can be translated into the
behavior of a particular quantum �eld theory� This quantum �eld theory has
a �eld with a mass that is very small compared to the basic atomic scale and
that goes to zero precisely at the phase transition�

But this connection seems to compound the problem of ultraviolet diver�
gences in quantum �eld theory� If the wealth of phase transitions observed in
Nature generates a similar wealth of quantum �eld theories� how can we pos�
sibly de�ne a quantum �eld theory without detailed reference to its origins in
physics at the scale of its ultraviolet cuto�� Saying that a quantum �eld the�
ory makes predictions independent of the cuto� would be equivalent to saying
that the statistical �uctuations in the neighborhood of a critical point are in�
dependent of whether the system is a magnet� a �uid� or an alloy� But is this
statement so obviously incorrect� By reversing the logic� we would �nd that
quantum �eld theory makes a remarkably powerful prediction for condensed
matter systems� a prediction of universality for the statistical �uctuations
near a critical point� In fact� this prediction is veri�ed experimentally�

A major theme of Part II of this book will be that these two ideas�cuto�
independence in quantum �eld theory and universality in the theory of critical
phenomena�are naturally the same idea� and that understanding either of
these ideas gives insight into the other�
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Landau Theory of Phase Transitions

To obtain a �rst notion of what could be universal in the phenomena of phase
transitions� let us examine the simplest continuum theory of second�order
phase transitions� due to Landau�

First we should review a little thermodynamics and clarify our nomen�
clature� In thermodynamics� a �rst�order phase transition is a point across
which some thermodynamic variable �the density of a �uid� or the magneti�
zation of a ferromagnet� changes discontinuously� At a phase transition point�
two quite distinct thermodynamic states �liquid and gas� or magnetization
parallel and antiparallel to a given axis� are in equilibrium� The thermody�
namic quantity that changes discontinuously across the transition� and that
characterizes the di�erence of the two competing phases� is called the order

parameter� In most circumstances� it is possible to change a second thermo�
dynamic parameter in such a way that the two competing states move closer
together in the thermodynamic space� so that at some value of this parameter�
these two states become identical and the discontinuity in the order parame�
ter disappears� This endpoint of the line of �rst�order transitions is called a
second�order phase transition� or� more properly� a critical point� Viewed from
the other direction� a critical point is a point at which a single thermodynamic
state bifurcates into two macroscopically distinct states� It is this bifurcation
that leads to the long�ranged thermal �uctuations discussed in the previous
section�

A concrete example of this behavior is exhibited by a ferromagnet� Let us
assume for simplicity that the material we are discussing has a preferred axis
of magnetization� so that at low temperature� the system will have its spins
ordered either parallel or antiparallel to this axis� The total magnetization
along this axis� M � is the order parameter� At low temperature� application
of an external magnetic �eld H will favor one or the other of the two possible
states� At H � �� the two states will be in equilibrium� if H is changed from
a small negative to a small positive value� the thermodynamic state and the
value ofM will change discontinuously� Thus� for any �xed �low� temperature�
there is a �rst�order transition at H � �� Now consider the e�ect of raising
the temperature� The �uctuation of the spins increases and the value of jM j
decreases� At some temperature TC the system ceases to be magnetized at
H � �� At this point� the �rst�order phase transition disappears and the
two competing thermodynamic states coalesce� The system thus has a critical
point at T � TC � The location of these various transitions in the H�T plane
is shown in Fig� ����

Landau described this behavior by the use of the Gibbs free energy G�
this is the thermodynamic potential that depends on M and T � such that

�G

�M

����
T

� H� ����

He suggested that we concentrate our attention on the region of the critical
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Figure ���� Phase diagram in the H�T plane for a uniaxial ferromagnet�

point� T � TC � M � �� Then it is reasonable to expand G�M� as a Taylor
series in M � For H � �� we can write

G�M� � A�T � �B�T �M� � C�T �M� � � � � � �����

Because the system has a symmetry underM � �M � G�M� can contain only
even powers of M � Since M is small� we will ignore the higher terms in the
expansion� Given Eq� ������ we can �nd the possible values of M at H � � by
solving

� �
�G

�M
� �B�T �M � �C�T �M�� �����

If B and C are positive� the only solution is M � �� However� if C � � but
B is negative below some temperature TC � we have a nontrivial solution for
T � TC � as shown in Fig� ���� More concretely� approximate for T � TC �

B�T � � b�T � TC�� C�T � � c� �����

Then the solution to Eq� ����� is

M �

�
� for T � TC �

���b��c��TC � T �
����

for T � TC �
���
�

This is just the qualitative behavior that we expect at a critical point�
To �nd the value of M at nonzero external �eld� we could solve Eq� ����

with the left�hand side given by ������ An equivalent procedure is to minimize
a new function� related to ������ De�ne

G�M�H� � A�T � �B�T �M� � C�T �M� �HM� �����

Then the minimum of G�M�H� with respect to M at �xed H gives the value
of M that satis�es Eq� ����� The minimum is unique except when H � � and
T � TC � where we �nd the double minimum in the second line of ���
�� This
is consistent with the phase diagram shown in Fig� ����
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Figure ���� Behavior of the Gibbs free energy G�M� in Landau theory� at
temperatures above and below the critical temperature�

To study correlations in the vicinity of the phase transition� Landau gen�
eralized this description further by considering the magnetizationM to be the
integral of a local spin density�

M �

Z
d�x s�x�� �����

Then the Gibbs free energy ����� becomes the integral of a local function of
s�x��

G �

Z
d�x
h
�
� �rs�� � b�T � TC�s

� � cs� �Hs
i
� �����

which must be minimized with respect to the �eld con�guration s�x�� The
�rst term is the simplest possible way to introduce the tendency of nearby
spins to align with one another� We have rescaled s�x� so that the coe	cient
of this term is set to ��� In writing this free energy integral� we could even
consider H to vary as a function of position� In fact� it is useful to do that� we
can turn on H�x� near x � � and see what response we �nd at another point�

The minimum of the free energy expression ����� with respect to s�x� is
given by the solution to the variational equation

� � �G$s�x�% � �r�s� �b�T � TC�s� �cs� �H�x�� �����

For T � TC � where the macroscopic magnetization vanishes and so s�x� should
be small� we can �nd the qualitative behavior by ignoring the s� term� Then
s�x� obeys a linear equation���r� � �b�T � TC�

�
s�x� � H�x�� �����

To study correlations of spins� we will set

H�x� � H��
����x�� ����
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The resulting con�guration s�x� is then the Green�s function of the di�erential
operator in Eq� ������ so we call it D�x����r� � �b�T � TC�

�
D�x� � H��

����x�� �����

This Green�s function tells us the response at x when the spin at x � � is
forced into alignment with H � In Sections ��� and ��� we will see that D�x� is
also proportional to the zero��eld spin�spin correlation function in the thermal
ensemble�

D�x� � �s�x�s���� � X
all s�x�

s�x�s���e�H�kT � �����

where H is the Hamiltonian of the magnetic system�
The solution to Eq� ����� can be found by Fourier transformation�

D�x� �

Z
d�k

�����
H� e

ik�x

jkj� � �b�T � TC�
� �����

This is just the integral we encountered in our discussion of the Yukawa po�
tential� Eq� ������� Evaluating it in the same way� we �nd

D�x� �
H�

��



r
e�r��� ���
�

where
� �
�
�b�T � TC�

�����
�����

is the correlation length� the range of correlated spin �uctuations� Notice that
this length diverges as T � TC �

The main results of this analysis� Eqs� ���
� and ������ involve unknown
constants b� c that depend on physics at the atomic scale� On the other hand�
the power�law dependence in these formulae on �T � TC� follows simply from
the structure of the Landau equations and is independent of any details of
the microscopic physics� In fact� our derivation of this dependence did not
even use the fact that G describes a ferromagnet� we assumed only that G
can be expanded in powers of an order parameter and that G respects the
re�ection symmetry M � �M � These assumptions apply equally well to
many other types of systems� binary alloys� super�uids� and even �though the
re�ection symmetry is less obvious here� the liquid�gas transition� Landau
theory predicts that� near the critical point� these systems show a universal
behavior in the dependence of M � �� and other thermodynamic quantities on
�T � TC��

Critical Exponents

The preceding treatment of the Landau theory of phase transitions emphasizes
its similarity to classical �eld theory� We set up an appropriate free energy and
found the thermodynamically preferred con�guration by solving a classical
variational equation� This gives only an approximation to the full statistical
problem� analogous to the approximation of replacing quantum by classical
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dynamics in �eld theory� In Chapter �� we will use methods of quantum �eld
theory to account properly for the �uctuations about the preferred Landau
thermodynamic state� These modi�cations turn out to be profound� and rather
counterintuitive�

To describe the form of these modi�cations� let us write Eq� ���
� more
generally as

hs�x�s���i � A


r��

f�r���� �����

where A is a constant and f�y� is a function that satis�es f��� �  and
f�y� � � as y � �� Landau theory predicts that � � � and f�y� is a sim�
ple exponential� This expression has a form strongly analogous to that of a
Green�s function in quantum �eld theory� The constant A can be absorbed into
the �eld�strength renormalization of the �eld s�x�� The correlation length � is�
in general� a complicated function of the atomic parameters� but in the contin�
uum description we can simply trade these parameters for �� It is appropriate
to consider � as a cuto��independent� physical parameter� since it controls the
large�distance behavior of a physical correlation� In fact� the analogy between
Eq� ���
� and the Yukawa potential suggests that we should identify ��� with
the physical mass in the associated quantum �eld theory� Then Eq� ����� gives
a cuto��independent� continuum representation of the statistical system�

If we were working in quantum �eld theory� we would derive corrections
to Eq� ����� as a perturbation series in the parameter c multiplying the
nonlinear term in ������ This would generalize the Landau result to

hs�x�s���i � 

r
F �r��� c�� �����

The perturbative corrections would depend on the properties of the contin�
uum �eld theory� For example� F �y� c� would depend on the number of com�
ponents of the �eld s�x�� and its series expansion would di�er depending on
whether the magnetization formed along a preferred axis� in a preferred plane�
or isotropically� For order parameters with many components� the expansion
would also depend on higher discrete symmetries of the problem� However� we
expect that systems described by the same Landau free energy �for example�
a single�axis ferromagnet and a liquid�gas system� should have the same per�
turbation expansion when this expansion is written in terms of the physical
mass and coupling� The complete universality of Landau theory then becomes
a more limited concept� in which systems have the same large�distance cor�
relations if their order parameters have the same symmetry� We might say
that statistical systems divide into distinct universality classes� each with a
characteristic large�scale behavior�

If this were the true behavior of systems near second�order phase transi�
tions� it would already be a wonderful con�rmation of the ideas required to
formulate cuto��independent quantum �eld theories� However� the true be�
havior of statistical systems is still another level more subtle� What one �nds
experimentally is a dependence of the form of Eq� ������ where the function
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F �y� is the same within each universality class� There is no need for an auxil�
iary parameter c� On the other hand� the exponent � takes a speci�c nonzero
value in each universality class� Other power�law relations of Landau theory
are also modi�ed� in a speci�c manner for each universality class� For example�
Eq� ���
� is changed� for T � TC � to

M � �TC � T �	� �����

where the exponent � takes a �xed value for all systems in a given universality
class� For three�dimensional single�axis magnets and for �uids� � � ����� The
powers in these nontrivial scaling relations are called critical exponents�

The modi�cation from Eq� ����� to Eq� ����� does not imperil the idea
that a condensed matter system� in the vicinity of a second�order phase tran�
sition� has a well�de�ned� cuto��independent� continuum behavior� However�
we would like to understand why Eq� ����� should be expected as the cor�
rect representation� The answer to this question will come from a thorough
analysis of the ultraviolet divergences of the corresponding quantum �eld the�
ory� In Chapter �� when we �nally conclude our explication of the ultraviolet
divergences� we will �nd that we have in hand the tools not only to justify
Eq� ������ but also to calculate the values of the critical exponents using
Feynman diagrams� In this way� we will uncover a beautiful application of
quantum �eld theory to the domain of atomic physics� The success of this ap�
plication will guide us� in Part III� to even more powerful tools� which we will
need in the relativistic domain of elementary particles�
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Functional Methods

Feynman once said that! �every theoretical physicist who is any good knows
six or seven di�erent theoretical representations for exactly the same physics��
Following his advice� we introduce in this chapter an alternative method of de�
riving the Feynman rules for an interacting quantum �eld theory� the method
of functional integration�

Aside from Feynman�s general principle� we have several speci�c reasons
for introducing this formalism� It will provide us with a relatively easy deriva�
tion of our expression for the photon propagator� completing the proof of the
Feynman rules for QED given in Section ���� The functional method gener�
alizes more readily to other interacting theories� such as scalar QED �Prob�
lem ���� and especially the non�Abelian gauge theories �Part III�� Since it
uses the Lagrangian� rather than the Hamiltonian� as its fundamental quan�
tity� the functional formalism explicitly preserves all symmetries of a theory�
Finally� the functional approach reveals the close analogy between quantum
�eld theory and statistical mechanics� Exploiting this analogy� we will turn
Feynman�s advice upside down and apply the same theoretical representation
to two completely di�erent areas of physics�

��� Path Integrals in Quantum Mechanics

We begin by applying the functional integral �or path integral� method to
the simplest imaginable system� a nonrelativistic quantum�mechanical particle
moving in one dimension� The Hamiltonian for this system is

H �
p�

�m
� V �x��

Suppose that we wish to compute the amplitude for this particle to travel
from one point �xa� to another �xb� in a given time �T �� We will call this
amplitude U�xa� xb�T �� it is the position representation of the Schr#odinger
time�evolution operator� In the canonical Hamiltonian formalism� U is given
by

U�xa� xb�T � � hxbj e�iHT��h jxai � ����

�The Character of Physical Law �MIT Press� �	���� p� ��
�

���
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�For the next few pages we will display all factors of  h explicitly��
In the path�integral formalism� U is given by a very di�erent�looking

expression� We will �rst try to motivate that expression� then prove that it is
equivalent to �����

Recall that in quantummechanics there is a superposition principle� When
a process can take place in more than one way� its total amplitude is the
coherent sum of the amplitudes for each way� A simple but nontrivial example
is the famous double�slit experiment� shown in Fig� ��� The total amplitude
for an electron to arrive at the detector is the sum of the amplitudes for
the two paths shown� Since the paths di�er in length� these two amplitudes
generally di�er� causing interference�

For a general system� we might therefore write the total amplitude for
traveling from xa to xb as

U�xa� xb�T � �
X

all paths

ei��phase� �
Z
Dx�t� ei��phase�� �����

To be democratic� we have written the amplitude for each particular path as
a pure phase� so that no path is inherently more important than any other�
The symbol

R Dx�t� is simply another way of writing �sum over all paths��
since there is one path for every function x�t� that begins at xa and ends at
xb� the sum is actually an integral over this continuous space of functions�

We can de�ne this integral as part of a natural generalization of the
calculus to spaces of functions� A function that maps functions to numbers is
called a functional� The integrand in ����� is a functional� since it associates
a complex amplitude with any function x�t�� The argument of a functional
F $x�t�% is conventionally written in square brackets rather than parentheses�
Just as an ordinary function y�x� can be integrated over a set of points x� a
functional F $x�t�% can be integrated over a set of functions x�t�� the measure
of such a functional integral is conventionally written with a script capital D�
as in ������ A functional can also be di�erentiated with respect to its argument
�a function�� and this functional derivative is denoted by �F��x�t�� We will
develop more precise de�nitions of this new integral and derivative in the
course of this section and the next�

What should we use for the �phase� in Eq� ������ In the classical limit�
we should �nd that only one path� the classical path� contributes to the to�
tal amplitude� We might therefore hope to evaluate the integral in ����� by
the method of stationary phase� identifying the classical path xcl�t� by the
stationary condition�

�

�x�t�

�
phase$x�t�%

����
xcl

� ��

But the classical path is the one that satis�es the principle of least action�

�

�x�t�

�
S$x�t�%

����
xcl

� ��
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Figure 	��� The double�slit experiment� Path � is longer than path � by an
amount d� and therefore has a phase that is larger by ��d
�� where � � ��,h
p
is the particle�s de Broglie wavelength� Constructive interference occurs when
d � �� �� � � � � while destructive interference occurs when d � �
�� �
�� � � � �

where S �
R
Ldt is the classical action� It is tempting� therefore� to identify

the phase with S� up to a constant� Since the stationary�phase approximation
should be valid in the classical limit�that is� when S 
  h�we will use S� h
for the phase� Our �nal formula for the propagation amplitude is thus

hxbj e�iHT��h jxai � U�xa� xb�T � �

Z
Dx�t� eiS�x�t����h� �����

We can easily verify that this formula gives the correct interference pattern
in the double�slit experiment� The action for either path shown in Fig� �� is
just ����mv�t� the kinetic energy times the time� For path  the velocity is
v� � D�t� so the phase is mD��� ht� For path � we have v� � �D�d��t� so the
phase is m�D�d���� ht� We must assume that d � D� so that v� � v� �i�e��
the electrons have a well�de�ned velocity�� The excess phase for path � is then
mDd� ht � pd� h� where p is the momentum� This is exactly what we would
expect from the de Broglie relation p � h��� so we must be doing something
right�

To evaluate the functional integral more generally� we must de�ne the
symbol

R Dx�t� in the case where the number of paths x�t� is more than two
�and� in fact� continuously in�nite�� We will use a brute�force de�nition� by
discretization� Break up the time interval from � to T into many small pieces
of duration �� as shown in Fig� ���� Approximate a path x�t� as a sequence of
straight lines� one in each time slice� The action for this discretized path is

S �

TZ
�

dt
�m
�
"x� � V �x�

�
��
X
k


m

�

�xk���xk��
�

� �V
�xk���xk

�

��
�
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Figure 	��� We de�ne the path integral by dividing the time interval into
small slices of duration �� then integrating over the coordinate xk of each
slice�

We then de�ne the path integral by

Z
Dx�t� � 

C���

Z
dx�
C���

Z
dx�
C���

� � �
Z

dxN��
C���

�


C���

Q
k

�Z
��

dxk
C���

� �����

where C��� is a constant� to be determined later� �We have included one factor
of C��� for each of the N time slices� for reasons that will be clear below�� At
the end of the calculation we take the limit �� �� �As in Sections ��
 and ����
the
Q

symbol is an instruction to write what follows once for each k��
Using ����� as the de�nition of the right�hand side of ������ we will now

demonstrate the validity of ����� for a general one�particle potential problem�
To do this� we will show that the left� and right�hand sides of ����� are obtained
by integrating the same di�erential equation� with the same initial condition�
In the process� we will determine the constant C����

To derive the di�erential equation satis�ed by ������ consider the addition
of the very last time slice in Fig� ���� According to ����� and the de�nition
������ we should have

U�xa� xb�T � �

�Z
��

dx�

C���
exp


i

 h

m�xb�x���
��

� i

 h
�V
�xb�x�

�

��
U�xa� x

��T����

The integral over x� is just the contribution to
R Dx from the last time slice�

while the exponential factor is the contribution to eiS��h from that slice� All
contributions from previous slices are contained in U�xa� x

��T����
As we send � � �� the rapid oscillation of the �rst term in the exponen�

tial constrains x� to be very close to xb� We can therefore expand the above
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expression in powers of �x��xb��

U�xa� xb�T � �

�Z
��

dx�

C
exp
� i
 h

m

��
�xb�x���

�h
� i�

 h
V �xb� � � � �

i

	
h
 � �x��xb� �

�xb
�



�
�x��xb�� ��

�x�b
� � � �

i
U�xa� xb�T����

���
�
We can now perform the x� integral by treating the exponential factor as a
Gaussian� �Properly� we should introduce a small real term in the exponent for
convergence� we will ignore this term until the next section� when we derive
Feynman rules using functional methods�� Recall the Gaussian integration
formulaeZ

d� e�b�
�

�

r
�

b
�

Z
d� � e�b�

�

� ��

Z
d� �� e�b�

�

�


�b

r
�

b
�

Applying these identities to ���
�� we �nd

U�xa� xb�T � �

�


C

r
�� h�

�im
�h

� i�

 h
V �xb� �

i� h

�m

��

�x�b
�O����

i
U�xa� xb� T����

This expression makes no sense in the limit �� � unless the factor in paren�
theses is equal to � We can therefore identify the correct de�nition of C�

C��� �

r
�� h�

�im � �����

Given this de�nition� we can compare terms of order � and multiply by i h to
obtain

i h
�

�T
U�xa� xb�T � �

h
�  h�

�m

��

�x�b
� V �xb�

i
U�xa� xb�T �

� HU�xa� xb� T ��

�����

This is the Schr#odinger equation� But it is easy to show that the time�evolution
operator U � as originally de�ned in ����� satis�es the same equation�

As T � �� the left�hand side of ����� tends to ��xa � xb�� Compare this
to the value of ����� in the case of one time slice�



C���
exp
h i
 h

m�xb � xa�
�

��
�O���

i
�

This is just the peaked exponential of ���
�� and it also tends to ��xa�xb� as
�� �� Thus the left� and right�hand sides of ����� satisfy the same di�erential
equation with the same initial condition� We conclude that the Hamiltonian
de�nition of the time evolution operator ���� and the path�integral de�nition
����� are equivalent� at least for the case of this simple one�dimensional system�

To conclude this section� let us generalize our path�integral formula to
more complicated quantum systems� Consider a very general quantum system�
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described by an arbitrary set of coordinates qi� conjugate momenta pi� and
Hamiltonian H�q� p�� We will give a direct proof of the path�integral formula
for transition amplitudes in this system�

The transition amplitude that we would like to compute is

U�qa� qb�T � � hqbj e�iHT jqai � �����

�When q or p appears without a superscript� it will denote the set of all
coordinates fqig or momenta fpig� Also� for convenience� we now set  h � ��
To write this amplitude as a functional integral� we �rst break the time interval
into N short slices of duration �� Thus we can write

e�iHT � e�iH� e�iH� e�iH� � � � e�iH� �N factors��

The trick is to insert a complete set of intermediate states between each of
these factors� in the form

� �

�Q
i

Z
dqik

�
jqki hqkj �

Inserting such factors for k �  � � � �N � �� we are left with a product of
factors of the form

hqk��j e�iH� jqki ��
���

hqk��j
�
� iH�� � � � � jqki � �����

To express the �rst and last factors in this form� we de�ne q� � qa and
qN � qb�

Now we must look inside H and consider what kinds of terms it might
contain� The simplest kind of term to evaluate would be a function only of the
coordinates� not of the momenta� The matrix element of such a term would
be

hqk��j f�q� jqki � f�qk�
Q
i
��qik � qik����

It will be convenient to rewrite this as

hqk��j f�q� jqki � f
�qk���qk

�

��Q
i

Z
dpik
��

�
exp
h
i
P
i
pik�q

i
k���qik�

i
�

for reasons that will soon be apparent�
Next consider a term in the Hamiltonian that is purely a function of the

momenta� We introduce a complete set of momentum eigenstates to obtain

hqk��j f�p� jqki �
�Q

i

Z
dpik
��

�
f�pk� exp

h
i
P
i
pik�q

i
k�� � qik�

i
�

Thus if H contains only terms of the form f�q� and f�p�� its matrix element
can be written

hqk��jH�q� p� jqki �
�Q

i

Z
dpik
��

�
H
�qk���qk

�
� pk

�
exp
h
i
P
i
pik�q

i
k�� � qik�

i
�

�����
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It would be nice if Eq� ����� were true even when H contains products of
p�s and q�s� In general this formula must be false� since the order of a product
pq matters on the left�hand side �where H is an operator� but not on the
right�hand side �where H is just a function of the numbers pk and qk�� But
for one speci�c ordering� we can preserve ������ For example� the combination

hqk��j ��
�
q�p� � �qp�q � p�q�

� jqki � �qk���qk
�

��
hqk��j p� jqki

works out as desired� since the q�s appear symmetrically on the left and right
in just the right way� When this happens� the Hamiltonian is said to be Weyl

ordered� Any Hamiltonian can be put into Weyl order by commuting p�s and
q�s� in general this procedure will introduce some extra terms� and those extra
terms must appear on the right�hand side of ������

Assuming from now on thatH is Weyl ordered� our typical matrix element
from ����� can be expressed as

hqk��j e�i�H jqki �
�Q

i

Z
dpik
��

�
exp
h
�i�H

�qk���qk
�

� pk

�i
	 exp

h
i
P
i
pik�q

i
k�� � qik�

i
�

�We have again used the fact that � is small� writing  � i�H as e�i�H �� To
obtain U�qa� qb�T �� we multiply N such factors� one for each k� and integrate
over the intermediate coordinates qk�

U�q�� qN �T � �

�Q
i�k

Z
dqik

Z
dpik
��

�

	 exp


i
P
k

�P
i
pik�q

i
k���qik�� �H

�qk���qk
�

� pk
���

�

����

There is one momentum integral for each k from  to N � and one coordinate
integral for each k from  to N�� This expression is therefore the discretized
form of

U�qa� qb�T � �

�Q
i

Z
Dq�t�Dp�t�

�
exp


i

Z T

�

dt
�P

i
pi "qi �H�qi� pi�

��
� �����

where the functions q�t� are constrained at the endpoints� but the functions
p�t� are not� Note that the integration measure Dq contains no peculiar con�
stants� as it did in ������ The functional measure in ����� is just the product
of the standard integral over phase spaceY

i

Z
dqi dpi

�� h

at each point in time� Equation ����� is the most general formula for com�
puting transition amplitudes via functional integrals�
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For a nonrelativistic particle� the Hamiltonian is simply H � p���m �
V �q�� In this case we can evaluate the p�integrals by completing the square in
the exponent�Z

dpk
��

exp
h
i
�
pk�qk���qk�� �p�k��m

�i
�



C���
exp
h im
��

�qk�� � qk�
�
i
�

where C��� is just the factor ������ Notice that we have one such factor for each
time slice� Thus we recover expression ������ in discretized form� including the
proper factors of C�

U�qa� qb�T � �

�


C���

Q
k

Z
dqk
C���

�
exp


i
P
k

�
m

�

�qk���qk��
�

��V
�qk���qk

�

���
�

�����

��� Functional Quantization of Scalar Fields

In this section we will apply the functional integral formalism to the quantum
theory of a real scalar �eld 
�x�� Our goal is to derive the Feynman rules for
such a theory directly from functional integral expressions�

The general functional integral formula ����� derived in the last section
holds for any quantum system� so it should hold for a quantum �eld theory�
In the case of a real scalar �eld� the coordinates qi are the �eld amplitudes

�x�� and the Hamiltonian is

H �

Z
d�x
�
�
��

� � �
� �r
�� � V �
�

�
�

Thus our formula becomes

h
b�x�j e�iHT j
a�x�i �
Z
D
D� exp


i

TZ
�

d�x
�
� "
� �

��
�� �

� �r
���V �
�
��
�

where the functions 
�x� over which we integrate are constrained to the spe�
ci�c con�gurations 
a�x� at x

� � � and 
b�x� at x
� � T � Since the exponent

is quadratic in �� we can complete the square and evaluate the D� integral
to obtain

h
b�x�j e�iHT j
a�x�i �
Z
D
 exp


i

TZ
�

d�xL
�
� �����

where

L � �
� ���
�

� � V �
�

is the Lagrangian density� The integration measure D
 in ����� again involves
an awkward constant� which we will not write explicitly�

The time integral in the exponent of ����� goes from � to T � as de�
termined by our choice of what transition function to compute� in all other
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respects this formula is manifestly Lorentz invariant� Any other symmetries
that the Lagrangian may have are also explicitly preserved by the functional
integral� As we proceed in our study of quantum �eld theory� symmetries and
their associated conservation laws will play an increasingly central role� We
therefore propose to take a rash step� Abandon the Hamiltonian formalism�
and take Eq� ����� to de�ne the Hamiltonian dynamics� Any such formula
corresponds to some Hamiltonian� to �nd it� one can always di�erentiate with
respect to T and derive the Schr#odinger equation as in the previous section�
We thus consider the Lagrangian L to be the most fundamental speci�cation
of a quantum �eld theory� We will see next that one can use the functional
integral to compute from L directly� without invoking the Hamiltonian at all�

Correlation Functions

To make direct use of the functional integral� we need a functional formula
for computing correlation functions� To �nd such an expression� consider the
object Z

D
�x�
�x��
�x�� exp

i

TZ
�T

d�xL�
�
�
� ���
�

where the boundary conditions on the path integral are 
��T�x� � 
a�x� and

�T�x� � 
b�x� for some 
a� 
b� We would like to relate this quantity to the
two�point correlation function� h�jT
H�x��
H�x�� j�i� �To distinguish oper�
ators from ordinary numbers� we write the Heisenberg picture operator with
an explicit subscript� 
H�x�� Similarly� we will write 
S�x� for the Schr#odinger
picture operator��

First we break up the functional integral in ���
� as follows�Z
D
�x� �

Z
D
��x�

Z
D
��x�

Z
��x���x�
���x�

��x���x�
���x�

D
�x�� �����

The main functional integral
R D
�x� is now constrained at times x�� and x

�
� �in

addition to the endpoints �T and T �� but we must integrate separately over
the intermediate con�gurations 
��x� and 
��x�� After this decomposition�
the extra factors 
�x�� and 
�x�� in ���
� become 
��x�� and 
��x��� and
can be taken outside the main integral� The main integral then factors into
three pieces� each being a simple transition amplitude according to ������
The times x�� and x�� automatically fall in order� for example� if x�� � x��� then
���
� becomesZ

D
��x�
Z
D
��x� 
��x��
��x�� h
bj e�iH�T�x��� j
�i

	 h
�j e�iH�x���x��� j
�i h
�j e�iH�x���T � j
ai �
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We can turn the �eld 
��x�� into a Schr#odinger operator using 
S�x�� j
�i �

��x�� j
�i� The completeness relation

R D
� j
�i h
�j � � then allows us
to eliminate the intermediate state j
�i� Similar manipulations work for 
��
yielding the expression

h
bj e�iH�T�x��� 
S�x�� e�iH�x���x��� 
S�x�� e�iH�x���T � j
ai �
Most of the exponential factors combine with the Schr#odinger operators to
make Heisenberg operators� In the case x�� � x��� the order of x� and x� would
simply be interchanged� Thus expression ���
� is equal to

h
bj e�iHT T
�

H�x��
H�x��

�
e�iHT j
ai � �����

This expression is almost equal to the two�point correlation function� To
make it more nearly equal� we take the limit T � �� � i��� Just as in
Section ���� this trick projects out the vacuum state j�i from j
ai and j
bi
�provided that these states have some overlap with j�i� which we assume��
For example� decomposing j
ai into eigenstates jni of H � we have

e�iHT j
ai �
X
n

e�iEnT jni hnj
ai ��
T�����i��

h�j
ai e�iE������i�� j�i �

As in Section ���� we obtain some awkward phase and overlap factors� But
these factors cancel if we divide by the same quantity as ���
� but without
the two extra �elds 
�x�� and 
�x��� Thus we obtain the simple formula

h�jT
H�x��
H�x�� j�i � lim
T���� i��

R D

�x��
�x�� exphiR T�T d�xLiR D
 exp
h
i
R T
�T d

�xL
i �

�����
This is our desired formula for the two�point correlation function in terms
of functional integrals� For higher correlation functions� just insert additional
factors of 
 on both sides�

Feynman Rules

Our next task is to compute various correlation functions directly from the
right�hand side of formula ������ In other words� we will now use ����� to
derive the Feynman rules for a scalar �eld theory� We will begin by computing
the two�point function in the free Klein�Gordon theory� then generalize to
higher correlation functions in the free theory� Finally� we will consider 
�

theory� in which we can perform a perturbation expansion to obtain the same
Feynman rules as in Section ����

Consider �rst a noninteracting real�valued scalar �eld�

S� �

Z
d�xL� �

Z
d�x
h
�
� ���
�

� � �
�m

�
�
i
� �����
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Since L� is quadratic in 
� the functional integrals in ����� take the form of
generalized� in�nite�dimensional Gaussian integrals� We will therefore be able
to evaluate the functional integrals exactly�

Since this is our �rst functional integral computation� we will do it in a
very explicit� but ugly� way� We must �rst de�ne the integral D
 over �eld
con�gurations� To do this� we use the method of Eq� ����� in considering the
continuous integral as a limit of a large but �nite number of integrals� We
thus replace the variables 
�x� de�ned on a continuum of points by variables

�xi� de�ned at the points xi of a square lattice� Let the lattice spacing be ��
let the four�dimensional spacetime volume be L�� and de�ne

D
 �
Y
i

d
�xi�� ������

up to an irrelevant overall constant�
The �eld values 
�xi� can be represented by a discrete Fourier series�


�xi� �


V

X
n

e�ikn�xi
�kn�� �����

where k�n � ��n��L� with n� an integer� jk�j � ���� and V � L�� The
Fourier coe	cients 
�k� are complex� However� 
�x� is real� and so these
coe	cients must obey the constraint 
��k� � 
��k�� We will consider the
real and imaginary parts of the 
�kn� with k�n � � as independent variables�
The change of variables from the 
�xi� to these new variables 
�kn� is a
unitary transformation� so we can rewrite the integral as

D
�x� �
Y
k�n��

dRe
�kn� d Im
�kn��

Later� we will take the limit L � �� � � �� The e�ect of this limit is to
convert discrete� �nite sums over kn to continuous integrals over k�



V

X
n

�
Z

d�k

�����
� ������

In the following discussion� this limit will produce Feynman perturbation the�
ory in the form derived in Part I� We will not eliminate the infrared and
ultraviolet divergences of Feynman diagrams that we encountered in Chap�
ter �� but at least the functional integral introduces no new types of singular
behavior�

Having de�ned the measure of integration� we now compute the functional
integral over 
� The action ����� can be rewritten in terms of the Fourier
coe	cients asZ

d�x
�
�
� ���
�

� � �
�m

�
�
�
� � 

V

X
n

�
�

�
m��k�n

�j
�kn�j�
� � 

V

X
k�n��

�
m��k�n

��
�Re
n�

� � �Im
n�
�
�
�
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where we have abbreviated 
�kn� as 
n in the second line� The quantity
�m� � k�n� � �m� � jknj� � k��n � is positive as long as k�n is not too large�
In the following discussion� we will treat this quantity as if it were positive�
More precisely� we evaluate it by analytic continuation from the region where
jknj � k�n�

The denominator of formula ����� now takes the form of a product of
Gaussian integrals�Z

D
 eiS� �
� Y
k�n��

Z
dRe
n d Im 
n

�
exp
h
� i

V

X
njk�n��

�m��k�n�j
nj�
i

�
Y
k�n��

�Z
dRe
n exp

h
� i

V
�m��k�n��Re 
n��

i�

	
�Z

d Im
n exp
h
� i

V
�m��k�n��Im 
n�

�
i�

�
Y
k�n��

s
�i�V
m��k�n

s
�i�V
m��k�n

�
Y
all kn

s
�i�V
m��k�n

� ������

To justify using Gaussian integration formulae when the exponent appears to
be purely imaginary� recall that the time integral in ����� is along a contour
that is rotated clockwise in the complex plane� t� t�� i��� This means that
we should change k� � k�� � i�� in ����� and all subsequent equations� in
particular� we should replace �k� �m�� � �k� �m� � i��� The i� term gives
the necessary convergence factor for the Gaussian integrals� It also de�nes
the direction of the analytic continuation that might be needed to de�ne the
square roots in �������

To understand the result of ������� consider as an analogy the general
Gaussian integral �Y

k

Z
d�k

�
exp
���iBij�j

�
�

where B is a symmetric matrix with eigenvalues bi� To evaluate this integral
we write �i � Oijxj � where O is the orthogonal matrix of eigenvectors that
diagonalizes B� Changing variables from �i to the coe	cients xi� we have�Y

k

Z
d�k

�
exp
���iBij�j

�
�

�Y
k

Z
dxk

�
exp
h
�
X
i

bix
�
i

i
�
Y
i

�Z
dxi exp

��bix�i ��
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�
Y
i

r
�

bi

� const	 �detB������ ������

The analogy is clearer if we perform an integration by parts to write the
Klein�Gordon action as

S� �
�
�

Z
d�x
 �����m��
 � �surface term��

Thus the matrix B corresponds to the operator �m������ and we can formally
write our result asZ

D
 eiS� � const	 �det�m�����
�����

� ����
�

This object is called a functional determinant� The actual result ������ looks
quite ill�de�ned� and in fact all of these factors will cancel in Eq� ������ How�
ever� in many circumstances� the functional determinant itself has physical
meaning� We will see examples of this in Sections ��
 and ���

Now consider the numerator of formula ������ We need to Fourier�expand
the two extra factors of 
�


�x��
�x�� �


V

X
m

e�ikm�x�
m


V

X
l

e�ikl�x�
l�

Thus the numerator is



V �

X
m�l

e�i�km�x��kl�x��
� Y
njk�n��

Z
dRe
n d Im
n

�
������

	 �Re
m � i Im
m��Re
l � i Im
l�

	 exp
h
� i

V

X
njk�n��

�m��k�n�
�
�Re 
n�

� � �Im
n�
�
�i
�

For most values of km and kl this expression is zero� since the extra factors of

 make the integrand odd� The situation is more complicated when km � �kl�
Suppose� for example� that k�m � �� Then if kl � �km� the term involving
�Re
m�� is nonzero� but is exactly canceled by the term involving �Im
m���
If kl � �km� however� the relation 
��k� � 
��k� gives an extra minus sign
on the �Im
m�� term� so the two terms add� When k�m � � we obtain the
same expression� so the numerator is

Numerator �


V �

X
m

e�ikm��x��x��
� Y
k�n��

�i�V
m��k�n

� �iV
m� � k�m � i�

�

The factor in parentheses is identical to the denominator ������� while the rest
of this expression is the discretized form of the Feynman propagator� Taking
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the continuum limit ������� we �nd

h�jT
�x��
�x�� j�i �
Z

d�k

�����
i e�ik��x��x��

k� �m� � i�
� DF �x��x��� ������

This is exactly right� including the �i��
Next we would like to compute higher correlation functions in the free

Klein�Gordon theory�
Inserting an extra factor of 
 in ������ we see that the three�point function

vanishes� since the integrand of the numerator is odd� All other odd correlation
functions vanish for the same reason�

The four�point function has four factors of 
 in the numerator� Fourier�
expanding the �elds� we obtain an expression similar to Eq� ������� but with
a quadruple sum over indices that we will call m� l� p� and q� The integrand
contains the product

�Re
m � i Im
m��Re 
l � i Im
l��Re 
p � i Im
p��Re 
q � i Im
q��

Again� most of the terms vanish because the integrand is odd� One of the
nonvanishing terms occurs when kl � �km and kq � �kp� After the Gaussian
integrations� this term of the numerator is



V �

X
m�p

e�ikm��x��x��e�ikp��x��x��
� Y
njk�n��

�i�V
m��k�n

� �iV
m��k�m�i�

�iV
m��k�p�i�

��
V��

� Y
njk�n��

�i�V
m��k�n

�
DF �x� � x��DF �x� � x���

The factor in parentheses is again canceled by the denominator� We obtain
similar terms for each of the other two ways of grouping the four momenta
in pairs� To keep track of the groupings� let us de�ne the contraction of two
�elds as


�x��
�x�� �

R D
 eiS�
�x��
�x��R D
 eiS� � DF �x� � x��� ������

Then the four�point function is simply

h�jT
�
�
�
� j�i � sum of all full contractions

� DF �x� � x��DF �x� � x��

�DF �x� � x��DF �x� � x�� ������

�DF �x� � x��DF �x� � x���

the same expression that we obtained using Wick�s theorem in Eq� �������
The same method allows us to compute still higher correlation functions�

In each case the answer is just the sum of all possible full contractions of
the �elds� This result� identical to that obtained from Wick�s theorem in
Section ���� arises here from the simple rules of Gaussian integration�
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We are now ready to move from the free Klein�Gordon theory to 
� theory�
Add to L� a 
� interaction�

L � L� � �

�-

��

Assuming that � is small� we can expand

exp


i

Z
d�xL

�
� exp


i

Z
d�xL�

��
� i

Z
d�x

�

�-

� � � � �

�
�

Making this expansion in both the numerator and the denominator of ������
we see that each is �aside from the constant factor ������� which again cancels�
expressed entirely in terms of free��eld correlation functions� Moreover� since
i
R
d�xLint � �iHint� we obtain exactly the same expansion as in Eq� ������

We can express both the numerator and the denominator in terms of Feynman
diagrams� with the fundamental interaction again given by the vertex

� �i� ����������P p�� ������

All of the combinatorics work the same as in Section ���� In particular� the
disconnected vacuum bubble diagrams exponentiate and factor from the nu�
merator of ������ and are canceled by the denominator� just as in Eq� ������

The vertex rule for 
� theory follows from the Lagrangian in an exceed�
ingly simple way� and this simple procedure will turn out to be valid for other
quantum �eld theories as well� Once the quadratic terms in the Lagrangian
are properly understood and the propagators of the theory are computed� the
vertices can be read directly from the Lagrangian as the coe	cients of the
cubic and higher�order terms�

Functional Derivatives and the Generating Functional

To conclude this section� we will now introduce a slicker� more formal� method
for computing correlation functions� This method� based on an object called
the generating functional� avoids the awkward Fourier expansions of the pre�
ceding derivation�

First we de�ne the functional derivative� ���J�x�� as follows� The func�
tional derivative obeys the basic axiom �in four dimensions�

�

�J�x�
J�y� � �����x� y� or

�

�J�x�

Z
d�y J�y�
�y� � 
�x�� �����

This de�nition is the natural generalization� to continuous functions� of the
rule for discrete vectors�

�

�xi
xj � �ij or

�

�xi

X
j

xjkj � ki�
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To take functional derivatives of more complicated functionals we simply use
the ordinary rules for derivatives of composite functions� For example�

�

�J�x�
exp
h
i

Z
d�y J�y�
�y�

i
� i
�x� exp

h
i

Z
d�y J�y�
�y�

i
� ������

When the functional depends on the derivative of J � we integrate by parts
before applying the functional derivative�

�

�J�x�

Z
d�y ��J�y�V

��y� � ���V ��x�� ������

The basic object of this formalism is the generating functional of corre�
lation functions� Z$J %� �Some authors call it W $J %�� In a scalar �eld theory�
Z$J % is de�ned as

Z$J % �
Z
D
 exp

h
i

Z
d�x
�L� J�x�
�x�

�i
� ������

This is a functional integral over 
 in which we have added to L in the expo�
nent a source term� J�x�
�x��

Correlation functions of the Klein�Gordon �eld theory can be simply com�
puted by taking functional derivatives of the generating functional� For exam�
ple� the two�point function is

h�jT
�x��
�x�� j�i � 

Z�

�
�i �

�J�x��

��
�i �

�J�x��

�
Z$J %
���
J
�

� ����
�

where Z� � Z$J � �%� Each functional derivative brings down a factor of 
 in
the numerator of Z$J %� setting J � �� we recover expression ������ To compute
higher correlation functions we simply take more functional derivatives�

Formula ����
� is useful because� in a free �eld theory� Z$J % can be rewrit�
ten in a very explicit form� Consider the exponent of ������ in the free Klein�
Gordon theory� Integrating by parts� we obtainZ

d�x
�L��
� � J


�
�

Z
d�x
�
�
�
�����m� � i��
� J


�
� ������

�The i� is a convergence factor for the functional integral� as we discussed
below Eq� �������� We can complete the square by introducing a shifted �eld�


��x� � 
�x� � i

Z
d�y DF �x�y�J�y��

Making this substitution and using the fact that DF is a Green�s function of
the Klein�Gordon operator� we �nd that ������ becomesZ

d�x
�L��
� � J


�
�

Z
d�x
�
�
�


������m� � i��
�
�

�
Z
d�x d�y �

�J�x���iDF ��x� y�J�y��
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More symbolically� we could write the change of variables as


� � 
� �����m� � i����J� ������

and the resultZ
d�x
�L��
� � J


�
�

Z
d�x
�
�
�


������m� � i��
� � �
�J�����m� � i����J

�
�

������
Now change variables from 
 to 
� in the functional integral of �������

This is just a shift� and so the Jacobian of the transformation is � The result
is Z

D
� exp
h
i

Z
d�xL��
��

i
exp
h
�i
Z
d�x d�y �

�J�x�$�iDF �x�y�%J�y�
i
�

The second exponential factor is independent of 
�� while the remaining inte�
gral over 
� is precisely Z�� Thus the generating functional of the free Klein�
Gordon theory is simply

Z$J % � Z� exp
h
� �

�

Z
d�x d�y J�x�DF �x�y�J�y�

i
� ������

Let us use Eqs� ������ and ����
� to compute some correlation functions�
The two�point function is

h�jT
�x��
�x�� j�i

� � �

�J�x��

�

�J�x��
exp
h
� �

�

Z
d�x d�y J�x�DF �x�y�J�y�

i���
J
�

� � �

�J�x��

h
� �

�

Z
d�yDF �x��y�J�y�� �

�

Z
d�x J�x�DF �x�x��

i Z$J %
Z�

����
J
�

� DF �x� � x��� ������

Taking one derivative brings down two identical terms� the second derivative
gives several terms� but only when it acts on the outside factor do we get a
term that survives when we set J � ��

It is instructive to work out the four�point function by this method as
well� In order to �t the computation in a reasonable amount of space� let
us abbreviate arguments of functions as subscripts� 
� � 
�x��� Jx � J�x��
Dx� � DF �x�x��� and so on� Repeated subscripts will be integrated over
implicitly� The four�point function is then

h�jT
�
�
�
� j�i � �

�J�

�

�J�

�

�J�

��JxDx�

�
e�

�
�JxDxyJy

���
J
�

�
�

�J�

�

�J�

h
�D�� � JxDx�JyDy�

i
e�

�
�JxDxyJy

���
J
�

�
�

�J�

h
D��JxDx� �D��JyDy� � JxDx�D��

i
e�

�
�JxDxyJy

���
J
�

� D��D�� �D��D�� �D��D��� �����
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in agreement with ������� The rules for di�erentiating the exponential give
rise to the same familiar pattern� We get one term for each possible way of
contracting the four points in pairs� with a factor of DF for each contraction�

The generating functional method used just above to construct the cor�
relations of a free �eld theory can be used as well to represent the correla�
tion functions of an interacting �eld theory� Formula ����
� is independent of
whether the theory is free or interacting� The factor Z$J � �% is nontrivial in
the case of an interacting �eld theory� but it simply gives the denominator of
Eq� ������ that is� the sum of vacuum diagrams� Again from this approach�
the combinatoric issues in the evaluation of correlation functions are the same
as in Section ����

��� The Analogy Between Quantum Field Theory

and Statistical Mechanics

Let us now pause from the technical aspects of this discussion to consider some
implications of the formulae we have derived� To begin� let us summarize the
formal conclusions of the previous section in the following way� For a �eld
theory governed by the Lagrangian L� the generating functional of correlation
functions is

Z$J % �

Z
D
 exp

h
i

Z
d�x �L � J
�

i
� ������

The time variable of integration in the exponent runs from �T to T � with
T ���� i��� A correlation function such as ����� is reproduced by writing

h�jT
�x��
�x�� j�i � Z$J %��
�
�i �

�J�x��

��
�i �

�J�x��

�
Z$J %
���
J
�

� ������

The generating functional ������ is reminiscent of the partition function of
statistical mechanics� It has the same general structure of an integral over all
possible con�gurations of an exponential statistical weight� The source J�x�
plays the role of an external �eld� In fact� our method of computing correlation
functions by di�erentiating with respect to J�x� mimics the trick often used
in statistical mechanics of computing correlation functions by di�erentiating
with respect to such variables as the pressure or the magnetic �eld�

This analogy can be made more precise by manipulating the time vari�
able of integration in ������� The derivation of the functional integral formula
implied that the time integration was slightly tipped into the complex plane�
in just the direction to permit the contour to be rotated clockwise onto the
imaginary axis� We have already noted �below ������� that the original in�
�nitesimal rotation gives the correct i� prescription to produce the Feynman
propagator� The �nite rotation is the analogue in con�guration space of the
Wick rotation of the time component of momentum illustrated in Fig� ���
Like the Wick rotation in a momentum integral� this Wick rotation of the
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time coordinate t� �ix� produces a Euclidean ��vector product�

x� � t� � jxj� � ��x��� � jxj� � �jxE j�� ������

It is possible to show� by manipulating the expression for each Feynman di�
agram� that the analytic continuation of the time variables in any Green�s
function of a quantum �eld theory produces a correlation function invari�
ant under the rotational symmetry of four�dimensional Euclidean space� This
Wick rotation inside the functional integral demonstrates this same conclusion
in a more general way�

To understand what we have achieved by this rotation� consider the ex�
ample of 
� theory� The action of 
� theory coupled to sources isZ

d�x �L� J
� �

Z
d�x
h
�
���
�

� � 

�
m�
� � �

�-

� � J


i
� ����
�

After the Wick rotation ������� this expression takes the form

i

Z
d�xE�LE � J
� � i

Z
d�xE

h
�
��E�
�

� �


�
m�
� �

�

�-

� � J


i
� ������

This expression is identical in form to the expression ����� for the Gibbs free
energy of a ferromagnet in the Landau theory� The �eld 
�xE� plays the role
of the �uctuating spin �eld s�x�� and the source J�x� plays the role of an
external magnetic �eld� Note that the new ferromagnet lives in four� rather
than three� spatial dimensions�

The Wick�rotated generating functional Z$J % becomes

Z$J % �

Z
D
 exp

h
�
Z
d�xE �LE � J
�

i
� ������

The functional LE $
% has the form of an energy� It is bounded from below
and becomes large when the �eld 
 has large amplitude or large gradients�
The exponential� then� is a reasonable statistical weight for the �uctuations
of 
� In this new form� Z$J % is precisely the partition function describing the
statistical mechanics of a macroscopic system� described approximately by
treating the �uctuating variable as a continuum �eld�

The Green�s functions of 
�xE� after Wick rotation can be calculated
from the functional integral ������ exactly as we computed Minkowski Green�s
functions in the previous section� For the free theory �� � ��� a set of manipu�
lations analogous to those that produced ������ or ������ gives the correlation
function of 
 as

h
�xE��
�xE��i �
Z

d�kE
�����

eikE ��xE��xE��

k�E �m�
� ������

This is just the Feynman propagator evaluated in the spacelike region� accord�
ing to Eq� ���
��� this function falls o� as exp��mjxE��xE�j�� That behavior
is the four�dimensional analogue of the spin correlation function ���
�� We
see that� in the Euclidean continuation of �eld theory Green�s functions� the
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Compton wavelength m�� of the quanta becomes the correlation length of
statistical �uctuations�

This correspondence between quantum �eld theory and statistical me�
chanics will play an important role in the developments of the next few chap�
ters� In essence� it adds to our reserves of knowledge a completely new source
of intuition about how �eld theory expectation values should behave� This
intuition will be useful in imagining the general properties of loop diagrams
and� as we have already discussed in Chapter �� it will give important insights
that will help us correctly understand the role of ultraviolet divergences in
�eld theory calculations� In Chapter �� we will see that �eld theory can also
contribute to statistical mechanics by making profound predictions about the
behavior of thermal systems from the properties of Feynman diagrams�

��� Quantization of the Electromagnetic Field

In Section ��� we stated without proof the Feynman rule for the photon prop�
agator�

�
�ig��
k� � i�

� ������

Now that we have the functional integral quantization method at our com�
mand� let us apply it to the derivation of this expression�

Consider the functional integralZ
DAeiS�A�� ���
��

where S$A% is the action for the free electromagnetic �eld� �The functional
integral is over each of the four components� DA � DA�DA�DA�DA��� Inte�
grating by parts and expanding the �eld as a Fourier integral� we can write
the action as

S �

Z
d�x
�� �

� �F�� �
�
�

�


�

Z
d�xA��x�

�
��g�� � ����

�
A��x�

�


�

Z
d�k

�����
eA��k�

��k�g�� � k�k�
� eA���k�� ���
�

This expression vanishes when eA��k� � k� 	�k�� for any scalar function 	�k��
For this large set of �eld con�gurations the integrand of ���
�� is � and there�
fore the functional integral is badly divergent �there is no Gaussian damping��
Equivalently� the equation�

��g�� � ����
�
D��
F �x� y� � i��

� �����x � y�

or
��k�g�� � k�k�

� eD��
F �k� � i��

�� ���
��
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which would de�ne the Feynman propagator D��
F � has no solution� since the

�	 � matrix ��k�g�� � k�k�� is singular�
This di	culty is due to gauge invariance� Recall that F�� � and hence L�

is invariant under a general gauge transformation of the form

A��x�� A��x� �


e
��	�x��

The troublesome modes are those for which A��x� �
�
e��	�x�� that is� those

that are gauge�equivalent to A��x� � �� The functional integral is badly de�
�ned because we are redundantly integrating over a continuous in�nity of
physically equivalent �eld con�gurations� To �x the problem� we would like
to isolate the interesting part of the functional integral� which counts each
physical con�guration only once�

We can accomplish this by means of a trick� due to Faddeev and Popov�y

Let G�A� be some function that we wish to set equal to zero as a gauge�
�xing condition� for example� G�A� � ��A

� corresponds to Lorentz gauge�
We could constrain the functional integral to cover only the con�gurations
with G�A� � � by inserting a functional delta function� �

�
G�A�

�
� �Think of

this object as an in�nite product of delta functions� one for each point x�� To
do so legally� we insert  under the integral of ���
��� in the following form�

 �

Z
D	�x� ��G�A��

�
det
��G�A��

�	

�
� ���
��

where A� denotes the gauge�transformed �eld�

A�
��x� � A��x� �



e
��	�x��

Equation ���
�� is the continuum generalization of the identity

 �

�Q
i

Z
dai

�
��n�
�
g�a�
�
det
� �gi
�aj

�
for discrete n�dimensional vectors� In Lorentz gauge we have G�A�� �
��A� � ��e���	� so the functional determinant det

�
�G�A����	

�
is equal

to det����e�� For the present discussion� the only relevant property of this de�
terminant is that it is independent of A� so we can treat it as a constant in
the functional integral�

After inserting ���
��� the functional integral ���
�� becomes

det
��G�A��

�	

�Z
D	
Z
DAeiS�A� �

�
G�A��

�
�

Now change variables from A to A�� This is a simple shift� so DA � DA��
Also� by gauge invariance� S$A% � S$A�%� Since A� is now just a dummy

yL� D� Faddeev and V� N� Popov� Phys� Lett� ��B� �	 ��	����



�	� Chapter 	 Functional Methods

integration variable� we can rename it back to A� obtainingZ
DAeiS�A� � det

��G�A��

�	

�Z
D	
Z
DAeiS�A� �

�
G�A�

�
� ���
��

The functional integral over A is now restricted by the delta function to phys�
ically inequivalent �eld con�gurations� as desired� The divergent integral over
	�x� simply gives an in�nite multiplicative factor�

To go further we must specify a gauge��xing function G�A�� We choose
the general class of functions

G�A� � ��A��x�� �x�� ���

�

where �x� can be any scalar function� Setting this G�A� equal to zero gives
a generalization of the Lorentz gauge condition� The functional determinant
is the same as in Lorentz gauge� det

�
�G�A����	

�
� det����e�� Thus the

functional integral becomesZ
DAeiS�A� � det

�
e
��
��Z

D	
�Z

DAeiS�A� �
�
��A� � �x�

�
�

This equality holds for any �x�� so it will also hold if we replace the right�
hand side with any properly normalized linear combination involving di�erent
functions �x�� For our �nal trick� we will integrate over all �x�� with a
Gaussian weighting function centered on  � �� The above expression is thus
equal to

N���

Z
D exp


�i
Z
d�x

�

��

�
det
�
e
��
��Z

D	
�Z

DAeiS�A� �
�
��A���x�

�
� N��� det

�
e
��
��Z

D	
�Z

DAeiS�A� exp


�i
Z
d�x



��
���A��

�

�
�

���
��
where N��� is an unimportant normalization constant and we have used the
delta function to perform the integral over � We can choose � to be any
�nite constant� E�ectively� we have added a new term ����A��

���� to the
Lagrangian�

So far we have worked only with the denominator of our formula for
correlation functions�

h�jT O�A� j�i � lim
T���� i��

R DAO�A� exp
h
i
R T
�T d

�xL
i

R DA exp
h
i
R T
�T d

�xL
i �

The same manipulations can also be performed on the numerator� provided
that the operator O�A� is gauge invariant� �If it is not� the variable change
from A to A� preceding Eq� ���
�� does not work�� Assuming that O�A� is
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gauge invariant� we �nd for its correlation function

h�jT O�A� j�i � lim
T���� i��

R DAO�A� exp
h
i
R T
�T d

�x
�L � �

�� ��
�A��

�
�i

R DA exp
h
i
R T
�T d

�x
�L � �

�� ��
�A���

�i �

���
��
The awkward constant factors in ���
�� have canceled� the only trace left by
this whole process is the extra ��term that is added to the action�

At the beginning of this section� in Eq� ���
��� we saw that we could
not obtain a sensible photon propagator from the action S$A%� With the new
��term� however� that equation becomes��k�g�� � ��

�
�k�k�

� eD��
F �k� � i��

��

which has the solution

eD��
F �k� �

�i
k� � i�

�
g�� � ����k

�k�

k�

�
� ���
��

This is our desired expression for the photon propagator� The i� term in the
denominator arises exactly as in the Klein�Gordon case� Note the overall minus
sign relative to the Klein�Gordon propagator� which was already evident in
Eq� ���
���

In practice one usually chooses a speci�c value of � when making compu�
tations� Two choices that are often convenient are

� � � Landau gauge�

� �  Feynman gauge�

So far in this book we have always used Feynman gauge�z

The Faddeev�Popov procedure guarantees that the value of any correla�
tion function of gauge�invariant operators computed from Feynman diagrams
will be independent of the value of � used in the calculation �as long as the
same value of � is used consistently�� In the case of QED� it is not di	cult
to prove this ��independence directly� Notice in Eq� ���
�� that � multiplies a
term in the photon propagator proportional to k�k� � According to the Ward�
Takahashi identity ������� the replacement in a Green�s function of any photon
propagator by k�k� yields zero� except for terms involving external o��shell
fermions� These terms are equal and opposite for particle and antiparticle and
vanish when the fermions are grouped into gauge�invariant combinations�

To complete our treatment of the quantization of the electromagnetic �eld�
we need one additional ingredient� In Chapters 
 and �� we computed S�matrix

zOther choices of � may be useful in speci�c applications� for example� in certain
problems of bound states in QED� the Yennie gauge� � � � produces a cancellation
that is otherwise di�cult to make explicit� See H� M� Fried and D� R� Yennie� Phys�
Rev� ���� �	� ��	�
��
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elements for QED from the correlation functions of non�gauge�invariant oper�
ators ��x�� ��x�� and A��x�� We will now argue that the S�matrix elements
are given correctly by this procedure� Since the S�matrix is de�ned between
asymptotic states� we can compute S�matrix elements in a formalism in which
the coupling constant is turned o� adiabatically in the far past and far fu�
ture� In the zero coupling limit� there is a clean separation between gauge�
invariant and gauge�variant states� Single�particle states containing one elec�
tron� one positron� or one transversely polarized photon are gauge�invariant�
while states with timelike and longitudinal photon polarizations transform
under gauge motions� We can thus de�ne a gauge�invariant S�matrix in the
following way� Let SFP be the S�matrix between general asymptotic states�
computed from the Faddeev�Popov procedure� This matrix is unitary but
not gauge�invariant� Let P� be a projection onto the subspace of the space
of asymptotic states in which all particles are either electrons� positrons� or
transverse photons� Then let

S � P� SFP P� � ���
��

This S�matrix is gauge invariant by construction� because it is projected onto
gauge�invariant states� It is not obvious that it is unitary� However� we ad�
dressed this issue in Section 
�
� We showed there that any matrix element
M���� for photon emission satis�esX

i
���

��i��i�M�M�� � ��g���M�M�� � ������

where the sum on the left�hand side runs only over transverse polarizations�
The same argument applies if M� and M�� are distinct amplitudes� as long
as they satisfy the Ward identity� This is exactly the information we need to
see that

SSy � P� SFP P� S
y
FP P� � P� SFP S

y
FP P�� �����

Now we can use the unitarity of SFP to see that S is unitary� SSy � � on
the subspace of gauge�invariant states� It is easy to check explicitly that the
formula ���
�� for the S�matrix is independent of �� The Ward identity implies
that any QED matrix element with all external fermions on�shell is unchanged
if we add to the photon propagator D���q� any term proportional to q��

��� Functional Quantization of Spinor Fields

The functional methods that we have used so far allow us to compute� using
Eq� ����� or ����
�� correlation functions involving �elds that obey canonical
commutation relations� To generalize these methods to include spinor �elds�
which obey canonical anticommutation relations� we must do something dif�
ferent� We must represent even the classical �elds by anticommuting numbers�
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Anticommuting Numbers

We will de�ne anticommuting numbers �also called Grassmann numbers� by
giving algebraic rules for manipulating them� These rules are formal and might
seem ad hoc� We will justify them by showing that they lead to the familiar
quantum theory of the Dirac equation�

The basic feature of anticommuting numbers is that they anticommute�
For any two such numbers � and ��

�� � ���� ������

In particular� the square of any Grassmann number is zero�

�� � ��

�This fact makes algebra extremely easy�� A product ���� of two Grassmann
numbers commutes with other Grassmann numbers� We will also wish to
add Grassmann numbers� and to multiply them by ordinary numbers� these
operations have all the properties of addition and scalar multiplication in any
vector space�

The main thing we want to do with anticommuting numbers is integrate
over them� To de�ne functional integration� we do not need general de�nite
integrals of these parameters� but only the analog of

R�
�� dx� So let us de�

�ne the integral of a general function f of a Grassmann variable �� over the
complete range of �� Z

d� f��� �

Z
d�
�
A�B�

�
�

In general� f��� can be expanded in a Taylor series� which terminates after
two terms since �� � �� The integral should be linear in f � thus it must be
a linear function of A and B� Its value is �xed by one additional property�
In our analysis of bosonic functional integrals �for instance� in ������ and
���
���� we made strong use of the invariance of the integral to shifts of the
integration variable� We will see in Section ��� that this shift invariance of
the functional integral plays a central role in the derivation of the quantum
mechanical equations of motion and conservation laws� and thus must be
considered a fundamental aspect of the formalism� We must� then� demand
this same property for integrals over �� Invariance under the shift � � � � �
yields the conditionZ

d�
�
A�B�

�
�

Z
d�
�
�A�B�� �B�

�
�

The shift changes the constant term� but leaves the linear term unchanged�
The only linear function of A and B that has this property is a constant



�

 Chapter 	 Functional Methods

�conventionally taken to be � times B� so we de�ne!Z
d�
�
A�B�

�
� B� ������

When we perform a multiple integral over more than one Grassmann variable�
an ambiguity in sign arises� we adopt the conventionZ

d�

Z
d� �� � �� ������

performing the innermost integral �rst�
Since the Dirac �eld is complex�valued� we will work primarily with com�

plex Grassmann numbers� which can be built out of real and imaginary parts
in the usual way� It is convenient to de�ne complex conjugation to reverse the
order of products� just like Hermitian conjugation of operators�

����� � ���� � ������ ����
�

To integrate over complex Grassmann numbers� let us de�ne

� �
�� � i��p

�
� �� �

�� � i��p
�

�

We can now treat � and �� as independent Grassmann numbers� and adopt
the convention

R
d��d� ����� � �

Let us evaluate a Gaussian integral over a complex Grassmann variable�Z
d�� d� e��

�b� �

Z
d�� d�

�
� ��b�

�
�

Z
d�� d�

�
 � ���b

�
� b� ������

If � were an ordinary complex number� this integral would equal ���b� The
factor of �� is unimportant� the main di�erence with anticommuting num�
bers is that the b comes out in the numerator rather than the denominator�
However� if there is an additional factor of ��� in the integrand� we obtainZ

d�� d� ��� e��
�b� �  �



b
� b� ������

The extra ��� introduces a factor of ��b�� just as it does in an ordinary
Gaussian integral�

To perform general Gaussian integrals in higher dimensions� we must �rst
prove that an integral over complex Grassmann variables is invariant under
unitary transformations� Consider a set of n complex Grassmann variables �i�
and a unitary matrix U � If ��i � Uij�j � thenQ

i
��i �



n-
�ij���l��i�

�
j � � � �

�
l

�This de�nition is due to F� A� Berezin� The Method of Second Quantization�
Academic Press� New York� �	���
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�


n-
�ij���lUii��i�Ujj��j� � � � Ull��l�

�


n-
�ij���lUii�Ujj� � � � Ull��

i�j����l�
�Q
i
�i

�
�
�
detU

��Q
i
�i

�
� ������

In a general integral �Q
i

Z
d��i d�i

�
f����

the only term of f��� that survives has exactly one factor of each �i and ��i �
it is proportional to

�Q
�i
��Q

��i
�
� If we replace � by U�� this term acquires a

factor of �detU��detU�� � � so the integral is unchanged under the unitary
transformation�

We can now evaluate a general Gaussian integral involving a Hermitian
matrix B with eigenvalues bi��Q

i

Z
d��i d�i

�
e��

�

iBij�j �

�Q
i

Z
d��i d�i

�
e��i�

�

i bi�i �
Q
i
bi � detB� ������

�If � were an ordinary number� we would have obtained ����n��detB��� Sim�
ilarly� you can show that�Q

i

Z
d��i d�i

�
�k�

�
l e

���iBij�j � �detB��B���kl� ������

Inserting another pair �m�
�
n in the integrand would yield a second factor

�B���mn� and a second term in which the indices l and n are interchanged
�the sum of all possible pairings�� In general� except for the determinant being
in the numerator rather than the denominator� Gaussian integrals over Grass�
mann variables behave exactly like Gaussian integrals over ordinary variables�

The Dirac Propagator

A Grassmann �eld is a function of spacetime whose values are anticommuting
numbers� More precisely� we can de�ne a Grassmann �eld ��x� in terms of
any set of orthonormal basis functions�

��x� �
X
i

�i
i�x�� �����

The basis functions 
i�x� are ordinary c�number functions� while the coe	�
cients �i are Grassmann numbers� To describe the Dirac �eld� we take the 
i
to be a basis of four�component spinors�

We now have all the machinery needed to evaluate functional integrals�
and hence correlation functions� involving fermions� For example� the Dirac
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two�point function is given by

h�jT��x����x�� j�i �
R D�D� exp

h
i
R
d�x��i� �m��

i
��x����x��R D�D� exp

h
i
R
d�x��i� �m��

i �

�We write D� instead of D�� for convenience� the two are unitarily equiva�
lent� We also leave the limits on the time integrals implicit� they are the same
as in Eq� ������ and will yield an i� term in the propagator as usual�� The
denominator of this expression� according to ������� is det�i� �m�� The nu�
merator� according to ������� is this same determinant times the inverse of
the operator �i�i ��m�� Evaluating this inverse in Fourier space� we �nd the
familiar result for the Feynman propagator�

h�jT��x����x�� j�i � SF �x� � x�� �

Z
d�k

�����
ie�ik��x��x��

k �m� i�
� ������

Higher correlation functions of free Dirac �elds can be evaluated in a similar
manner� The answer is always just the sum of all possible full contractions
of the operators� with a factor of SF for each contraction� as we found from
Wick�s theorem in Chapter ��

Generating Functional for the Dirac Field

As with the Klein�Gordon �eld� we can alternatively derive the Feynman rules
for the free Dirac theory by means of a generating functional� In analogy with
������� we de�ne the Dirac generating functional as

Z$�� �% �

Z
D�D� exp

h
i

Z
d�x
�
��i� �m�� � �� � ��

�i
� ������

where ��x� is a Grassmann�valued source �eld� You can easily shift ��x� to
complete the square� to derive the simpler expression

Z$�� �% � Z� � exp
h
�
Z
d�x d�y ��x�SF �x� y���y�

i
� ������

where� as before� Z� is the value of the generating functional with the external
sources set to zero�

To obtain correlation functions� we will di�erentiate Z with respect to �
and �� First� however� we must adopt a sign convention for derivatives with
respect to Grassmann numbers� If � and � are anticommuting numbers� let us
de�ne

d

d�
�� � � d

d�
�� � ��� ����
�

Then referring to the de�nition ������ of Z� we see that the two�point function�
for example� is given by

h�jT��x����x�� j�i � Z���

�
�i �

���x��

��
�i

�

���x��

�
Z$�� �%

���
�
�

�

�
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Plugging in formula ������ for Z$�� �% and carefully keeping track of the signs�
we �nd that this expression is equal to the Feynman propagator� SF �x��x���
Higher correlation functions can be evaluated in a similar way�

QED

As we saw in Section ��� for the case of scalar �elds� the functional inte�
gral method allows us to read the Feynman rules for vertices directly from
the Lagrangian for an interacting �eld theory� For the theory of Quantum
Electrodynamics� the full Lagrangian is

LQED � ��iD �m�� � �
� �F���

�

� ��i� �m�� � �
� �F�� �

� � e����A�

� L� � e����A��

where D� � �� � ieA� is the gauge�covariant derivative�
To evaluate correlation functions� we expand the exponential of the inter�

action term�

exp
�
i
RL� � exp

�
i
RL�� h� ie

Z
d�x����A� � � � �

i
�

The two terms of the free Lagrangian yield the Dirac and electromagnetic
propagators derived in this section and the last�

�

Z
d�p

�����
i e�ip��x�y�

p�m� i�
�

�

Z
d�q

�����
�i g�� e�iq��x�y�

q� � i�
�Feynman gauge��

The interaction term gives the QED vertex�

� �ie��
Z
d�x�

As in Chapter �� we can rearrange these rules� performing the integrations
over vertex positions to obtain momentum�conserving delta functions� and
using these delta functions to perform most of the propagator momentum
integrals�

The only remaining aspect of the QED Feynman rules is the placement of
various minus signs� These signs are also built into the functional integral� for
example� interchanging �k and �

�
l in Eq� ������ would introduce a factor of ��

We will see another example of a fermion minus sign in the computation that
follows�
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Functional Determinants

Throughout this chapter we have encountered expressions that we wrote for�
mally as functional determinants� To end this section� let us investigate one
of these objects more closely� We will �nd that� at least in this case� we can
write the determinant explicitly as a sum of Feynman diagrams�

Consider the objectZ
D�D� exp

h
i

Z
d�x��iD �m��

i
� ������

where D� � �� � ieA� and A��x� is a given external background �eld� For�
mally� this expression is a functional determinant�

� det�iD �m� � det�i� �m� eA�
� det�i� �m� � det

�
� i

i� �m
��ieA�

�
�

In the last form� the �rst term is an in�nite constant� The second term contains
the dependence of the determinant on the external �eld A� We will now show
that this dependence is well de�ned and� in fact� is exactly equivalent to the
sum of vacuum diagrams�

To demonstrate this� we need only apply standard identities from linear
algebra� First notice that� if a matrix B has eigenvalues bi� we can write its
determinant as

detB �
Q
i
bi � exp

hP
i
log bi

i
� exp

h
Tr�logB�

i
� ������

where the logarithm of a matrix is de�ned by its power series� Applying this
identity to our determinant� and writing out the power series of the logarithm�
we obtainy

det
�
� i

i� �m
��ie A�

�
� exp

 �X
n
�

� 

n
Tr
h� i

i� �m
��ieA�

�ni�
� ������

Alternatively� we can evaluate this determinant by returning to expres�
sion ������ and using Feynman diagrams� Expanding the interaction term� we
obtain the vertex rule

� �ie��
Z
d�xA��x��

yWe use Tr�� to denote operator traces� and tr�� to denote Dirac traces�
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Our determinant is then equal to a sum of Feynman diagrams�

det
�
� i��ieA�

i� �m

�

������

The series exponentiates� since the disconnected diagrams are products of con�
nected pieces �with appropriate symmetry factors when a piece is repeated��
For example�

Now let us evaluate the nth diagram in the exponent of ������� There is a factor
of � from the fermion loop� and a symmetry factor of �n since we could
rotate the interactions around the diagram up to n times without changing
it� �The factor is not �n-� because the cyclic order of the interaction points
is signi�cant�� The diagram is therefore

� � 

n

Z
dx� � � � dxn tr

h��ieA�x���SF �x� � x�� � � ���ie A�xn��SF �x� � xn�
i

� � 

n
Tr

�
i

i� �m
��ie A�

�n �
� ������

in exact agreement with ������� including the minus sign and the symmetry
factor�

The computation of functional determinants using Feynman diagrams is
an important tool� as we will see in Chapter �
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��� Symmetries in the Functional Formalism

We have now seen that the quantum �eld theoretic correlation functions of
scalar� vector� and spinor �elds can be computed from the functional integral�
completely bypassing the construction of the Hamiltonian� the Hilbert space of
states� and the equations of motion� The functional integral formalism makes
the symmetries of the problem manifest� any invariance of the Lagrangian
will be an invariance of the quantum dynamics�z However� we would like to
be able to appeal also to the conservation laws that follow from the quantum
equations of motion� or to these equations of motion themselves� For example�
the Ward identity� which played a major role in our discussion of photons in
QED �Section 
�
�� is essentially the conservation law of the electric charge
current� Since� as we saw in Section ���� the conservation laws follow from
symmetries of the Lagrangian� one might guess that it is not di	cult to derive
these conservation laws from the functional integral� In this section we will
see how to do that� We will see that the functional integral gives� in a most
direct way� a quantum generalization of Noether�s theorem� This result will
lead to the analogue of the Ward�Takahashi identity for any symmetry of a
general quantum �eld theory�

Equations of Motion

To prepare for this discussion� we should determine how the quantum equa�
tions of motion follow from the functional integral formalism� As a �rst prob�
lem to study� let us examine the Green�s functions of the free scalar �eld� To
be speci�c� consider the three�point function�

h�jT
�x��
�x��
�x�� j�i � Z��
Z
D
 ei

R
d�xL���
�x��
�x��
�x��� �����

where L � �
� ���
�

� � �
�m

�
� and Z is a shorthand for Z$J � �%� the func�
tional integral over the exponential� In classical mechanics� we would derive
the equations of motion by insisting that the action be stationary under an
in�nitesimal variation


�x�� 
��x� � 
�x� � ��x�� ������

The appropriate generalization is to consider ������ as an in�nitesimal change
of variables� A change of variables does not alter the value of the integral� Nor
does a shift of the integration variable alter the measure� D
� � D
� Thus we
can writeZ

D
 ei
R
d�xL���
�x��
�x��
�x�� �

Z
D
 ei

R
d�xL����
��x��
��x��
��x���

zThere are some subtle exceptions to this rule� which we will treat in Chapter �	�
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where 
� � 
� �� Expanding this equation to �rst order in �� we �nd

� �

Z
D
 ei

R
d�xL

	�
i

Z
d�x ��x�

h
�����m��
�x�

i

�x��
�x��
�x��

�
� ��x��
�x��
�x�� � 
�x����x��
�x�� � 
�x��
�x����x��



�

������
The last three terms can be combined with the �rst by writing� for instance�
��x�� �

R
d�x ��x���x�x��� Noting that the right�hand side must vanish for

any possible variation ��x�� we then obtain

� �

Z
D
 ei

R
d�xL

h
��� �m��
�x�
�x��
�x��
�x��

� i��x�x��
�x��
�x�� � i
�x����x�x��
�x�� � i
�x��
�x����x�x��
i
�

������
A similar equation holds for any number of �elds 
�xi��

To see the implications of ������� let us specialize to the case of one �eld

�x�� in ������ Notice that the derivatives acting on 
�x� can be pulled
outside the functional integral� Then� dividing ������ by Z yields the identity

��� �m�� h�jT
�x�
�x�� j�i � �i��x� x��� ����
�

The left�hand side of this relation is the Klein�Gordon operator acting on a
correlation function of 
�x�� The right�hand side is zero unless x � x�� that
is� the correlation function satis�es the Klein�Gordon equation except at the
point where the arguments of the two 
 �elds coincide� The modi�cation of
the Klein�Gordon equation at this point is called a contact term� In this simple
case� the modi�cation is hardly unfamiliar to us� Eq� ����
� merely says that
the Feynman propagator is a Green�s function of the Klein�Gordon operator�
as we originally showed in Section ���� We saw there that the delta function
arises when the time derivative in �� acts on the time�ordering symbol� We will
see below that� quite generally in quantum �eld theory� the classical equations
of motion for �elds are satis�ed by all quantum correlation functions of those
�elds� up to contact terms�

As an example� consider the identity that follows from ������ for an �n���
point correlation function of scalar �elds�

��� �m�� h�jT
�x�
�x�� � � �
�xn� j�i

�

nX
i
�

h�jT
�x�� � � �
��i��x� xi�

� � � �
�xn� j�i � ������

This identity says that the Klein�Gordon equation is obeyed by 
�x� inside
any expectation value� up to contact terms associated with the time ordering�
The result can also be derived from the Hamiltonian formalism using the
methods of Section ���� or� using the special properties of free��eld theory� by
evaluating both sides of the equation using Wick�s theorem�
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As long as the functional measure is invariant under a shift of the integra�
tion variable� we can repeat this argument and obtain the quantum equations
of motion for Green�s functions for any theory of scalar� vector� and spinor
�elds� This is the reason why� in Eq� ������� we took the shift invariance to be
the fundamental� de�ning property of the Grassmann integral�

For a general �eld theory of a �eld ��x�� governed by the Lagrangian
L$�%� the manipulations leading to ������ give the identity

� �

Z
D
 ei

R
d�xL

	
i

Z
d�x ��x�

�

���x�

�Z
d�x�L

�
� ��x����x��

� ��x����x�� � ��x����x��



�

������

and similar identities for correlation functions of n �elds� By the rule for
functional di�erentiation ������ the derivative of the action is

�

���x�

�Z
d�x�L

�
�
�L
��

� ��

� �L
������

�
�

this is the quantity that equals zero by the Euler�Lagrange equation of motion
����� for �� Formula ������ and its generalizations lead to the set of identities!� �

���x�

Z
d�x�L

�
��x�� � � ���xn�

"
�

nX
i
�

�
��x�� � � �

�
i��x� xi�

� � � ���xn�� �
������

In this equation� the angle�brackets denote a time�ordered correlation function
in which derivatives on ��x� are placed outside the time�ordering symbol� as in
Eq� ������� Relation ������ states that the classical Euler�Lagrange equations
of the �eld � are obeyed for all Green�s functions of �� up to contact terms
arising from the nontrivial commutation relations of �eld operators� These
quantum equations of motion for Green�s functions� including the proper con�
tact terms� are called Schwinger�Dyson equations�

Conservation Laws

In classical �eld theory� Noether�s theorem says that� to each symmetry of
a local Lagrangian� there corresponds a conserved current� In Section ��� we
proved Noether�s theorem by subjecting the Lagrangian to an in�nitesimal
symmetry variation� In the spirit of the above discussion of equations of mo�
tion� we should �nd the quantum analogue of this theorem by subjecting the
functional integral to an in�nitesimal change of variables along the symmetry
direction�

Again� it will be most instructive to begin with an example� Let us con�
sider the theory of a free� complex�valued scalar �eld� with the Lagrangian

L � j��
j� �m�j
j�� ������
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This Lagrangian is invariant under the transformation 
� ei�
� The classical
consequences of this invariance were discussed in Section ���� below Eq� ������
To �nd the quantum formulae� consider the in�nitesimal change of variables


�x�� 
��x� � 
�x� � i	�x�
�x�� ������

Note that we have made the in�nitesimal angle of rotation a function of x�
the reason for this will be clear in a moment�

The measure of functional integration is invariant under the transforma�
tion ������� since this is a unitary transformation of the variables 
�x�� Thus�
for the case of two �elds�Z

D
 ei
R
d�xL���
�x��
��x�� �

Z
D
 ei

R
d�xL����
��x��
���x��

����
��
���i���

�

Expanding this equation to �rst order in 	� we �nd

� �

Z
D
 ei

R
d�xL

	
i

Z
d�x
h
���	� � i�
��
� � 
���
�

i

�x��


��x��

�
�
i	�x��
�x��

�

��x�� � 
�x��

��i	�x��
��x���
�
Notice that the variation of the Lagrangian contains only terms proportional
to ��	� since the substitution ������ with a constant 	 leaves the Lagrangian
invariant� To put this relation into a familiar form� integrate the term involving
��	 by parts� Then taking the coe	cient of 	�x� and dividing by Z gives�

��j
��x�
�x��


��x��
�
� ��i�

D�
i
�x����x � x��

�

��x��

� 
�x��
��i
��x����x � x��

�E
�

�����

where
j� � i�
��
� � 
���
� ������

is the Noether current identi�ed in Eq� ������ As in Eq� ������� the correlation
function denotes a time�ordered product with the derivative on j��x� placed
outside the time�ordering symbol� Relation ����� is the classical conservation
law plus contact terms� that is� the Schwinger�Dyson equation associated with
current conservation�

It is not much more di	cult to discuss current conservation in more gen�
eral situations� Consider a local �eld theory of a set of �elds �a�x�� governed
by a Lagrangian L$�%� An in�nitesimal symmetry transformation on the �elds
�a will be of the general form

�a�x�� �a�x� � ���a�x�� ������

We assume that the action is invariant under this transformation� Then� as in
Eq� ������ if the parameter � is taken to be a constant� the Lagrangian must
be invariant up to a total divergence�

L$�%� L$�% � ���J �� ������
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If the symmetry parameter � depends on x� as in the analysis of the previous
paragraph� the variation of the Lagrangian will be slightly more complicated�

L$�%� L$�% � �������a
�L

�����a�
� ���J ��

Summation over the index a is understood� Then

�

���x�

Z
d�xL$� � ���% � ���j��x�� ����
�

where j� is the Noether current of Eq� ������

j� �
�L

�����a�
��a �J �� ������

Using result ����
� and carrying through the steps leading up to ������ we
�nd the Schwinger�Dyson equation��

��j
��x��a�x���b�x��

�
� ��i�

D
���a�x����x� x����b�x��

� �a�x�����b�x����x � x���
E
�

������

A similar equation can be found for the correlator of ��j
� with n �elds ��x��

These give the full set of Schwinger�Dyson equations associated with the clas�
sical Noether theorem�

As an example of the use of this variational procedure to obtain the
Noether current� consider the symmetry of the Lagrangian with respect to
spacetime translations� Under the transformation

�a � �a � a��x����a ������

the Lagrangian transforms as

L � ��a
����a

�L
�����a�

� a���L�

The variation of
R
d�xL with respect to a� then gives rise to the conservation

equation for the energy�momentum tensor ��T
�� � �� with

T�� �
�L

�����a�
���a � g��L� ������

in agreement with Eq� ������
The trick we have used in this section� that of considering a symmetry

transformation whose parameter is a function of spacetime� is reminiscent
of a technical feature of our earlier discussion introducing the Lagrangian
of QED� In Eq� ������ we noted that the minimal coupling prescription for
coupling the photon to charged �elds produces a Lagrangian invariant not
only under the global symmetry transformation with � constant� but also
under a transformation in which the symmetry parameter depends on x� In
Chapter 
� we will draw these two ideas together in a general discussion of
�eld theories with local symmetries�
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The Ward�Takahashi Identity

As a �nal application of the methods of this section� let us derive the
Schwinger�Dyson equations associated with the global symmetry of QED�
Consider making� in the QED functional integral� the change of variables

��x� � � � ie	�x����x�� ������

without the corresponding term in the transformation law for A� �which
would make the Lagrangian invariant under the transformation�� The QED
Lagrangian ����� then transforms according to

L � L� e��	��
��� �����

The transformation ������ thus leads to the following identity for the func�
tional integral over two fermion �elds�

� �

Z
D�D�DAei

R
d�xL

	
� i

Z
d�x ��	�x�

h
j��x���x����x��

i
� �ie	�x����x�����x�� � ��x����ie	�x����x���



� ������

with j� � e����� As in our other examples� an analogous equation holds for
any number of fermion �elds�

To understand the implications of this set of equations� consider �rst the
speci�c case ������� Dividing this relation by Z� we �nd

i�� h�jTj��x���x����x�� j�i �� ie��x� x�� h�jT��x����x�� j�i
� ie��x� x�� h�jT��x����x�� j�i �

������

To put this equation into a more familiar form� compute its Fourier transform
by integrating� Z

d�x e�ik�x
Z
d�x� e

�iq�x�
Z
d�x� e

�ip�x� � ������

Then the amplitudes in ������ are converted to the amplitudes M�k� p� q�
and M�p� q� de�ned below ������ in our discussion of the Ward�Takahashi
identity� Indeed� ������ falls directly into the form

�ik�M��k� p� q� � �ieM��p� q � k� � ieM��p� k� q�� ����
�

This is exactly the Ward�Takahashi identity for two external fermions� which
we derived diagrammatically in Section ���� It is not di	cult to check that
the more general relations involving n fermion �elds lead to the general Ward�
Takahashi identity presented in ������� Because of this relation� the formula
������ associated with the arbitrary symmetry ������ is usually also referred
to as a Ward�Takahashi identity� the one associated with the symmetry and
its Noether current�
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We have now arrived at a more general understanding of the terms on the
right�hand side of the Ward�Takahashi identity� These are the contact terms
that we now expect to �nd when we convert classical equations of motion
to Schwinger�Dyson equations for quantum Green�s functions� The functional
integral formalism allows a simple and elegant derivation of these quantum�
mechanical terms�

Problems

	�� Scalar QED� This problem concerns the theory of a complex scalar �eld �
interacting with the electromagnetic �eld A�� The Lagrangian is

L � � �
�F

�
�� � �D���

��D����m�����

where D� � �� � ieA� is the usual gauge�covariant derivative�

�a� Use the functional method of Section 	�� to show that the propagator of the
complex scalar �eld is the same as that of a real �eld�

�
i

p� �m� � i�
�

Also derive the Feynman rules for the interactions between photons and scalar
particles� you should �nd

� �ie�p� p���� � �ie�g�� �

�b� Compute� to lowest order� the di�erential cross section for e�e� � ���� Ignore
the electron mass �but not the scalar particle�s mass�� and average over the
electron and positron polarizations� Find the asymptotic angular dependence
and total cross section� Compare your results to the corresponding formulae for
e�e� � �����

�c� Compute the contribution of the charged scalar to the photon vacuum polar�
ization� using dimensional regularization� Note that there are two diagrams� To
put the answer into the expected form�

$���q�� � �g��q� � q�q��$�q���

it is useful to add the two diagrams at the beginning� putting both terms over
a common denominator before introducing a Feynman parameter� Show that�
for �q� � m�� the charged boson contribution to $�q�� is exactly �
� that of a
virtual electron�positron pair�

	�� Quantum statistical mechanics�

�a� Evaluate the quantum statistical partition function

Z � tr$e�	H %



Problems ���

�where  � �
kT � using the strategy of Section 	�� for evaluating the matrix
elements of e�iHt in terms of functional integrals� Show that one again �nds a
functional integral� over functions de�ned on a domain that is of length  and
periodically connected in the time direction� Note that the Euclidean form of
the Lagrangian appears in the weight�

�b� Evaluate this integral for a simple harmonic oscillator�

LE �
�
� -x

� � �
��

�x��

by introducing a Fourier decomposition of x�t��

x�t� �
X
n

xn � �p

e��int�	 �

The dependence of the result on  is a bit subtle to obtain explicitly� since the
measure for the integral over x�t� depends on  in any discretization� However�
the dependence on � should be unambiguous� Show that� up to a �possibly di�
vergent and �dependent� constant� the integral reproduces exactly the familiar
expression for the quantum partition function of an oscillator� �You may �nd the
identity

sinh z � z �
�Y
n
�

�
� �

z�

�n���

�
useful��

�c� Generalize this construction to �eld theory� Show that the quantum statistical
partition function for a free scalar �eld can be written in terms of a functional
integral� The value of this integral is given formally byh

det���� �m��
i����

�

where the operator acts on functions on Euclidean space that are periodic in the
time direction with periodicity � As before� the  dependence of this expression
is di�cult to compute directly� However� the dependence on m� is unambiguous�
�More generally� one can usually evaluate the variation of a functional determi�
nant with respect to any explicit parameter in the Lagrangian�� Show that the
determinant indeed reproduces the partition function for relativistic scalar par�
ticles�

�d� Now let ��t�� ��t� be two Grassmann�valued coordinates� and de�ne a fermionic
oscillator by writing the Lagrangian

LE � � -� � ����

This Lagrangian corresponds to the Hamiltonian

H � ���� with f���g � ��
that is� to a simple two�level system� Evaluate the functional integral� assuming
that the fermions obey antiperiodic boundary conditions� ��t � � � ���t��
�Why is this reasonable�� Show that the result reproduces the partition function
of a quantum�mechanical two�level system� that is� of a quantum state with Fermi
statistics�
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�e� De�ne the partition function for the photon �eld as the gauge�invariant func�
tional integral

Z �

Z
DA exp

�
�
Z
$ �� �F�� �

�%
�

over vector �elds A� that are periodic in the time direction with period �
Apply the gauge��xing procedure discussed in Section 	�� �working� for example�
in Feynman gauge�� Evaluate the functional determinants using the result of
part �c� and show that the functional integral does give the correct quantum
statistical result �including the correct counting of polarization states��



Chapter �	

Systematics of Renormalization

While computing radiative corrections in Chapters � and �� we encountered
three QED diagrams with ultraviolet divergences�

In each case we saw that the divergence could be regulated and canceled�
yielding �nite expressions for measurable quantities� In Chapter �� we pointed
out that such ultraviolet divergences occur commonly and� in fact� naturally
in quantum �eld theory calculations� We sketched a physical interpretation of
these divergences� with implications both in quantum �eld theory and in the
statistical theory of phase transitions� In the next few chapters� we will convert
this sketchy picture into a quantitative theory that allows precise calculations�

In this chapter� we begin this study by developing a classi�cation of the
ultraviolet divergences that can appear in a quantum �eld theory� Rather than
stumbling across these divergences one by one and repairing them case by case�
we now set out to determine once and for all which diagrams are divergent�
and in which theories these divergences can be eliminated systematically� As
examples we will consider both QED and scalar �eld theories�

���� Counting of Ultraviolet Divergences

In this section we will use elementary arguments to determine� tentatively�
when a Feynman diagram contains an ultraviolet divergence� We begin by
analyzing quantum electrodynamics�

First we introduce the following notation� to characterize a typical dia�
gram in QED�

Ne � number of external electron lines�

N� � number of external photon lines�

Pe � number of electron propagators�

P� � number of photon propagators�

V � number of vertices�

L � number of loops�

���
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�This analysis applies to correlation functions as well as scattering amplitudes�
In the former case� propagators that are connected to external points should
be counted as external lines� not as propagators��

The expression corresponding to a typical diagram looks like this�

�
Z

d�k� d
�k� � � � d�kL

�ki �m� � � � �k�j � � � � �k�n�
�

For each loop there is a potentially divergent ��momentum integral� but each
propagator aids the convergence of this integral by putting one or two pow�
ers of momentum into the denominator� Very roughly speaking� the diagram
diverges unless there are more powers of momentum in the denominator than
in the numerator� Let us therefore de�ne the super�cial degree of divergence�
D� as the di�erence�

D � �power of k in numerator�� �power of k in denominator�

� �L� Pe � �P� �
����

Naively� we expect a diagram to have a divergence proportional to &D� where
& is a momentum cuto�� when D � �� We expect a divergence of the form
log& when D � �� and no divergence when D � ��

This naive expectation is often wrong� for one of three reasons �see
Fig� ���� When a diagram contains a divergent subdiagram� its actual di�
vergence may be worse than that indicated by D� When symmetries �such
as the Ward identity� cause certain terms to cancel� the divergence of a dia�
gram may be reduced or even eliminated� Finally� a trivial diagram with no
propagators and no loops has D � � but no divergence�

Despite all of these complications� D is still a useful quantity� To see why�
let us rewrite it in terms of the number of external lines �Ne� N�� and vertices
�V �� Note that the number of loop integrations in a diagram is

L � Pe � P� � V � � �����

since in our original Feynman rules each propagator has a momentum integral�
each vertex has a delta function� and one delta function merely enforces overall
momentum conservation� Furthermore� the number of vertices is

V � �P� �N� � �
� ��Pe �Ne�� �����

since each vertex involves exactly one photon line and two electron lines� �The
propagators count twice since they have two ends on vertices�� Putting these
relations together� we �nd that D can be expressed as

D � ��Pe � P� � V � �� Pe � �P�

� ��N� � �
�Ne�

�����
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Figure �
��� Some simple QED diagrams that illustrate the super�cial de�
gree of divergence� The �rst diagram is �nite� even though D � �� The third
diagram has D � � but only a logarithmic divergence� due to the Ward iden�
tity �see Section ����� The fourth diagram diverges� even though D � �� since
it contains a divergent subdiagram� Only in the second and �fth diagrams
does the super�cial degree of divergence coincide with the actual degree of
divergence�

independent of the number of vertices� The super�cial degree of divergence of
a QED diagram depends only on the number of external legs of each type�

According to result ������ only diagrams with a small number of external
legs have D � �� those seven types of diagrams are shown in Fig� ���� Since
external legs do not enter the potentially divergent integral� we can restrict our
attention to amputated diagrams� We can also restrict our attention to one�
particle�irreducible diagrams� since reducible diagrams are simple products
of the integrals corresponding to their irreducible parts� Thus the task of
enumerating all of the divergent QED diagrams reduces to that of analyzing
the seven types of amputated� one�particle�irreducible amplitudes shown in
Fig� ���� Other diagrams may diverge� but only when they contain one of
these seven as a subdiagram� Let us therefore consider each of these seven
amplitudes in turn�

The zero�point function� Fig� ���a� is very badly divergent� But this ob�
ject merely causes an unobservable shift of the vacuum energy� it never con�
tributes to S�matrix elements�

To analyze the photon one�point function �Fig� ���b�� note that the ex�
ternal photon must be attached to a QED vertex� Neglecting the external
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Figure �
��� The seven QED amplitudes whose super�cial degree of di�
vergence �D� is � �� �Each circle represents the sum of all possible QED
diagrams�� As explained in the text� amplitude �a� is irrelevant to scattering
processes� while amplitudes �b� and �d� vanish because of symmetries� Am�
plitude �e� is nonzero� but its divergent parts cancel due to the Ward identity�
The remaining amplitudes �c� f� and g� are all logarithmically divergent� even
though D � � for �c� and �f��

photon propagator� this amplitude is therefore

� �ie
Z
d�x e�iq�x h�jT j��x� j�i � ���
�

where j� � ���� is the electromagnetic current operator� But the vacuum
expectation value of j� must vanish by Lorentz invariance� since otherwise it
would be a preferred ��vector�

The photon one�point function also vanishes for a second reason� charge�
conjugation invariance� Recall that C is a symmetry of QED� so C j�i � j�i�
But j��x� changes sign under charge conjugation� Cj��x�Cy � �j��x�� so its
vacuum expectation value must vanish�

h�jTj��x� j�i � h�jCyCj��x�CyC j�i � �h�jTj��x� j�i � ��

The same argument applies to any vacuum expectation value of an odd num�
ber of electromagnetic currents� In particular� the photon three�point function�
Fig� ���d� vanishes� �This result is known as Furry�s theorem�� It is not hard
to check explicitly that the photon one� and three�point functions vanish in
the leading order of perturbation theory �see Problem ����

The remaining amplitudes in Fig� ��� are all nonzero� so we must analyze
their structures in more detail� Consider� for example� the electron self�energy
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�Fig� ���f�� This amplitude is a function of the electron momentum p� so let
us expand it in a Taylor series about p � ��

� A� �A� p�A�p
� � � � � �

where each coe	cient is independent of p�

An �


n-

dn

dpn
� �����

�p
�

�

�These coe	cients are infrared divergent� to compute them explicitly we would
need an infrared regulator� as in Chapter ��� The diagrams contributing to the
electron self�energy depend on p through the denominators of propagators�
To compute the coe	cients An� we di�erentiate these propagators� giving
expressions like

d

dp
�



k � p�m

�
� � 

�k � p�m��
�

That is� each derivative with respect to the external momentum p lowers the
super�cial degree of divergence by � Since the constant term A� has �su�
per�cially� a linear divergence� A� can have only a logarithmic divergence�
all the remaining An are �nite� �This argument breaks down when the di�
vergence is in a subdiagram� since then not all propagators involve the large
momentum k� We will face this problem in Section �����

The electron self�energy amplitude has one additional subtlety� If the con�
stant term A� were proportional to & �the ultraviolet cuto��� the electron mass
shift would� according to the analysis in Section ��� also have a term propor�
tional to &� But the electron mass shift must actually be proportional to m�
since chiral symmetry would forbid a mass shift if m were zero� At worst� the
constant term can be proportional m log&� We therefore expect the entire
self�energy amplitude to have the form

� a�m log& � a� p log& � ��nite terms�� �����

exactly what we found for the term of order 	 in Eq� ������
Let us analyze the exact electron�photon vertex� Fig� ���g� in the same

way� �Again we implicitly assume that infrared divergences have been regu�
lated�� Expanding in powers of the three external momenta� we immediately
see that only the constant term is divergent� since di�erentiating with respect
to any external momentum would lower the degree of divergence to �� This
amplitude therefore contains only one divergent constant�

� �ie�� log & � �nite terms� �����
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As discussed in Section ��
� the photon self energy �Fig� ���c� is con�
strained by the Ward identity to have the form

� �g��q� � q�q��/�q��� �����

Viewing this expression as a Taylor series in q� we see that the constant and
linear terms both vanish� lowering the super�cial degree of divergence from
� to �� The only divergence� therefore� is in the constant term of /�q��� and
this divergence is only logarithmic� This result is exactly what we found for
the lowest�order contribution to /�q�� in Eq� �������

Finally� consider the photon�photon scattering amplitude� Fig� ���e� The
Ward identity requires that if we replace any external photon by its momen�
tum vector� the amplitude vanishes�

k�

�BB�
�CCA � �� �����

By exhaustion one can show that this condition is satis�ed only if the ampli�
tude is proportional to �g��k� � g��k��� with a similar factor for each of the
other three legs� Each of these factors involves one power of momentum� so
all terms with less than four powers of momentum in the Taylor series of this
amplitude must vanish� The �rst nonvanishing term has D � ��� � ��� and
therefore this amplitude is �nite�

In summary� we have found that there are only three �primitively� di�
vergent amplitudes in QED� the three that we already found in Chapters �
and �� �Other amplitudes may also be divergent� but only because of dia�
grams that contain these primitive amplitudes as components�� Furthermore�
the dependence of these divergent amplitudes on external momenta is ex�
tremely simple� If we expand each amplitude as a power series in its external
momenta� there are altogether only four divergent coe	cients in the expan�
sions� In other words� QED contains only four divergent numbers� In the next
section we will see how these numbers can be absorbed into unobservable
Lagrangian parameters� so that observable scattering amplitudes are always
�nite�

For the remainder of this section� let us try to understand the super�cial
degree of divergence from a more general viewpoint� The theory of QED in
four spacetime dimensions is rather special� so let us �rst generalize to QED
in d dimensions� In this case� D is given by

D � dL� Pe � �P� � �����

since each loop contributes a d�dimensional momentum integral� Relations
����� and ����� still hold� so we can again rewrite D in terms of V � Ne�
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and N� � This time the result is

D � d�
�d��

�

�
V �
�d��

�

�
N� �

�d�
�

�
Ne� ����

The cancellation of V in this expression is special to the case d � �� For d � ��
diagrams with more vertices have a lower degree of divergence� so the total
number of divergent diagrams is �nite� For d � �� diagrams with more vertices
have a higher degree of divergence� so every amplitude becomes super�cially
divergent at a su	ciently high order in perturbation theory�

These three possible types of ultraviolet behavior will also occur in other
quantum �eld theories� We will refer to them as follows�

Super�Renormalizable theory� Only a �nite number of Feynman
diagrams super�cially diverge�

Renormalizable theory� Only a �nite number of amplitudes
super�cially diverge� however� diver�
gences occur at all orders in perturba�
tion theory�

Non�Renormalizable theory� All amplitudes are divergent at a
su	ciently high order in perturbation
theory�

Using this nomenclature� we would say that QED is renormalizable in four
dimensions� super�renormalizable in less than four dimensions� and non�
renormalizable in more than four dimensions�

These super�cial criteria give a correct picture of the true divergence
structure of the theory for most cases that have been studied in detail� Exam�
ples are known in which the true behavior is better than this picture suggests�
when powerful symmetries set to zero some or all of the super�cially divergent
amplitudes�! On the other hand� as we will explain in Section ���� it is always
true that the divergences of super�cially renormalizable theories can be ab�
sorbed into a �nite number of Lagrangian parameters� For theories containing
�elds of spin  and higher� loop diagrams can produce additional problems�
including violation of unitarity� we will discuss this di	culty in Chapter ��

As another example of the counting of ultraviolet divergences� consider a
pure scalar �eld theory� in d dimensions� with a 
n interaction term�

L �


�
���
�

� � 

�
m�
� � �

n-

n� �����

Let N be the number of external lines in a diagram� P the number of prop�
agators� and V the number of vertices� The number of loops in a diagram is
L � P � V � � There are n lines meeting at each vertex� so nV � N � �P �

�Some exotic four�dimensional �eld theories are actually free of divergences� see�
for example� the article by P� West in Shelter Island II� R� Jackiw� N� N� Khuri� S�
Weinberg� and E� Witten� eds� �MIT Press� Cambridge� �	
���
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Combining these relations� we �nd that the super�cial degree of divergence of
a diagram is

D � dL� �P

� d�
h
n
�d��

�

�
� d
i
V �
�d��

�

�
N�

�����

In four dimensions a 
� coupling is renormalizable� while higher powers of

 are non�renormalizable� In three dimensions a 
� coupling becomes renor�
malizable� while 
� is super�renormalizable� In two spacetime dimensions any
coupling of the form 
n is super�renormalizable�

Expression ����� can also be derived in a somewhat di�erent way� from
dimensional analysis� In any quantum �eld theory� the action S �

R
ddxL

must be dimensionless� since we work in units where  h � � In this system of
units� the integral ddx has units �mass��d� and so the Lagrangian has units
�mass�d� Since all units can be expressed as powers of mass� it is unambiguous
to say simply that the Lagrangian has �dimension d�� Using this result� we
can infer from the explicit form of ����� the dimensions of the �eld 
 and the
coupling constant �� From the kinetic term in L we see that 
 has dimension
�d������ Note that the parameter m consistently has dimensions of mass�
From the interaction term and the dimension of 
� we infer that the � has
dimension d� n�d������

Now consider an arbitrary diagram with N external lines� One way that
such a diagram could arise is from an interaction term �
N in the Lagrangian�
The dimension of � would then be d � N�d������ and therefore we con�
clude that any �amputated� diagram with N external lines has dimension
d � N�d������ In our theory with only the �
n vertex� if the diagram has
V vertices� its divergent part is proportional to �V &D� where & is a high�
momentum cuto� and D is the super�cial degree of divergence� �This is the
�generic� case� all the exceptions noted above also apply here�� Applying di�
mensional analysis� we �nd

d�N
�d��

�

�
� V
h
d� n

�d��
�

�i
�D�

in agreement with ������
Note that the quantity that multiplies V in this expression is just the

dimension of the coupling constant �� This analysis can be carried out for
QED and other �eld theories� with the same result� Thus we can characterize
the three degrees of renormalizability in a second way�

Super�Renormalizable� Coupling constant has positive mass dimen�
sion�

Renormalizable� Coupling constant is dimensionless�

Non�Renormalizable� Coupling constant has negative mass dimen�
sion�
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This is exactly the conclusion that we stated without proof in Section ��� In
QED� the coupling constant e is dimensionless� thus QED is �at least super�
�cially� renormalizable�

���� Renormalized Perturbation Theory

In the previous section we saw that a renormalizable quantum �eld theory con�
tains only a small number of super�cially divergent amplitudes� In QED� for
example� there are three such amplitudes� containing four in�nite constants�
In Chapters � and � these in�nities disappeared by the end of our compu�
tations� The in�nity in the vertex correction diagram was canceled by the
electron �eld�strength renormalization� while the in�nity in the vacuum po�
larization diagram caused only an unobservable shift of the electron�s charge�
In fact� it is generally true that the divergences in a renormalizable quantum
�eld theory never show up in observable quantities�

To obtain a �nite result for an amplitude involving divergent diagrams�
we have so far used the following procedure� Compute the diagrams using a
regulator� to obtain an expression that depends on the bare mass �m��� the
bare coupling constant �e��� and some ultraviolet cuto� �&�� Then compute the
physical mass �m� and the physical coupling constant �e�� to whatever order
is consistent with the rest of the calculation� these quantities will also depend
on m�� e�� and &� To calculate an S�matrix element �rather than a correlation
function�� one must also compute the �eld�strength renormalization�s� Z �in
accord with Eq� ����
��� Combining all of these expressions� eliminate m�

and e� in favor of m and e� this step is the �renormalization�� The resulting
expression for the amplitude should be �nite in the limit &���

The above procedure always works in a renormalizable quantum �eld
theory� However� it can often be cumbersome� especially at higher orders in
perturbation theory� In this section we will develop an alternative procedure
which works more automatically� We will do this �rst for 
� theory� returning
to QED in the next section�

The Lagrangian of 
� theory is

L �


�
���
�

� � 

�
m�

�

� � ��

�-

��

We now write m� and ��� to emphasize that these are the bare values of the
mass and coupling constant� not the values measured in experiments�

The super�cial degree of divergence of a diagram with N external legs is�
according to ������

D � ��N�

Since the theory is invariant under 
 � �
� all amplitudes with an odd
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number of external legs vanish� The only divergent amplitudes are therefore

Ignoring the vacuum diagram� these amplitudes contain three in�nite con�
stants� Our goal is to absorb these constants into the three unobservable pa�
rameters of the theory� the bare mass� the bare coupling constant� and the
�eld strength� To accomplish this goal� it is convenient to reformulate the
perturbation expansion so that these unobservable quantities do not appear
explicitly in the Feynman rules�

First we will eliminate the shift in the �eld strength� Recall from Sec�
tion �� that the exact two�point function has the formZ

d�x h�jT
�x�
��� j�i eip�x �
iZ

p� �m�
� �terms regular at p� � m���

�����
where m is the physical mass� We can eliminate the awkward residue Z from
this equation by rescaling the �eld�


 � Z���
r� ���
�

This transformation changes the values of correlation functions by a factor
of Z���� for each �eld� Thus� in computing S�matrix elements� we no longer
need the factors of Z in Eq� ����
�� a scattering amplitude is simply the sum
of all connected� amputated diagrams� exactly as we originally guessed in
Eq� �������

The Lagrangian is much uglier after the rescaling�

L �


�
Z���
r�

� � 

�
m�

�Z

�
r �

��
�-
Z�
�r � �����

The bare mass and coupling constant still appear in L� but they can be elim�
inated as follows� De�ne

�Z � Z � � �m � m�
�Z �m�� �� � ��Z

� � �� �����

wherem and � are the physically measured mass and coupling constant� Then
the Lagrangian becomes

L �


�
���
r�

� � 

�
m�
�r �

�

�-

�r

�


�
�Z���
r�

� � 

�
�m


�
r �

��
�-

�r �

�����



���� Renormalized Perturbation Theory ���

Figure �
��� Feynman rules for �� theory in renormalized perturbation
theory�

The �rst line now looks like the familiar 
��theory Lagrangian� but is written
in terms of the physical mass and coupling� The terms in the second line�
known as counterterms� have absorbed the in�nite but unobservable shifts
between the bare parameters and the physical parameters� It is tempting to
say that we have �added� these counterterms to the Lagrangian� but in fact
we have merely split each term in ����� into two pieces�

The de�nitions in ����� are not useful unless we give precise de�nitions
of the physical mass and coupling constant� Equation ����� de�nesm� as the
location of the pole in the propagator� There is no obviously best de�nition
of �� but a perfectly good de�nition would be obtained by setting � equal to
the magnitude of the scattering amplitude at zero momentum� Thus we have
the two de�ning relations�

�
i

p� �m�
� �terms regular at p� � m���

� �i� at s � �m�� t � u � �� �����

These equations are called renormalization conditions� �The �rst equation
actually contains two conditions� specifying both the location of the pole and
its residue��

Our new Lagrangian� Eq� ������ gives a new set of Feynman rules� shown
in Fig� ���� The propagator and the �rst vertex come from the �rst line of
������ and are identical to the old rules except for the appearance of the
physical mass and coupling in place of the bare values� The counterterms in
the second line of ����� give two new vertices �also called counterterms��

We can use these new Feynman rules to compute any amplitude in 
�

theory� The procedure is as follows� Compute the desired amplitude as the
sum of all possible diagrams created from the propagator and vertices shown
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in Fig� ���� The loop integrals in the diagrams will often diverge� so one
must introduce a regulator� The result of this computation will be a function
of the three unknown parameters �Z � �m� and ��� Adjust �or �renormalize��
these three parameters as necessary to maintain the renormalization condi�
tions ������ After this adjustment� the expression for the amplitude should
be �nite and independent of the regulator�

This procedure� using Feynman rules with counterterms� is known as
renormalized perturbation theory� It should be contrasted with the procedure
we used in Part � outlined at the beginning of this section� which is called
bare perturbation theory �since the Feynman rules involve the bare mass and
coupling constant�� The two methods are completely equivalent� The di�er�
ences between them are purely a matter of bookkeeping� You will get the
same answers using either procedure� so you may choose whichever you �nd
more convenient� In general� renormalized perturbation theory is technically
easier to use� especially for multiloop diagrams� however� bare perturbation
theory is sometimes easier for complicated one�loop calculations� We will use
renormalized perturbation theory in most of the rest of this book�

One�Loop Structure of �� Theory

To make more sense of the renormalization procedure� let us carry it out
explicitly at the one�loop level�

First consider the basic two�particle scattering amplitude�

If we de�ne p � p� � p�� then the second diagram is

�
��i���

�

Z
d�k

�����
i

k� �m�

i

�k � p�� �m�

� ��i��� � iV �p��� ������

Note that p� is equal to the Mandelstam variable s� The next two diagrams
are identical� except that s will be replaced by t and u� The entire amplitude
is therefore

iM � �i�� ��i����iV �s� � iV �t� � iV �u�
�� i��� �����

According to our renormalization condition ������ this amplitude should
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equal �i� at s � �m� and t � u � �� We must therefore set

�� � ����V ��m�� � �V ���
�
� ������

�At higher orders� �� will receive additional contributions��
We can compute V �p�� explicitly using dimensional regularization� The

procedure is exactly the same as in Section ��
� Introduce a Feynman param�
eter� shift the integration variable� rotate to Euclidean space� and perform the
momentum integral� We obtain

V �p�� �
i

�

�Z
�

dx

Z
ddk

����d
�

k� � �xk � p� xp� �m�
��

�
i

�

�Z
�

dx

Z
dd�

����d
�

�� � x��x�p� �m�
�� �� � k � xp�

� �

�

�Z
�

dx

Z
dd�E
����d

�
��E � x��x�p� �m�

�� ���E � �i���

� �

�

�Z
�

dx
,���d

� �

����d��
�

m� � x��x�p����d��
��
d��

� 

����

�Z
�

dx
��
�
� � � log����� log

�
m� � x��x�p���� ������

where � � �� d� The shift in the coupling constant ������ is therefore

�� �
��

�

,���d
� �

����d��

�Z
�

dx

�


$m� � x��x��m�%��d��
�

�

$m�%��d��

�

��
d��

��

����

�Z
�

dx

�
�

�
� �� � � log����� log

�
m��x��x��m�

�� � log
�
m�
��
�

������

These expressions are divergent as d� �� But if we combine them according
to ������ we obtain the �nite �if rather complicated� result�

iM � �i�� i��

����

�Z
�

dx


log
� m��x��x�s
m��x��x��m�

�
� log

�m��x��x�t
m�

�

� log
�m��x��x�u

m�

��
� ����
�
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To determine �Z and �m we must compute the two�point function� As in
Section ���� let us de�ne �iM��p�� as the sum of all one�particle�irreducible
insertions into the propagator�

� �iM��p��� ������

Then the full two�point function is given by the geometric series�

�
i

p� �m� �M��p��
� ������

The renormalization conditions ����� require that the pole in this full prop�
agator occur at p� � m� and have residue � These two conditions are equiv�
alent� respectively� to

M��p��
��
p�
m� � � and

d

dp�
M��p��

��
p�
m� � �� ������

�To check the latter condition� expand M� about p� � m� in Eq� ��������
Explicitly� to one�loop order�

�iM��p�� �

� �i� � 
�
�
Z

ddk

����d
i

k� �m�
� i�p��Z � �m�

� � i�
�



����d��
,��d

� �

�m����d��
� i�p��Z � �m�� ������

Since the �rst term is independent of p�� the result is rather trivial� Setting

�Z � � and �m � � �

�����d��
,��d

� �

�m����d��
������

yields M��p�� � � for all p�� satisfying both of the conditions in �������
The �rst nonzero contributions to M��p�� and �Z are proportional to ���

coming from the diagrams

�����

The second diagram contains the �� counterterm� which we have already com�
puted� It cancels ultraviolet divergences in the �rst diagram that occur when
one of the loop momenta is large and the other is small� The third diagram
is again the �p��Z � �m� counterterm� and is �xed to order �� by requiring
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that the remaining divergences �when both loop momenta become large� can�
cel� In Section ��� we will see an explicit example of the interplay of various
counterterms in a two�loop calculation�

The vanishing of �Z at one�loop order is a special feature of 
� theory�
which does not occur in more general theories of scalar �elds� The Yukawa the�
ory described in Section ��� gives an explicit example of a one�loop correction
for which this counterterm is required�

In the Yukawa theory� the scalar �eld propagator receives corrections at
order g� from a fermion loop diagram and the two propagator counterterms�
Using the Feynman rules on p� � to compute the loop diagram� we �nd

�iM��p�� �

� ���ig��
Z

ddk

����d
tr


i�k � p�mf �

�k�p�� �m�
f

i�k �mf �

k� �m�
f

�
� i�p��Z � �m�

� ��g�
Z

ddk

����d
k � �p� k� �m�

f

��p�k�� �m�
f ��k

� �m�
f �

� i�p��Z � �m�� ������

where mf is the mass of the fermion that couples to the Yukawa �eld� To
evaluate the integral� combine denominators and shift as in Eq� ������� Then
the �rst term in the last line becomes

��g�
�Z

�

dx

Z
dd�

����d
�� � x��x�p� �m�

f

��� � x��x�p� �m�
f �

�

� ��g�
�Z

�

dx
�i

����d��

� d
�,��d

� �

���d�� � �,���d
� �

���d��

�

�
�ig��d��
����d��

�Z
�

dx
,��d

� �

���d�� � ������

where � � m�
f � x��x�p��

Now we can see that both of the counterterms �m and �Z must take
nonzero values in order to satisfy the renormalization conditions ������� To
determine �m� we subtract the value of the loop diagram at p� � m� as before�
so that

�m �
�g��d��
����d��

�Z
�

dx
,��d

� �

$m�
f � x��x�m�%��d��

�m��Z � ������

To determine �Z � we cancel also the �rst derivative with respect to p� of the
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loop integral ������� This gives

�Z � ��g��d��
����d��

�Z
�

dx
x��x�,���d

� �

$m�
f � x��x�m�%��d��

��
d��

� �g�

���

�Z
�

dx x��x�
�
�

�
� � � �

�
� log����� log

�
m�
f � x��x�m�

��
�

����
�
Thus� in Yukawa theory� the propagator corrections at one�loop order require
a quadratically divergent mass renormalization and a logarithmically diver�
gent �eld strength renormalization� This is the usual situation in scalar �eld
theories�

���� Renormalization of Quantum Electrodynamics

The procedure we followed in the previous section� yielding a �renormalized�
perturbation theory formulated in terms of physically measurable parameters�
can be summarized as follows�

� Absorb the �eld�strength renormalizations into the Lagrangian by rescal�
ing the �elds�

�� Split each term of the Lagrangian into two pieces� absorbing the in�nite
and unobservable shifts into counterterms�

�� Specify the renormalization conditions� which de�ne the physical masses
and coupling constants and keep the �eld�strength renormalizations equal
to �

�� Compute amplitudes with the new Feynman rules� adjusting the counter�
terms as necessary to maintain the renormalization conditions�

Let us now use this procedure to construct a renormalized perturbation theory
for Quantum Electrodynamics�

The original QED Lagrangian is

L � � �
� �F���

� � ��i� �m��� � e���
��A��

Computing the electron and photon propagators with this Lagrangian� we
would �nd expressions of the general form

�
iZ�
p�m

� � � � � �
�iZ�g��

q�
� � � � �

�We found just such expressions in the explicit one�loop calculations of Chap�
ter ��� To absorb Z� and Z� into L� and hence eliminate them from formula

����
� for the S�matrix� we substitute � � Z
���
� �r and A� � Z

���
� A�

r � Then
the Lagrangian becomes

L � � �
�Z��F

��
r �� � Z��r�i� �m���r � e�Z�Z

���
� �r�

��rAr�� ������
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We can introduce the physical electric charge e� measured at large distances
�q � ��� by de�ning a scaling factor Z� as follows�y

e�Z�Z
���
� � eZ�� ������

If we let m be the physical mass �the location of the pole in the electron
propagator�� then we can split each term of the Lagrangian into two pieces as
follows�

L � � �
� �F

��
r �� � �r�i� �m��r � e�r�

��rAr�

� �
����F

��
r �� � �r�i�� � � �m��r � e���r�

��rAr��
������

where

�� � Z� � � �� � Z� � �

�m � Z�m� �m� and �� � Z� �  � �e��e�Z�Z
���
� � �

The Feynman rules for renormalized QED are shown in Fig� ���� In
addition to the familiar propagators and vertex� there are three counterterm
vertices� The ee and ee� counterterm vertices can be read directly from the La�
grangian ������� To derive the two�photon counterterm� integrate � �

� �F���
�

by parts to obtain � �
�A�����g�� ������A� � this gives the expression shown

in the �gure� In the remainder of the book� when we set up renormalized per�
turbation theory� we will drop the subscript r used here to distinguish the
rescaled �elds�

Each of the four counterterm coe	cients must be �xed by a renormaliza�
tion condition� The four conditions that we require have already been stated
implicitly� Two of them �x the electron and photon �eld�strength renormal�
izations to � while the other two de�ne the physical electron mass and charge�
To write these conditions more explicitly� recall our notation from Chapters
� and ��

������

ySince we de�ne e by the renormalization condition ���q � �� � ��� the factor
of Z� in the Lagrangian must cancel the multiplicative correction factor that arises
from loop corrections� Therefore this de�nition of Z� is equivalent to that given in
Eq� �������
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Figure �
��� Feynman rules for Quantum Electrodynamics in renormalized
perturbation theory�

These amplitudes are now to be computed in renormalized perturbation the�
ory� that is� we are now rede�ning /�q��� *� p�� and ,�p�� p� to include coun�
terterm vertices� Furthermore� the new de�nition of , involves the physical
electron charge� With this notation� the four conditions are

*�p � m� � ��

d

dp*�p�
���
�p
m

� ��

/�q� � �� � ��

�ie,��p� � p � �� � �ie���

������

The �rst condition �xes the electron mass at m� while the next two �x the
residues of the electron and photon propagators at � Given these conditions�
the �nal condition �xes the electron charge to be e�

One�Loop Structure of QED

The four conditions ������ allow us to determine the four countertems in
������ in terms of the values of loop diagrams� In Chapters � and � we com�
puted all of the diagrams required to carry out this determination to one�loop
order� We will now collect these results and �nd explicit expressions for the
renormalization constants of QED to order 	� For overall consistency� we will
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use dimensional regularization to control ultraviolet divergences� and a pho�
ton mass � to control infrared divergences� In Part I� we computed the vertex
and self�energy diagrams using the Pauli�Villars regularization scheme� before
introducing dimensional regularization� Now we have an opportunity to quote
the values of these diagrams as computed with dimensional regularization�

The �rst two conditions involve the electron self�energy� We evaluated
the one�loop diagram contributing to *�p�� using a Pauli�Villars regulator� in
Section ��� the result is given in Eq� ������ If we re�evaluate the diagram
in dimensional regularization� we �nd some additional terms in the Dirac
algebra from the modi�ed contraction identities ������� Taking these terms
into account� we �nd for this diagram �� � �� d�

�i*��p� � �i e�

����d��

�Z
�

dx
,���d

� �

���x�m� � x�� � x��x�p����d��

	 ������m� �����xp�� �����

Therefore� according to the �rst of conditions �������

m�� � �m � *��m� �
e�m

����d��

�Z
�

dx
,���d

� � � ��� �x� ���x��
���x��m� � x�����d��

� ������

Similarly� the second of conditions ������ determines ���

�� �
d

dp*��m�

� � e�

����d��

�Z
�

dx
,���d

� �

���x��m� � x�����d��

	
h
�����x� �

�

�x��x�m�

��x��m� � x��
��� �x� ���x��

i
� ������

Notice that the second term in the brackets gives a �nite result as � � ��
because it multiplies the divergent gamma function�

The third condition of ������ requires the value ������ of the photon
self�energy diagram�

/��q
�� � � e�

����d��

�Z
�

dx
,���d

� �

�m� � x��x�q����d��
�
�x��x���

Then

�� � /���� � � e�

����d��

�Z
�

dx
,���d

� �

�m����d��
�
�x��x��� ������
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The last condition requires the value of the electron vertex function� computed
in Section ���� Again� we will rework the diagram in dimensional regulariza�
tion� Then the shift in the form factor F��q

�� ���
�� becomes

�F��q
�� �

e�

����d��

Z
dx dy dz ��x�y�z��


,���d

� �

���d��
������

�

�
,���d

� �

���d��
�
q�$���x���y�� �xy% �m�$����z�z��� ���z��%���

����
�

where � � ��z��m� � z�� � xyq� as before� The fourth renormalization
condition then determines

�� � ��F���� � � e�

����d��

Z
dz ��z�


,���d

� �

���z��m� � z�����d��
������

�

�
,���d

� �

���z��m� � z�����d��
$����z�z��� ���z��%m�

�
�

������

Using an integration by parts similar to that following Eq� ������� one can
show explicitly from ������ and ������ that �� � ��� that is� that Z� � Z�
to order 	� As in our previous derivations� this formula follows from the Ward
identity� The Lagrangian ������� with counterterms set to zero� is gauge in�
variant� If the regulator is also gauge invariant �and we do use dimensional
regularization�� this implies the Ward identity for diagrams without counter�
term vertices� In particular� this implies that �F���� � �d*��dp jm� Then the
counterterms �� and ��� which are required to cancel these two factors� will
be set equal�

By continuing this argument� it is straightforward to construct a full dia�
grammatic proof that �� � ��� to all orders in renormalized perturbation the�
ory� using the method we applied in Section ��� to prove the Ward�Takahashi
identity in bare perturbation theory� With a generalization of the argument
given there� one can show that the diagrammatic identity ������ holds for di�
agrams that include counterterm vertices in loops� Thus� if the counterterms
�� and �� are determined up to order 	n� the unrenormalized vertex diagram
at q� � � equals the derivative of the unrenormalized self�energy diagram
on�shell in order 	n��� To satisfy the renormalization conditions ������� we
must then set the counterterms �� and �� equal to order 	n��� This recur�
sive argument gives yet another proof that Z� � Z� to all orders in QED
perturbation theory�

The relation ������ between the bare and renormalized charge

e �
Z�
Z�

Z
���
� e� ������
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gives a further physical interpretation of the identity Z� � Z�� Using the
identity� we can rewrite ������ as

e �
p
Z�e��

which is just the relation ������ that we derived by a diagrammatic argument
in Section ��
� This says that the relation between the bare and renormalized
electric charge depends only on the photon �eld strength renormalization�
not on quantities particular to the electron� To see the importance of this
observation� consider writing the renormalized quantum electrodynamics with
two species of charged particles� say� electrons and muons� Then� in addition
to ������� we will have a relation for the photon�muon vertex�

eZ ��
��
Z
����
� � e�Z

�
�
��
� ������

where Z �� and Z �� are the vertex and �eld strength renormalizations for the
muon� Each of these two constants depends on the mass of the muon� so
������ threatens to give a di�erent relation between e� and e from the one
written in ������� However� the Ward identity forces the factors Z �� and Z ��
to cancel out of this relation� leaving over a universal electric charge which
has the same value for all species�

���� Renormalization Beyond the Leading Order

In the last two sections we have developed an algorithm for computing scat�
tering amplitudes to any order in a renormalizable �eld theory� We have seen
explicitly that this algorithm yields �nite results at the one�loop level in both

� theory and QED� According to the naive analysis of Section ��� the al�
gorithm should also work at higher orders� But that analysis ignored many
of the intricacies of multiloop diagrams� speci�cally� it ignored the fact that
diagrams can contain divergent subdiagrams�

When an otherwise �nite diagram contains a divergent subdiagram� the
treatment of the divergence is relatively straightforward� For example� the
sum of diagrams

������

is �nite� The divergence in the photon propagator cancels just as when this
propagator occurs in a tree diagram� The �nite sum of the two propagator
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diagrams gives an integrand for the outer loop that falls o� fast enough that
this integral still converges�

A more di	cult situation occurs when we have nested or overlapping

divergences� that is� when two divergent loops share a propagator� Some ex�
amples of diagrams with overlapping divergences are

in 
� theory�

in QED�

To see the di	culty� consider the photon self�energy diagram�

One contribution to this diagram comes from the region of momentum space
where k� is very large� This means that� in position space� x� y� and z are very
close together� while w can be farther away� In this region we can think of the
virtual photon as giving a correction to the vertex at x� We saw in Section ���
that this vertex correction is logarithmically divergent� of the form

� �ie�� � 	 log&�

in the limit & � �� Plugging this vertex into the rest of the diagram and
integrating over k�� we obtain an expression identical to the one�loop photon
self�energy correction /��q

��� displayed in ������� multiplied by the additional
logarithmic divergence�

� 	�g��q� � q�q��/��q
�� � 	 log&�

� 	�g��q� � q�q���log &� � log q�� � 	 log&��

���
��
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The log� &� term comes from the region where both k� and k� are large� while
the log q� log&� term comes from the region where k� is large but k� is small�
Another such term would come from the region where k� is large but k� is
small�

The appearance of terms proportional to /��q
�� � log&� in the two�loop

vacuum polarization diagram contradicts our naive argument� based on the
criterion of the super�cial degree of divergence� that the divergent terms of
a Feynman integral are always simple polynomials in q�� We will refer to di�
vergences multiplying only polynomials in q� as local divergences� since their
Fourier transforms back to position space are delta functions or derivatives
of delta functions� We will call the new� nonpolynomial� term a nonlocal di�
vergence� Fortunately� our derivation of the nonlocal divergent term gave this
term a physical interpretation� It is a local divergence surrounded by an or�
dinary� nondivergent� quantum �eld theory process�

If this picture accurately describes all of the divergent terms of the two�
loop diagram� we should expect that these divergences are canceled by two
types of counterterm diagrams� First� we can build diagrams of order 	� by in�
serting the order�	 counterterm vertex into the one�loop vacuum polarization
diagram�

These diagrams should cancel the nonlocal divergence in ���
�� and the cor�
responding contribution from the region where k� is large and k� is small� In
fact� a detailed analysis shows that the sum of the original diagram and these
two counterterm diagrams contains only local divergences� Once these dia�
grams are added� the only divergence that remains is a local one� which can
be canceled by the diagram

that is� by adding an order�	� term to ���
We can extend the lessons of this example to a general picture of the

divergences of higher�loop Feynman diagrams and their cancellation� A given
diagram may contain local divergences� as predicted by the analysis of Section
��� It may also contain nonlocal divergences due to divergent subgraphs
embedded in loops carrying small momenta� These divergences are canceled by
diagrams in which the divergent subgraphs are replaced by their counterterm
vertices� One might still ask two questions� First� does this procedure remove
all nonlocal divergences� Second� does this procedure preserve the �niteness
of amplitudes� such as ������� that are not expected to be divergent by the
super�cial criteria of Section ��� To answer these questions requires an
intricate study of nested Feynman integrals� The general analysis was begun
by Bogoliubov and Parasiuk� completed by Hepp� and elegantly re�ned by
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Zimmermann�z they showed that the answer to both questions is yes� Their
result� known as the BPHZ theorem� states that� for a general renormalizable
quantum �eld theory� to any order in perturbation theory� all divergences are
removed by the counterterm vertices corresponding to super�cially divergent
amplitudes� In other words� any super�cially renormalizable quantum �eld
theory is in fact rendered �nite when one performs renormalized perturbation
theory with the complete set of counterterms�

The proof of the BPHZ theorem is quite technical� and we will not include
it in this book� Instead� we will investigate one detailed example of a two�loop
calculation� which demonstrates explicitly the appearance and cancellation of
nonlocal divergences�

���� A Two�Loop Example

To illustrate the issues discussed in the previous section� let us consider the
two�loop contribution to the four�point function in 
� theory� There are � rel�
evant diagrams� shown in Fig� ��
� �There are also several diagrams involving
the one�loop correction to the propagator� But each of these is exactly can�
celed by its counterterm� as we saw in Eq� ������� so we can just ignore them��
Fortunately� many of the diagrams are simply related to each other� Crossing
symmetry reduces the number of distinct diagrams to only six�

���
�

where the last diagram denotes only the s�channel piece of the second�order
vertex counterterm� If this sum of diagrams is �nite� then simply replacing s
with t or u gives a �nite result for the remaining diagrams�

The value of the last diagram in ���
� is just a constant� which we can
freely adjust to absorb any divergent terms that are independent of the exter�
nal momenta� Our goal� therefore� is to show that all momentum�dependent
divergent terms cancel among the remaining �ve diagrams�

The fourth and �fth diagrams in ���
� involve the one�loop vertex coun�
terterm� which we computed in Eq� ������� Let us brie�y recall that compu�
tation� We de�ned iV �p�� as the fundamental loop integral�

� ��i��� � iV �p�� � ��i���

� i

�

,���d
� �

����d��

�Z
�

dx
�

m� � x��x�p����d��
�
�

���
��

zN� N� Bogoliubov and O� S� Parasiuk� Acta Math� 	�� ��� ��	���� K� Hepp�
Comm� Math� Phys� �� �� ��	���� W� Zimmermann� in Deser� et� al� ��	����
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Figure �
��� The two�loop contributions to the four�point function in ��

theory� Note that the diagrams in the �rst three lines are related to each
other by crossing� being in the s�� t�� and u�channels� respectively� The last
two diagrams in each of these lines involve the O���� vertex counterterm�
while the �nal diagram is the O���� contribution to the vertex counterterm�

The counterterm� according to the renormalization condition ������ had
to cancel the three one�loop diagrams �one for each channel� at threshold
�s � �m�� t � u � ��� thus we found

� �i�� � ��i�����iV ��m��� �iV ���
�
�

For our present purposes it will be convenient to separate the two terms of
this expression� Let us therefore de�ne

� ��i��� � �iV ��m��� � ��i��� � ��iV ����

We can now divide the �rst �ve diagrams in ���
� into three groups� as
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follows�

We will �nd that all divergent terms that depend on momentum cancel sep�
arately within each group� Since Groups II and III are related by a simple
interchange of initial and �nal momenta� it su	ces to demonstrate this can�
cellation for Groups I and II�

Group I is actually quite easy� since each diagram factors into a product
of objects we have already computed� Referring to Eq� ���
��� we have

� ��i��� � �iV �p��
��
�

� ��i��� � iV �p�� � �iV ��m���

The sum of all three diagrams is therefore

��i���
��
iV �p��

�� � �iV �p��iV ��m��
�

� ��i���
�
��V �p��� V ��m��

��
�
�
V ��m��

���
�

���
��

But the di�erence V �p���V ��m�� is �nite� as was required for the cancellation
of divergences in the one�loop calculation�

V �p��� V ��m�� �


����

�Z
�

dx log

�
m� � x��x�p�
m� � x��x��m�

�
�

The only remaining divergence is in the term $V ��m��%�� which is independent
of momentum and can therefore be absorbed into the second�order counter�
term in ���
��
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Two general properties of result ���
�� are worth noting� First� the di�
vergent piece �and hence the O���� vertex counterterm� is proportional to

�
V ��m��

�� � �,���d
� �
�� ��

d��

�
�

�

��
for d � �� ��

This is a double pole� in contrast to the simple pole we found for the one�loop
counterterm� Higher�loop diagrams will similarly have higher�order poles� but
in all cases the divergent terms are momentum�independent constants� Second�
consider the large�momentum limit�

V �p��� V ��m�� �
p���

log
p�

m�
�

The two�loop vertex is proportional to log��p��m��� A diagram of this struc�
ture with n loops will have the form

� �n��
�
log

p�

m�

�n
�

This asymptotic behavior is actually a generic property of multiloop diagrams�
which we will explore in more detail in Chapter ��

Now consider the more di	cult diagram� from Group II�

� ��i���
Z

ddk

����d
i

k� �m�

i

�k�p�� �m�
iV
�
�k�p��

�
�
�

���
��
In evaluating this diagram� we will combine denominators in the manner that
makes it most straightforward to extract the divergent terms� at the price
of complicating the evaluation of the �nite parts� Another approach to the
calculation of this diagram is discussed in Problem ����

To begin the evaluation of ���
��� combine the pair of denominators
shown explicitly� and substitute expression ���
�� for V �p��� This gives the
expression

��
�

�

,���d
� �

����d��

�Z
�

dx

�Z
�

dy

Z
ddk

����d
�

k� � �yk �p� yp� �m�
��

	 �
m� � x��x��k�p���

��� d
�

� ���

�
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It is possible to combine this pair of denominators by using the identity



A�B	
�

�Z
�

dw
w�����w�	���

wA � ��w�B���	 ,�	���

,�	�,���
� ���
��

This is a special case of the formula quoted in Section ���� Eq� ������� To prove
it� change variables in the integral�

z � wA

wA � ��w�B � ��z� � ��w�B
wA� ��w�B � dz �

AB dw�
wA � ��w�B�� �

so that

�Z
�

dw
w�����w�	���

wA� ��w�B���	 �


A�B	

�Z
�

dz z�����z�	�� � 

A�B	
B�	� ���

where B�	� �� is the beta function� Eq� ������� The more general identity
������ can be proved by induction�

Applying identity ���
�� to ���

�� we obtain

� ��
�

�

,���d
� �

����d��

�Z
�

dx

�Z
�

dy

�Z
�

dw

Z
ddk

����d

	 w�� d
� ��w��

w
�
m��x��x��k�p���

�
� ��w��m��k���yk �p�yp����� d

�

�

���
��
Completing the square in the denominator yields a polynomial of the form

����w� � wx��x���� � P � �m�� ���
��

where � is a shifted momentum variable and P � is a rather complicated func�
tion of p� p�� and the various Feynman parameters� It will only be important
for this analysis that� as w � ��

P ��w� � y�� y�p� �O�w�� ���
��

and this can be seen easily from ���
��� Changing variables to �� Wick�
rotating� and performing the integral� we eventually obtain

� � i��

�����d

�Z
�

dx

�Z
�

dy

�Z
�

dw
w�� d

� ��w��
� w � wx��x��d�� ,���d�

�m� � P ����d
� ������

This expression has one obvious pole as d � �� coming from the gamma
function� However� it also has a less obvious pole� coming from the zero end
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of the w integral� Let us write ������ as

�Z
�

dw w�� d
� f�w��

where f�w� incorporates all the factors not displayed explicitly� To isolate the
pole at w � �� we can add and subtract f����

�Z
�

dw w�� d
� f�w� �

�Z
�

dw w�� d
� f��� �

�Z
�

dww�� d
�

�
f�w�� f���

�
� �����

The second piece is

� i��,���d�
�����d

�Z
�

dx

�Z
�

dy

�Z
�

dw w�� d
�

	
�

��w��
� w � wx��x��d�� �

m� � P ��w�
���d � �

m� � P ����
���d��

This term has only a simple pole as d � �� the residue of the pole is a
momentum�independent constant� obtained by setting d � � everywhere ex�
cept in ,���d�� We can therefore absorb this divergence into the O���� vertex
counterterm� �The �nite part of this expression has a very complicated de�
pendence on momentum� but we do not need to work this out to complete
our argument��

We are left with only the �rst term of ������ This expression contains
only P ����� which is given by ���
��� The w integral in this term is straight�
forward� and the x integral is trivial� With � � ��d� our remaining expression
is

� i��

�����d

�
�

�

� �Z
�

dy
,����

m� � y��y�p���
��
d��

� i��

������

�
�

�

� �Z
�

dy
�
�
� � � log

�
m� � y��y�p����

������

where we have kept only the divergent terms in the second line� The logarithm�
multiplied by the pole ���� is the nonlocal divergence that we worried about
in Section ����

Fortunately� we must still add to this the �t � u� counterterm diagram
of Group II� The computation of that diagram is by now a straightforward
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process�

� ��i��� � ��iV ��� � iV �p��

�
i��

�����d

�Z
�

dy
,���d

� ��
m�
���d�� ,���d

� ��
m� � y��y�p����d��

��
d��

i��

������

�Z
�

dy
��
�
� � � logm�

�
	
��
�
� � � log

�
m� � y��y�p���� ������

�Again we have dropped �nite terms from the last line�� This expression also
contains a nonlocal divergence� given by the �rst pole times the second log�
arithm� It exactly cancels the nonlocal divergence in ������� The remaining
terms are all either �nite� or divergent but independent of momentum� This
completes the proof that the two�loop contribution to the four�point function
is �nite�

The two features of the Group I diagrams appear here in Group II as
well� The divergent pieces of ������ and ������ contain double poles that do
not cancel� so we again �nd that the second�order vertex counterterm must
contain a double pole� The �nite pieces of ������ and ������ contain double
logarithms� so we again �nd that the two�loop amplitude behaves as �� log� p�

as p���

Problems

�
�� One�loop structure of QED� In Section ���� we argued from general princi�
ples that the photon one�point and three�point functions vanish� while the four�point
function is �nite�

�a� Verify directly that the one�loop diagram contributing to the one�point func�
tion vanishes� There are two Feynman diagrams contributing to the three�point
function at one�loop order� Show that these cancel� Show that the diagrams
contributing to any n�point photon amplitude� for n odd� cancel in pairs�

�b� The photon four�point amplitude is a sum of six diagrams� Show explicitly that
the potential logarithmic divergences of these diagrams cancel�

�
�� Renormalization of Yukawa theory� Consider the pseudoscalar Yukawa La�
grangian�

L � �
� �����

� � �
�m

��� � ��i�� �M�� � ig�����

where � is a real scalar �eld and � is a Dirac fermion� Notice that this Lagrangian is
invariant under the parity transformation ��t�x�� ����t��x�� ��t�x�� ���t��x��



Problems ���

in which the �eld � carries odd parity�

�a� Determine the super�cially divergent amplitudes and work out the Feynman
rules for renormalized perturbation theory for this Lagrangian� Include all nec�
essary counterterm vertices� Show that the theory contains a super�cially diver�
gent �� amplitude� This means that the theory cannot be renormalized unless
one includes a scalar self�interaction�

�L � �

�"
���

and a counterterm of the same form� It is of course possible to set the renor�
malized value of this coupling to zero� but that is not a natural choice� since the
counterterm will still be nonzero� Are any further interactions required�

�b� Compute the divergent part �the pole as d� �� of each counterterm� to the one�
loop order of perturbation theory� implementing a su�cient set of renormaliza�
tion conditions� You need not worry about �nite parts of the counterterms� Since
the divergent parts must have a �xed dependence on the external momenta� you
can simplify this calculation by choosing the momenta in the simplest possible
way�

�
�� Field�strength renormalization in �� theory� The two�loop contribution to
the propagator in �� theory involves the three diagrams shown in ������� Compute the
�rst of these diagrams in the limit of zero mass for the scalar �eld� using dimensional
regularization� Show that� near d � �� this diagram takes the form�

� �ip� � ��

�������

h
��
�
� log p� � � � �

i
�

with � � �� d� The coe�cient in this equation involves a Feynman parameter integral
that can be evaluated by setting d � �� Verify that the second diagram in ������
vanishes near d � �� Thus the �rst diagram should contain a pole only at � � �� which
can be canceled by a �eld�strength renormalization counterterm�

�
�� Asymptotic behavior of diagrams in �� theory� Compute the leading
terms in the S�matrix element for boson�boson scattering in �� theory in the limit
s��� t �xed� Ignore all masses on internal lines� and keep external masses nonzero
only as infrared regulators where these are needed� Show that

iM�s� t� � �i�� i
��

�����
log s� i

���

������
log� s� � � � �

Notice that ignoring the internal masses allows some pleasing simpli�cations of the
Feynman parameter integrals�





Chapter ��

Renormalization and Symmetry

Now that we have determined the general structure of the ultraviolet diver�
gences of quantum �eld theories� it would seem natural to continue investi�
gating the implications of these divergences in Feynman diagram calculations�
However� we will now put this issue aside until Chapter � and set o� in what
may seem an unrelated direction� In Chapter � and in Section ���� we noted the
formal relation between quantum �eld theory and statistical mechanics� The
closest formal analogue of a scalar �eld theory was seen to be the continuum
description of a ferromagnet or some other system that allows a second�order
phase transition� This analogy raises the possibility that in quantum �eld the�
ory as well it may be possible for the �eld to take on a nonzero global value�
As in a magnet� this global �eld might have a directional character� and thus
violate a symmetry of the Lagrangian� In such a case� we say that the �eld
theory has hidden or spontaneously broken symmetry� We devote this chapter
to an analysis of this mechanism of symmetry violation�

Spontaneously broken symmetry is a central concept in the study of quan�
tum �eld theory� for two reasons� First� it plays a major role in the applications
of quantum �eld theory to Nature� In this book� we will see two very di�er�
ent examples of such applications� Chapter � will apply the theory of hidden
symmetry to statistical mechanics� speci�cally to the behavior of thermody�
namic variables near second�order phase transitions� Later� in Chapter ��� we
will see that hidden symmetry is an essential ingredient in the theory of the
weak interactions� Spontaneous symmetry breaking also �nds applications in
the theory of the strong interactions� and in the search for uni�ed models of
fundamental physics�

But spontaneous symmetry breaking is also interesting from a theoretical
point of view� Quantum �eld theories with spontaneously broken symmetry
contain ultraviolet divergences� Thus� it is natural to ask whether these diver�
gences are constrained by the underlying symmetry of the theory� The answer
to this question� �rst presented by Benjamin Lee�! will give us further insights
into the nature of ultraviolet divergences and the meaning of renormalization�

�A beautiful summary of Lee�s analysis is given in his lecture note volume� B� Lee�
Chiral Dynamics �Gordon and Breach� New York� �	����

���
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���� Spontaneous Symmetry Breaking

We begin with an analysis of spontaneous symmetry breaking in classical �eld
theory� Consider �rst the familiar 
� theory Lagrangian�

L �


�
���
�

� � 

�
m�
� � �

�-

��

but with m� replaced by a negative parameter� ����

L �


�
���
�

� �


�
��
� � �

�-

�� ���

This Lagrangian has a discrete symmetry� It is invariant under the operation

� �
� The corresponding Hamiltonian is

H �

Z
d�x




�
�� �



�
�r
�� � 

�
��
� �

�

�-

�
�
�

The minimum�energy classical con�guration is a uniform �eld 
�x� � 
�� with

� chosen to minimize the potential

V �
� � �

�
��
� �

�

�-

�

�see Fig� ��� This potential has two minima� given by


� � �v � �
r

�

�
�� ����

The constant v is called the vacuum expectation value of 
�
To interpret this theory� suppose that the system is near one of the minima

�say the positive one�� Then it is convenient to de�ne


�x� � v � ��x�� ����

and rewrite L in terms of ��x�� Plugging ���� into ���� we �nd that the
term linear in � vanishes �as it must� since the minimum of the potential is
at � � ��� Dropping the constant term as well� we obtain the Lagrangian

L �


�
�����

� � 

�
������� �

r
�

�
��� � �

�-
��� ����

This Lagrangian describes a simple scalar �eld of mass
p
��� with �� and ��

interactions� The symmetry 
 � �
 is no longer apparent� its only manifes�
tation is in the relations among the three coe	cients in ����� which depend
in a special way on only two parameters� This is the simplest example of a
spontaneously broken symmetry�
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Figure ����� Potential for spontaneous symmetry breaking in the discrete
case�

The Linear Sigma Model

A more interesting theory arises when the broken symmetry is continuous�
rather than discrete� The most important example is a generalization of the
preceding theory called the linear sigma model� which we considered brie�y
in Problem ���� We will study this model in detail throughout this chapter�

The Lagrangian of the linear sigma model involves a set of N real scalar
�eld 
i�x��

L �


�
���


i�� �


�
���
i�� � �

�

�
�
i��

��
� ��
�

with an implicit sum over i in each factor �
i��� Note that we have rescaled the
coupling � from the 
� theory Lagrangian to remove the awkward factors of �
in the analysis above� The Lagrangian ��
� is invariant under the symmetry


i �� Rij
j ����

for any N 	 N orthogonal matrix R� The group of transformations ����
is just the rotation group in N dimensions� also called the N �dimensional
orthogonal group or simply O�N��

Again the lowest�energy classical con�guration is a constant �eld 
i��
whose value is chosen to minimize the potential

V �
i� � �

�
���
i�� �

�

�

�
�
i��

��
�see Fig� ���� This potential is minimized for any 
i� that satis�es

�
i��
� �

��

�
�

This condition determines only the length of the vector 
i�� its direction is
arbitrary� It is conventional to choose coordinates so that 
i� points in the
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Figure ����� Potential for spontaneous breaking of a continuous O�N� sym�
metry� drawn for the case N � �� Oscillations along the trough in the potential
correspond to the massless � �elds�

Nth direction�


i� � ��� �� � � � � �� v�� where v �
�p
�
� ����

We can now de�ne a set of shifted �elds by writing


i�x� �
�
�k�x�� v � ��x�

�
� k � � � � � � N�� ����

�The notation� as in Problem ���� comes from the application of this formalism
to pions in the case N � ���

It is now straightforward to rewrite the Lagrangian ��
� in terms of the
� and � �elds� The result is

L �


�
����

k�� �


�
�����

� � 

�
�������

�
p
���� �

p
����k��� � �

�
�� � �

�
��k���� � �

�

�
��k��

��
�

����

We obtain a massive � �eld just as in ����� and also a set of N� massless
� �elds� The original O�N� symmetry is hidden� leaving only the subgroup
O�N��� which rotates the � �elds among themselves� Referring to Fig� ���
we note that the massive � �eld describes oscillations of 
i in the radial
direction� in which the potential has a nonvanishing second derivative� The
massless � �elds describe oscillations of 
i in the tangential directions� along
the trough of the potential� The trough is an �N���dimensional surface� and
all N� directions are equivalent� re�ecting the unbroken O�N�� symmetry�
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Goldstone�s Theorem

The appearance of massless particles when a continuous symmetry is spon�
taneously broken is a general result� known as Goldstone�s theorem� To state
the theorem precisely� we must count the number of linearly independent con�
tinuous symmetry transformations� In the linear sigma model� there are no
continuous symmetries forN � � while forN � � there is a single direction of
rotation� A rotation in N dimensions can be in any one of N�N���� planes�
so the O�N��symmetric theory has N�N���� continuous symmetries� After
spontaneous symmetry breaking there are �N���N����� remaining symme�
tries� corresponding to rotations of the �N�� � �elds� The number of broken
symmetries is the di�erence� N��

Goldstone�s theorem states that for every spontaneously broken continu�
ous symmetry� the theory must contain a massless particle�y We have just seen
that this theorem holds in the linear sigma model� at least at the classical level�
The massless �elds that arise through spontaneous symmetry breaking are
called Goldstone bosons� Many light bosons seen in physics� such as the pions�
may be interpreted �at least approximately� as Goldstone bosons� We conclude
this section with a general proof of Goldstone�s theorem for classical scalar
�eld theories� The rest of this chapter is devoted to the quantum�mechanical
analysis of theories with hidden symmetry� By the end of the chapter we will
see that Goldstone bosons cannot acquire mass from any order of quantum
corrections�

Consider� then� a theory involving several �elds 
a�x�� with a Lagrangian
of the form

L � �terms with derivatives�� V �
�� ����

Let 
a� be a constant �eld that minimizes V � so that

�

�
a
V

����
�a�x�
�a�

� ��

Expanding V about this minimum� we �nd

V �
� � V �
�� �


�
�
� 
��

a�
� 
��
b

�
��

�
a�
b
V

�
��

� � � � �

The coe	cient of the quadratic term��
��

�
a�
b
V

�
��

� m�
ab� ���

yJ� Goldstone� Nuovo Cim� �	� ��� ��	���� An instructive four�page paper by
J� Goldstone� A� Salam� and S� Weinberg� Phys� Rev� ���� 	�� ��	���� gives three
di�erent proofs of the theorem�
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is a symmetric matrix whose eigenvalues give the masses of the �elds� These
eigenvalues cannot be negative� since 
� is a minimum� To prove Gold�
stone�s theorem� we must show that every continuous symmetry of the La�
grangian ���� that is not a symmetry of 
� gives rise to a zero eigenvalue
of this mass matrix�

A general continuous symmetry transformation has the form


a �� 
a � 	�a�
�� ����

where 	 is an in�nitesimal parameter and �a is some function of all the 
�s�
Specialize to constant �elds� then the derivative terms in L vanish and the
potential alone must be invariant under ����� This condition can be written

V �
a� � V
�

a � 	�a�
�

�
or �a�
�

�

�
a
V �
� � ��

Now di�erentiate with respect to 
b� and set 
 � 
��

� �

�
��a

�
b

�
��

�
�V

�
a

�
��

� �a�
��

�
��

�
a�
b
V

�
��

� ����

The �rst term vanishes since 
� is a minimum of V � so the second term must
also vanish� If the transformation leaves 
� unchanged �i�e�� if the symmetry is
respected by the ground state�� then �a�
�� � � and this relation is trivial� A
spontaneously broken symmetry is precisely one for which �a�
�� � �� in this
case �a�
�� is our desired vector with eigenvalue zero� so Goldstone�s theorem
is proved�

���� Renormalization and Symmetry

An Explicit Example

Now let us investigate the quantum mechanics of a theory with spontaneously
broken symmetry� Again we will use as our example the linear sigma model�
The Lagrangian of this theory� written in terms of shifted �elds� is given in
Eq� ����� From this expression� we can read o� the Feynman rules� these are
shown in Fig� ���

Using these Feynman rules� we can compute tree�level amplitudes without
di	culty� Diagrams with loops� however� will often diverge� For the amplitude
with Ne external legs� the super�cial degree of divergence is

D � ��Ne�

just as in the discussion of 
� theory in Section ���� �Diagrams containing
a three�point vertex will be less divergent than this expression indicates� be�
cause this vertex has a coe	cient with dimensions of mass�� However� the
symmetry constraints on the amplitudes are much weaker than in that earlier
analysis� The linear sigma model has eight di�erent super�cially divergent am�
plitudes �see Fig� ���� several of these have D � � and therefore can contain
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Figure ����� Feynman rules for the linear sigma model�

more than one in�nite constant� Yet the number of bare parameters available
to absorb these in�nities is much smaller� If we follow the procedure of Sec�
tion ��� to rewrite the original Lagrangian in terms of physical parameters
and counterterms� we �nd only three counterterms�

L �


�
���


i�� �


�
���
i�� � �

�

�
�
i��

��
�



�
�Z���


i�� � 

�
���


i�� � ��
�

�
�
i��

��
�

����

Written in terms of � and � �elds� the second line takes the form

�Z
�
����

k�� � 

�
��� � ��v

����k�� �
�Z
�
�����

� � 

�
��� � ���v

����

� ���v � ��v
��� � ��v���

k�� � ��v�
�

� ��
�

�
��k��

�� � ��
�
����k�� � ��

�
���

��
�

The Feynman rules associated with these counterterms are shown in Fig� �
�
There are now plenty of counterterms� but they still depend on only three
renormalization parameters� �Z � ��� and ��� It would be a miracle if these
three parameters were able to absorb all the in�nities arising in the divergent
amplitudes shown in Fig� ���

If this miracle did not occur� that is� if the counterterms of ��
� did
not absorb all the in�nities� we could still make this theory renormalizable by
introducing new� symmetry�breaking terms in the Lagrangian� These would
give rise to additional counterterms� which could be adjusted to render all am�
plitudes �nite� If desired� we could set the physical values of the symmetry�
breaking coupling constants to zero� The bare values of these constants� how�
ever� would still be nonzero� so the Lagrangian itself would no longer be invari�
ant under the O�N� symmetry� We would have to conclude that the symmetry
is not consistent with quantum mechanics�
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Figure ����� Divergent amplitudes in the linear sigma model�

Figure ����� Feynman rules for counterterm vertices in the linear sigma
model�

Fortunately� the miracle does occur� We will see below that the counter�
terms of ��
�� even though they contain only three adjustable parameters�
are indeed su	cient to cancel all the in�nities that occur in this theory� In
this section we will demonstrate this cancellation explicitly at the one�loop
level� The rest of this chapter is devoted to a more general discussion of these
issues�

Renormalization Conditions

In the discussion to follow� we will keep track of only the divergent parts of
Feynman diagrams� However� it will be useful to keep in mind a set of renor�
malization conditions that could� in principle� be used to determine also the
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�nite parts of the counterterms� Since the counterterms contain three ad�
justable parameters� we need three conditions� We could take these to be the
conditions ����� �implemented according to �������� specifying the phys�
ical mass m of the � �eld� its �eld strength� and the scattering amplitude
at threshold� However� it is technically easier to replace one of these condi�
tions with a constraint on the one�point amplitude for � �the sum of tadpole
diagrams��

In QED the tadpole diagrams automatically vanish� as we saw in Eq� ���
��
In the linear sigma model� however� no symmetry forbids the appearance of a
nonvanishing one�� amplitude� This amplitude produces a vacuum expecta�
tion value of � and so� since 
N � v��� shifts the vacuum expectation value
of 
� Such a shift is quite acceptable� as long as it is �nite after counterterms
are properly added into the computation of the amplitude� However� it will
simplify the bookkeeping to set up our conventions so that the relation�


N
�
�

�p
�

����

is satis�ed to all orders in perturbation theory� We will de�ne �� as in
Eq� ������ as the scattering amplitude at threshold� Then Eq� ���� de�
�nes the parameter �� so the massm of the � �eld will di�er from the result of
the classical equations m� � ��� � ��v� by terms of order ������ If indeed we
can remove the divergences from the theory by adjusting three counterterms�
these corrections will be �nite and constitute a prediction of the quantum
�eld theory�

To summarize� we will use the following renormalization conditions�

����

In the last condition� the circle is the amputated four�point amplitude� Note
that the last two conditions depend on the physical mass m of the � particle�
We must now show that these three conditions su	ce to make all of the one�
loop amplitudes of the linear sigma model �nite�
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The Vertex Counterterm

We begin by determining the counterterm �� by computing the �� amplitude�
The tree�level term comes from the �� vertex� and is just such as to satisfy
����� The one�loop contribution to this amplitude is the sum of diagrams�

����

According to ����� we must adjust �� so that this sum of diagrams vanishes
at threshold� In this calculation� we will only keep track of the ultraviolet di�
vergences� This greatly simpli�es the analysis� because most of the diagrams
in ���� are �nite� All the diagrams with loops made of three or more prop�
agators are �nite� since they have at least six powers of the loop momentum
in the denominator� for example�

�
Z

d�k

�����


k�


k�


k�
�

Alternatively� we can see that this diagram is �nite in the following way�
Each three�point vertex carries a factor of �� which has dimensions of mass�
According to the dimensional analysis argument of Section ��� each such
factor lowers the degree of divergence of a diagram by � Since the �� ampli�
tude already has D � �� any diagram containing a three�point vertex must be
�nite�

We are left with the �rst two diagrams of ���� and the four diagrams re�
lated to these by crossing� Let us evaluate the �rst diagram using dimensional
regularization�

�


�
� ���i��� �

Z
ddk

����d
i

k� � ���
i

�k � p�� � ���

� ���
�Z

�

dx

Z
ddk

����d


$k� ��%�



���� Renormalization and Symmetry� An Explicit Example ���

� ���
�Z

�

dx
i

����d��
,���d

� �
� 
�

��� d
�

� �i��
,���d

� �

�����
� ��nite terms�� ����

Here � is a function of p and �� whose exact form does not concern us� Since
our objective is only to demonstrate the cancellation of the divergences� we
will neglect �nite terms here and throughout the rest of this section� The
second diagram of ���� �with ��s instead of ��s for the internal lines� is
identical� except that each vertex factor is changed from ��i� to ��i��ij �
�Roman indices i� j� � � � run from  to N��� We therefore have

� �i���N�� ,���
d
� �

�����
� ��nite terms�� �����

Since the in�nite part of each of these diagrams is simply a momentum�
independent constant� the in�nite parts of the corresponding t� and u�channel
diagrams must be identical� Therefore the in�nite part of the �� vertex is just
three times the sum of ���� and ������

� �i���N���
,���d

� �

�����
� ����

�In this section we use the � symbol to indicate equality up to omitted ��
nite corrections�� Applying the third condition of ����� we �nd that the
counterterm �� is given by

�� � ���N � ��
,���d

� �

�����
� �����

Once we have determined the value of ��� we have �xed the counterterms
for the two other four�point amplitudes� Are these amplitudes also made �nite�
Consider the amplitude with two ��s and two ��s� This receives one�loop
corrections from

�����

and from several diagrams with three�point vertices which� as argued earlier�
are manifestly �nite� Each of the diagrams in ����� contains a loop integral
analogous to that in ����� whose in�nite part is always �i,���d

� ������
��
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The only di�erences are in the vertices and symmetry factors� For example�
the in�nite part of the �rst diagram of ����� is

� 

�
� ���i�����i��ij� � �i

�����
,���d

� � � �i���ij
,���d

� �

�����
�

The second diagram is a bit more complicated�

� 

�
� ���i��kl����i���ij�kl � �ik�jl � �il�jk�

� � �i
�����

,���d
� �

� �i���N���ij
,���d

� �

�����
�

In the third diagram there is no symmetry factor�

� ���i��il����i��jl� � �i
�����

,���d
� � � �i���ij

,���d
� �

�����
�

The fourth diagram of ����� gives an identical expression� since it is the
same as the third but with i and j interchanged� The sum of the four diagrams
therefore gives� for the in�nite part of the ���� vertex�

� �i�� �ij �N���
,���d

� �

�����
� �����

This divergent term is indeed canceled by the ���� counterterm� with the
value of �� given in ������

The remaining four�point amplitude has four external � �elds� The diver�
gent one�loop diagrams are�

���
�

These diagrams all have the same familiar form� The �rst is

� 

�
� ���i��ij����i��kl� � �i

�����
,���d

� � � �i���ij�kl
,���d

� �

�����
�
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The second diagram is more complicated�

� 

�
� ���i���ij�mn��im�jn��in�jm�

�
� ���i���kl�mn��km�ln��kn�lm�

� � �i
�����

,���d
� �

� �i��
�
�N����ij�kl � ��ik�jl � ��il�jk

�,���d
� �

�����
�

For each of these diagrams there are two corresponding cross�channel dia�
grams� which di�er only in the ways that the external indices ijkl are paired
together� For instance� the t�channel diagrams are identical to the s�channel
diagrams� but with j and k interchanged� Adding all six diagrams� we �nd for
the �� vertex

� �i�� ��ij�kl��ik�jl��il�jk� �N���
,���d

� �

�����
� �����

Again� the value of �� given in ����� gives a counterterm of the correct value
and index structure to cancel this divergence�

The value of �� that we have determined also �xes the counterterms for
the three�point amplitudes� Thus we have no further freedom in canceling the
divergences in the three�point amplitudes� we can only cross our �ngers and
hope these also come out �nite� The �� amplitude is given by

�����

The diagrams made of three three�point vertices are �nite and play no role in
the cancellation of divergences� Of the divergent diagrams in ������ the �rst
has the form

�


�
� ���i�����i�v� �

Z
ddk

����d
i

k� � ���
i

�k � p�� � ���

� �i��v
,���d

� �

�����
�

This is exactly the same as the corresponding diagram ���� for the ��
vertex� except for the extra factor of v� The same is true of the other �ve
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divergent diagrams� thus�

� �i��v�N���
,���d

� �

�����
� �����

This is precisely canceled by the �� counterterm vertex in Fig� �
� with ��
given by ������

There is a similar correspondence between the ��� amplitude and the
���� amplitude� The four divergent diagrams in the ��� amplitude are iden�
tical to those in ������ except that each has an external � leg replaced by a
factor of v� Referring to the ��� counterterm vertex in Fig� �
� we see that
the cancellation of divergences will occur here as well�

What is happening� All the divergences we have seen so far are manifes�
tations of the basic diagram

�����

with either four external particles or with one leg set to zero momentum and
associated with the vacuum expectation value of 
� Since the O�N� symmetry
is broken� this diagrammanifests itself in many di�erent ways� But apparently�
the divergent part of the diagram is una�ected by the symmetry breaking�

Two�Point and One�Point Amplitudes

To complete our investigation of the one�loop structure of this theory we
must evaluate the two�point and one�point amplitudes� We �rst determine
the counterterm �� by applying the �rst renormalization condition in �����
At one�loop order� this condition reads

�����

We will later need to make use of the �nite part of the counterterm� so we will
pay attention to the �nite terms when we evaluate ������ The �rst diagram
is

�


�
���i�v�

Z
ddk

����d
i

k� � ���
� ��i�v ,��d

� �

����d��

� 

���

��� d
�

�

����
The second diagram involves a divergent integral over a massless propagator�
To be sure that we understand how to treat this term� we will add a small
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mass � for the � �eld as an infrared regulator� Then the second diagram is

�


�
���i�v��ij

Z
ddk

����d
i�ij

k� � ��

� �i�N���v ,��d
� �

����d��

� 

��

��� d
�

�

�����

Notice that� for d � �� the diagram vanishes in the limit as � � �� however�
it has a pole at d � �� Despite these strange features� we can add ����� to
���� and impose the condition that the tadpole diagrams be canceled by
the counterterm from Fig� �
� This condition gives

��� � v���� � �� ,��d
� �

����d��

� �

�������d��
�

N � 

������d��

�
� �����

Now consider the �� amplitude� The one�particle�irreducible amplitude
receives contributions from four one�loop diagrams and a counterterm�

�����

It is convenient to write the counterterm vertex as

�i��v����� i��� � v����� ip��Z � ���
�

In a general renormalization scheme� the � mass will also be shifted by the
tadpole diagrams �and their counterterm��

�����

However� the �rst renormalization condition in ���� forces these diagrams
to cancel precisely� This is an example of the special simplicity of this renor�
malization condition�

The �rst two diagrams are again manifestations of the generic four�point
diagram ������ now with two external legs replaced by the vacuum expec�
tation value of 
� In analogy with the preceding calculations� we �nd for the
�rst diagram

� �i��v�
,���d

� �

�����
�

and for the second diagram

� �i��v��N��,���
d
� �

�����
�

Using ������ we see that these two contributions are canceled by the �rst
term of ���
�� The third and fourth diagrams of ����� contain precisely
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the same integrals as the tadpole diagrams of ������ Relation ����� implies
that they are canceled by the second term in ���
�� Notice that there is no
divergent term proportional to p� in any of the one�loop diagrams of ������
Thus the renormalization constant �Z is �nite at the one�loop level� just as in
ordinary 
� theory�

There remains only one potentially divergent amplitude�the �� ampli�
tude�

�����

In analogy with ����� the �rst diagram is

�


�
���i��ij�

Z
ddk

����d
i

k� � ���
� �i��ij ,��

d
� �

����d��

� 

���

��� d
�

�

The second diagram is quite similar� As in ������ it is useful to introduce a
small pion mass as an infrared regulator�

�


�

���i���ij�kk��ik�jk��ik�jk�� Z ddk

����d


k� � ��

� �i��N���ij
,��d

� �

����d��

� 

��

��� d
�

�

The third diagram is given by

� ���i�v�ik����i�v�kj�
Z

ddk

����d
i

k� � ��
i

�k�p�� � ���

� �i��v��ij
,���d

� �

����d��

�Z
�

dx

�


���x� ��x��� � p�x��x�
��� d

�

�

The divergent part of this expression is independent of p� so to check the
cancellation of the divergence� it su	ces to set p � �� It will be instructive to
compute the complete amplitude at p � �� including the �nite terms� Adding
the three loop diagrams and the counterterm� whose value is given by ������
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we �nd ����
p
�

� ��i��ij�
	
,��d

� �

����d��

�


�������d��
�

N�

������d��

�

� ��v�
,���d

� �

����d��

�Z
�

dx

�


���x� ����x�
��� d

�

� ,��d
� �

����d��

�
�

�������d��
�

N�
������d��

�

�

�����
It is not hard to simplify this expression� The �rst and third lines can be

combined to give

���ij
,��d

� �

����d��




������d��
� 

�������d��

�
�

Near d � � the quantity in brackets is proportional to �d��� and this factor
cancels the pole in the gamma function� Thus the worst divergence cancels�
leaving only a pole at d � �� Using the identity ,�x� � ,�x � ��x� we can
rewrite the above expression as

���ij
,���d

� �

����d��


�d��


��

������d��
� ���

�������d��

�
� �����

The �rst term vanishes for d � � and � � �� and can be neglected� Meanwhile�
the second line of expression ����� involves the elementary integral

�Z
�

dx ����x� ��x���� d��� � 

d��� 
� ���

��d���� � ����d����

��� � ��
�

This expression is also nonsingular at d � � and reduces to



d��� 
�����d����

for d � � and � � �� Comparing this line with the remaining term from
������ and recalling that �v� � ��� we �nd that the �� amplitude is not
only �nite� but vanishes completely at p � ��

This result is very attractive� The �� amplitude� at p � �� is precisely
the mass shift �m�

� of the � �eld� We already knew that the � particles are
massless at tree level�they are the N� massless bosons required by Gold�
stone�s theorem� We have now veri�ed that these bosons remain massless at
the one�loop level in the linear sigma model� in other words� the �rst quan�
tum corrections to the linear sigma model also respect Goldstone�s theorem�
At the end of this chapter� we will give a general argument that Goldstone�s
theorem is satis�ed to all orders in perturbation theory�
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���� The E�ective Action

In the �rst section of this chapter� we analyzed spontaneous symmetry break�
ing in classical �eld theory� That analysis was geometrical� We found the vac�
uum state by �nding the deepest well in a potential surface� and we proved
Goldstone�s theorem by showing that symmetry required the presence of a line
of degenerate minima at the bottom of the well� But this geometrical picture
was lost� or at least disguised� in the one�loop calculations of Section ��� It
seems worthwhile to develop a formalism that will allow us to use geometrical
arguments about spontaneous symmetry breaking even at the quantum level�

To de�ne our goal somewhat better� consider the problem of determining
the vacuum expectation value of the quantum �eld 
� This expectation value
should be determined as a function of the parameters of the Lagrangian� At
the classical level� it is easy to compute h
i� one minimizes the potential
energy� However� as we have seen in the previous section� this classical value
can be altered by perturbative loop corrections� In fact� we saw that h
i could
be shifted by a potentially divergent quantity� which we needed to control by
renormalization�

It would be wonderful if� in the full quantum �eld theory� there were a
function whose minimum gave the exact value of h
i� This function would
agree with the classical potential energy to lowest order in perturbation the�
ory� but it would be modi�ed in higher orders by quantum corrections� Pre�
sumably� these corrections would need renormalization to remove in�nities�
Nevertheless� after renormalization� this quantity should give the same rela�
tions between h
i and particle masses and couplings that we would �nd by
direct Feynman diagram calculations� In this section� we will exhibit a func�
tion with these properties� called the e�ective potential� In Section �� we
will explain how to compute the e�ective potential in perturbation theory� in
terms of renormalized masses and couplings� Then we will go on to use it as
a tool in analyzing the renormalizability of theories with hidden symmetry�

To identify the e�ective potential� consider the analogy between quantum
�eld theory and statistical mechanics set out in Section ���� In that section�
we derived a correspondence between the correlation functions of a quantum
�eld and those of a related statistical system� with quantum �uctuations being
replaced by thermal �uctuations� At zero temperature the thermodynamic
ground state is the state of lowest energy� but at nonzero temperature we
still have a geometrical picture of the preferred thermodynamic state� It is
the state that minimizes the Gibbs free energy� More explicitly� taking the
example of a magnetic system� one de�nes the Helmholtz free energy F �H�
by

Z�H� � e�	F �H� �

Z
Ds exp

h
��
Z
dx
�H$s%�Hs�x�

�i
� �����

where H is the external magnetic �eld� H$s% is the spin energy density� and
� � �kT � We can �nd the magnetization of the system by di�erentiating
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F �H��

� �F

�H

����
	 �xed

�


�

�

�H
logZ

�


Z

Z
dx

Z
Ds s�x� exp

h
��
Z
dx
�H$s%�Hs

�i
�

Z
dx
�
s�x�
� �M�

����

The Gibbs free energy G is de�ned by the Legendre transformation

G � F �MH�

so that it satis�es
�G

�M
�

�F

�M
�M

�H

�M
�H

�
�H

�M

�F

�H
�M

�H

�M
�H

� H

�����

�where all partial derivatives are taken with � �xed�� If H � �� the Gibbs free
energy reaches an extremum at the corresponding value of M � The thermo�
dynamically most stable state is the minimum of G�M�� Thus the function
G�M� gives a picture of the preferred thermodynamic state that is geometrical
and at the same time includes all e�ects of thermal �uctuations�

By analogy� we can construct a similar quantity in a quantum �eld theory�
For simplicity� we will work in this section only with a theory of one scalar
�eld� All of the results generalize straightforwardly to systems with multiple
scalar� spinor� and vector �elds�

Consider a quantum �eld theory of a scalar �eld 
� in the presence of an
external source J � As in Chapter �� it is useful to take the external source to
depend on x� Thus� we de�ne an energy functional E$J % by

Z$J % � e�iE�J� �
Z
D
 exp

h
i

Z
d�x
�L$
% � J


�i
� �����

The right�hand side of this equation is the functional integral representation
of the amplitude h�j e�iHT j�i� where T is the time extent of the functional
integration� in the presence of the source J � Thus� E$J % is just the vacuum
energy as a function of the external source� The functional E$J % is the analogue
of the Helmholtz free energy� and J is the analogue of the external magnetic
�eld�

In principle� we could now Legendre�transform E$J % with respect to a
constant value of the source� However� since we have already developed a
formalism for functional integration and di�erentiation� it will not be much
more di	cult to work with an external source J�x� that depends on x in an
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arbitrary way� As we will see� this generalization yields additional relations
which connect this formalism to our general study of renormalization theory�z

Consider� then� the functional derivative of E$J % with respect to J�x��

�

�J�x�
E$J % � i

�

�J�x�
logZ � �

R D
 eiR �L�J��
�x�R D
 eiR �L�J�� � �����

We abbreviate this relation as

�

�J�x�
E$J % � �h�j
�x� j�iJ � ���
�

the right�hand side is the vacuum expectation value in the presence of a
nonzero source J�x�� This relation is a functional analogue of Eq� �����
The functional derivative of E$J % gives the expectation value of 
 in the pres�
ence of the spatially varying source� We should treat this expectation value as
the thermodynamic variable conjugate to J�x�� Thus we de�ne the quantity

cl�x�� called the classical �eld� by


cl�x� � h�j
�x� j�iJ � �����

The classical �eld is related to 
�x� in the same way that the magnetizationM
is related to the local spin �eld s�x�� It is a weighted average over all possible
�uctuations� Note that 
cl�x� depends on the external source J�x�� just as M
depends on H �

Now� in analogy with the construction of the Gibbs free energy� de�ne the
Legendre transform of E$J %�

,$
cl% � �E$J %�
Z
d�y J�y�
cl�y�� �����

This quantity is known as the e�ective action� In analogy with Eq� ������
we can now compute

�

�
cl�x�
,$
cl% � � �

�
cl�x�
E$J %�

Z
d�y

�J�y�

�
cl�x�

cl�y�� J�x�

� �
Z
d�y

�J�y�

�
cl�x�

�E$J %

�J�y�
�
Z
d�y

�J�y�

�
cl�x�

cl�y�� J�x�

� �J�x�� �����

In the last step we have used Eq� ���
��
For each of the thermodynamic quantities discussed at the beginning of

this section� we have now de�ned an analogous quantity in quantum �eld
theory� Table � summarizes these analogies�

zThis functional generalization of thermodynamics is due to C� DeDominicis and
P� Martin� J� Math� Phys� �� �� ��	���� and was formulated for relativistic �eld theory
by G� Jona�Lasinio� Nuovo Cim� ��A� ��	� ��	����
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Magnetic System Quantum Field Theory

x x � �t�x�

s�x� 
�x�

H J�x�

H�s� L�
�
Z�H� Z$J %

F �H� E$J %

M 
cl�x�

G�M� �,$
cl%
Table ����� Analogous quantities in a magnetic system and a scalar quantum
�eld theory�

Relation ����� implies that� if the external source is set to zero� the
e�ective action satis�es the equation

�

�
cl�x�
,$
cl% � �� �����

The solutions to this equation are the values of h
�x�i in the stable quantum
states of the theory� For a translation�invariant vacuum state� we will �nd a
solution in which 
cl is independent of x� Sometimes� Eq� ����� will have
additional solutions� corresponding to localized lumps of �eld held together
by their self�interaction� In these states� called solitons� the solution 
cl�x�
depends on x�

+From here on we will assume� for the �eld theories we consider� that the
possible vacuum states are invariant under translations and Lorentz transfor�
mations�! Then� for each possible vacuum state� the corresponding solution

cl will be a constant� independent of x� and the process of solving Eq� �����
reduces to that of solving an ordinary equation of one variable �
cl�� Further�
more� we know that , is� in thermodynamic terms� an extensive quantity� It
is proportional to the volume of the spacetime region over which the func�
tional integral is taken� If T is the time extent of this region and V is its
three�dimensional volume� we can write

,$
cl% � ��V T � � Ve��
cl�� ��
��

The coe	cient Ve� is called the e�ective potential� The condition that ,$
cl%
has an extremum then reduces to the simple equation

�

�
cl
Ve��
cl� � �� ��
�

�Certain condensed matter systems have ground states with preferred orientation�
see� for example P� G� de Gennes� The Physics of Liquid Crystals �Oxford University
Press� �	����
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Each solution of Eq� ��
� is a translation�invariant state with J � �� Equa�
tion ����� implies that , � �E in this case� and therefore that Ve��
cl��
evaluated at a solution to ��
�� is just the energy density of the correspond�
ing state�

Figure �� illustrates one possible shape for the function Ve� �
�� The
local maxima �or� for systems of several �elds 
i� possible saddle points� are
unstable con�gurations that cannot be realized as stationary states� The �gure
also contains a local minimum of Ve� that is not the absolute minimum� this is
a metastable vacuum state� which can decay to the true vacuum by quantum�
mechanical tunneling� The absolute minimum of Ve� is the state of lowest
energy in the theory� and thus the true� stable� vacuum state� A system with
spontaneously broken symmetry will have several minima of Ve� � all with the
same energy by virtue of the symmetry� The choice of one among these vacua
is the spontaneous symmetry breaking�

In drawing Fig� ��� we have assumed that we are computing the e�ec�
tive potential for a �xed constant background value of 
� Under some circum�
stances� this state does not give the true minimum energy con�guration for
states with a given expectation value of 
� This mismatch can occur in the
following way� In a system for which the e�ective potential for constant back�
ground �elds is given by Fig� ��� consider choosing a value of 
cl that is
intermediate between the locally stable vacuum states 
� and 
��


cl � x
� � �� x�
�� � � x � � ��
��

The assumption of a constant background �eld gives a large value of the
e�ective potential� as indicated in the �gure� We can obtain a lower�energy
con�guration by considering states with macroscopic regions in which h
i � 
�
and other regions in which h
i � 
�� in such a way that the average value of
h
i over the whole system is 
cl� For such a con�guration� the average vacuum
energy is given by

Ve��
cl� � xVe��
�� � �� x�Ve� �
��� ��
��

as shown in Fig� ��� We have called the left�hand side of this equation
Ve��
cl� because the result ��
�� would be the result of an exact evaluation
of the functional integral de�nition of Ve� for values of 
cl satisfying ��
���
The interpolation ��
�� is the �eld theoretic analogue of the Maxwell con�
struction for the thermodynamic free energy� In general� for any 
cl� 
�� 
�
satisfying ��
��� the estimate ��
�� will be an upper bound to the e�ective
potential� we say that the e�ective potential is a convex function of 
cl�

y

Just as in thermodynamics� straightforward schemes for computing the
e�ective potential do not take account of the possibility of phase separation
and so lead to a structure of unstable and metastable con�gurations of the

yThe convexity of the Gibbs free energy is a well�known exact result in statisti�
cal mechanics� see� for example� D� Ruelle� Statistical Mechanics �W� A� Benjamin�
Reading� Mass�� �	�	��
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Figure ����� A possible form for the e�ective potential in a scalar �eld the�
ory� The extrema of the e�ective potential occur at the points �cl � ��� ��� ���
The true vacuum state is the one corresponding to ��� The state �� is unsta�
ble� The state �� is metastable� but it can decay to �� by quantum�mechanical
tunneling�

Figure ����� Exact convex form of the e�ective potential for the system of
Fig� �����

type shown in Fig� ��� The Maxwell construction must be performed by
hand to yield the �nal form of Ve��
cl�� Fortunately� the absolute minimum
of Ve� is not a�ected by this nicety�

We have now solved the problem that we posed at the beginning of this
section� The e�ective potential� de�ned by Eqs� ����� and ��
��� gives an
easily visualized function whose minimization de�nes the exact vacuum state
of the quantum �eld theory� including all e�ects of quantum corrections� It is
not obvious from these de�nitions how to compute Ve��
cl�� We will see how
to do so in the next section� by direct evaluation of the functional integral�
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���� Computation of the E�ective Action

Now that we have de�ned the object whose minimization gives the exact
vacuum state of a quantum �eld theory� we must learn how to compute it�
This can be done in more than one way� The simplest method� which we will
use here� requires that we be bold enough to evaluate the complete e�ective
action , directly from its functional integral de�nition� After computing ,�
we can obtain Ve� by specializing to constant values of 
cl�

z

Our plan is to �nd a perturbation expansion for the generating functional
Z� starting with its functional integral de�nition ������ We will then take the
logarithm to obtain the energy functional E� and �nally Legendre�transform
according to Eq� ����� to obtain ,� We will use renormalized perturbation
theory� so it is convenient to split the Lagrangian as we did in Eq� ������
into a piece depending on renormalized parameters and one containing the
counterterms�

L � L� � �L� ��
��

We wish to compute , as a function of 
cl� But the functional Z$J % depends
on 
cl through its dependence on J � Thus� we must �nd� at least implicitly� a
relation between J�x� and 
cl�x�� At the lowest order in perturbation theory�
that relation is just the classical �eld equation�

�L
�


����
�
�cl

� J�x� � � �to lowest order��

Let us de�ne J��x� to be whatever function satis�es this equation exactly�
when L � L��

�L�
�


����
�
�cl

� J��x� � � �exactly�� ��

�

We will think of the di�erence between J and J� as a counterterm� analogous
to �L� so we write

J�x� � J��x� � �J�x�� ��
��

where �J is determined� order by order in perturbation theory� by the original
de�nition ����� of 
cl� namely h
�x�iJ � 
cl�x��

Using this notation� we rewrite Eq� ����� as

e�iE�J� �
Z
D
 ei

R
d�x�L�����J���ei

R
d�x�L����J��� ��
��

The second exponential contains the counterterms� leave this aside for the
moment� In the �rst exponential� expand the exponent about 
cl by replacing

zThis method is due to R� Jackiw� Phys� Rev� D	� ��
� ��	����
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�x� � 
cl�x� � ��x�� This exponent takes the formZ
d�x�L� � J�
� �

Z
d�x�L�$
cl% � J�
cl� �

Z
d�x ��x�

� �L�
�


� J�

�
�



�

Z
d�x d�y ��x���y�

��L�
�
�x��
�y�

�


�-

Z
d�x d�y d�z ��x���y���z�

��L�
�
�x��
�y��
�z�

� � � � �
��
��

where the various functional derivatives of L� are evaluated at 
cl�x�� Notice
that the term linear in � vanishes by the use of Eq� ��

�� The integral
over � is thus a Gaussian integral� with the cubic and higher terms giving
perturbative corrections�

We will describe a formal evaluation of this integral� following the prescrip�
tions of Section ���� The ingredients in this evaluation will be the coe	cients
of Eq� ��
��� that is� the successive functional derivatives of L�� For the mo�
ment� please accept that these give well�de�ned operators� After presenting a
general expression for ,$
cl%� we will carry out this calculation explicitly in a
scalar �eld theory example� We will see in this example that the formal oper�
ators correspond to expressions familiar from Feynman diagram perturbation
theory�

Let us� then� consider performing the integral over ��x� using the expan�
sion ��
��� Keeping only the terms up to quadratic order in �� and still
neglecting the counterterms� we have a pure Gaussian integral� which can be
evaluated in terms of a functional determinant�Z

D� exp
h
i
�Z

�L�$
cl% � J�
cl� �


�

Z
�
��L�
�
�


�
�i

� exp
h
i

Z
�L�$
cl% � J�
cl�

i
�
�
det
h
� ��L�
�
�


i�����
� ��
��

This functional determinant will give us the lowest�order quantum correction
to the e�ective action� and for many purposes it is unnecessary to go further
in the expansion ��
��� Later we will see that if we do include the cubic
and higher terms in �� these produce a Feynman diagram expansion of the
functional integral ��
�� in which the propagator is the operator inverse

�i
� ��L
�
�


���
�����

and the vertices are the third and higher functional derivatives of L��
Finally� let us put back the e�ects of the second exponential in Eq� ��
���

that is� the counterterm Lagrangian� It is useful to expand this term about

 � 
cl� writing it as�

�L$
cl% � �J
cl
�
�
�
�L$
cl � �%� �L$
cl% � �J�

�
� ����
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The second term of ���� can be expanded as a Taylor series in �� the
successive terms give counterterm vertices which can be included in the afore�
mentioned Feynman diagrams� The �rst term is a constant with respect to the
functional integral over �� and therefore gives additional terms in the exponent
of Eq� ��
���

Combining the integral ��
�� with the contributions from higher�order
vertices and counterterms� one can obtain a complete expression for the func�
tional integral ��
��� We will see in the example below that the Feynman
diagrams representing the higher�order terms can be arranged to give the ex�
ponential of the sum of connected diagrams� Thus one obtains the following
expression for E$J %�

�iE$J % � i

Z
d�x�L�$
cl% � J�
cl�� 

�
log det

�� ��L�
�
�


�
� �connected diagrams� � i

Z
d�x��L$
cl% � �J
cl��

�����

From this equation� , follows directly� Using J� � �J � J and the Legendre
transform ������ we �nd

,$
cl% �

Z
d�xL�$
cl% � i

�
log det

�� ��L�
�
�


�
� i � �connected diagrams� �

Z
d�x �L$
cl%� �����

Notice that there are no terms remaining that depend explicitly on J � thus�
, is expressed as a function of 
cl� as it should be� The Feynman diagrams
contributing to ,$
cl% have no external lines� and the simplest ones turn out
to have two loops� The lowest�order quantum correction to , is given by the
functional determinant� and this term is all that we will make use of in this
book�

The last term of ����� provides a set of counterterms that can be used
to satisfy the renormalization conditions on , and� in the process� to cancel di�
vergences that appear in the evaluation of the functional determinant and the
diagrams� We will show in the example below exactly how this cancellation
works� The renormalization conditions will determine all of the counterterms
in �L� However� the formalism we have constructed contains a new counter�
term �J � That coe	cient is determined by the following special criterion� In
Eq� ��

�� we set up our analysis in such a way that� at the leading order�
h
i � 
cl� Potentially� however� this relation could break down at higher or�
ders� The quantity h
i could receive additional contributions from Feynman
diagrams that might shift it from the value 
cl� This will happen if there are
nonzero tadpole diagrams that contribute to h�i� But this amplitude also re�
ceives a contribution from the counterterm ��J�� in ����� Thus we can
maintain h�i � �� and in the process determine �J to any order� by adjusting
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�J to satisfy the diagrammatic equation

�����

In practice� we will satisfy this condition by simply ignoring any one�particle�
irreducible one�point diagram� since any such diagram will be canceled by
adjustment of �J � The removal of these tadpole diagrams� which we needed
some e�ort to arrange in Section ��� is thus built in here as a natural part
of the formalism�

The E�ective Action in the Linear Sigma Model

In Eq� ������ we have given a complete� though not exactly transparent�
evaluation of ,$
cl%� Let us now clarify the meaning of this equation� and also
put it to some good use� by computing ,$
cl% in the linear sigma model� We
will see that the results that we obtained by brute�force perturbation theory
in Section �� emerge much more naturally from Eq� ������

We begin again with the Lagrangian ��
��

L �


�
���


i�� �


�
���
i�� � �

�

�
�
i��

��
� ���
�

Expand about the classical �eld� 
i � 
icl � �i� Because we expect to �nd a
translation�invariant vacuum state� we will specialize to the case of a constant
classical �eld� This will simplify some elements of the calculation below� In
particular� according to Eq� ��
��� the �nal result will be proportional to
the four�dimensional volume �V T � of the functional intergration� When this
dependence is factored out� we will obtain a well�de�ned intensive expression
for the e�ective potential� In any event� after this simpli�cation� ���
� takes
the form

L �


�
���
icl�

� � �

�

�
�
icl�

�
��

� ��� � ��
icl�
��
icl�

i

�


�
����

i�� �


�
����i�� � �

�

�
�
icl�

���i�� � ��
icl�
i��
�
� � � � �

�����

According to Eq� ������ we should drop the term linear in ��
+From the terms quadratic in �� we can read o�

��L
�
i�
j

� ����ij � ���ij � �
�
�
kcl�

��ij � �
icl

j
cl

�
� �����

Notice that this object has the general form of a Klein�Gordon operator� To
clarify this relation� let us orient the coordinates so that 
icl points in the Nth
direction�


icl � ��� �� � � � � �� 
cl�� �����
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as we did in Eq� ����� Then the operator ����� is just equal to the Klein�
Gordon operator ���� �m�

i �� where

m�
i �

	
�
�cl � �� acting on ��� � � � � �N���
��
�cl � �� acting on �N �

�����

The functional determinant in Eq� ����� is the product of the determinants
of these Klein�Gordon operators�

det
��L
�
�


�
�
det��� � ��
�cl � ����

�N��
$det��� � ���
�cl � ����

�
� �����

It is not di	cult to obtain an explicit form for the determinant of a Klein�
Gordon operator� To begin� use the trick of Eq� ������ to write

log det��� �m�� � Tr log��� �m���

Now evaluate the trace of the operator as the sum of its eigenvalues�

Tr log��� �m�� �
X
k

log��k� �m��

� �V T �

Z
d�k

�����
log��k� �m��� ����

In the second line� we have converted the sum over momenta to an integral�
The factor �V T � is the four�dimensional volume of the functional integral� we
have already noted that this is expected to appear as an overall factor in ,$
cl%�
This manipulation gives an integral that can be evaluated in dimensional
regularization after a Wick rotation�Z

d�k

�����
log��k� �m�� � i

Z
d�kE
�����

log�k�E �m��

� �i �
�	

Z
d�kE
�����



�k�E �m���

����
�
�

� �i �
�	

�


����d��
,�	� d

� �

,�	�



�m����d��

�����
�
�

� �i ,��
d
� �

����d��


�m���d��
� �����

In the last line� we have used ,�	�� �	 as 	� �� Thus�



�V T �
log det��� �m�� � �i ,��

d
� �

����d��
�m��d��� �����

Using this result to evaluate the determinant in Eq� ������ and choosing
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Figure ����� Feynman diagrams contributing to the evaluation of the e�ec�
tive potential of the O�N� linear sigma model� �a� a diagram that is removed
by �������� �b� the �rst nonzero diagrammatic corrections�

the counterterm Lagrangian as in Eq� ����� we �nd

Ve��
� � � 

�V T �
,$
cl%

� �

�
��
�cl �

�

�

�cl

� 

�

,��d
� �

����d��
�
�N � ���
�cl � ���d�� � ���
�cl � ���d��

�
�



�
��


�
cl �



�
��


�
cl� �����

Here we have written 
�cl as a shorthand for �
icl�
�� Since the second line of

this result is the leading radiative correction� we might expect that the result
has the structure of a one�loop Feynman diagram� Indeed� we see that this
expression contains Gamma functions and ultraviolet divergences similar to
those that we found in the one�loop computations of Section ��� We will
show below that this term in fact has exactly the same ultraviolet divergences
that we found in Section ��� These divergences will be subtracted by the
counterterms in the last line of Eq� ������

Since the computation of the determinant in Eq� ����� gives the e�ect of
one�loop corrections� we might expect the Feynman diagrams that contribute
to Eq� ����� to begin in two�loop order� We can see this explicitly for the
case of the O�N� sigma model� The perturbation expansion described below
Eq� ����� involves the propagator that is the inverse of Eq� �������

�i�k��j��k�� � i

k� �m�
i

�ij � ���
�

where m�
i is given by ������ The vertices are given by the terms of order ��

and �� in the expansion of the Lagrangian� Combining these ingredients� we
�nd that the leading Feynman diagrams contributing to the vacuum energy
have the forms shown in Fig� ��� The diagram of Fig� ���a� is actually
canceled by the e�ects of the counterterm �J � as shown in Eq� ������ Thus
the leading diagrammatic contribution to the e�ective potential comes from
the two�loop diagrams of Fig� ���b��
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The result ����� is manifestly O�N��symmetric� From the question that
we posed at the beginning of Section ��� we might have feared that this
property would be destroyed when we compute radiative corrections about a
state with spontaneously broken symmetry� But Ve��
cl� is the function that
we minimize to �nd the vacuum state� and so it should properly be sym�
metric� even if the lowest�energy vacuum is asymmetric� In the formalism we
have constructed here� there is no need to worry� Formula ����� is man�
ifestly invariant� term by term� under the original O�N� symmetry of the
Lagrangian� Thus we must necessarily have arrived at an O�N��symmetric
result for Ve��
cl��

Before going on to determine �� and �� precisely� we might �rst check
that the counterterms in Eq� ����� are su	cient to make the expression for
,$
cl% �nite� The factor ,��d��� has poles at d � �� �� �� The pole at d � � is a
constant� independent of 
cl� and therefore without physical signi�cance� The
pole at d � � is an even quadratic polynomial in 
cl� The pole at d � � is an
even quartic polynomial in 
cl� Thus Eq� ����� becomes a �nite expression
in the limit d� � if we set

�� � ���N � ��
,��d

� �

����
� �nite�

The expression is �nite as d� � if we set

�� � �����N � ��
,���d

� �

�����
� �nite�

�� � ���N � ��
,���d

� �

�����
� �nite� �����

These expressions agree with our earlier results from Section ��� Eqs� �����
and ������ in the limits d� � and d� � respectively�

The �nite parts of �� and �� depend on the exact form of the renormal�
ization conditions that are imposed� For example� in Section ��� we imposed
the condition ���� that the vacuum expectation value of 
 equals ��

p
�

and the additional conditions in ���� on the scattering amplitude and �eld
strength of the �� Condition ���� is readily expressed in terms of the e�ec�
tive potential as

�Ve�
�
cl

�
cl � ��
p
�� � ��

Using the connection between derivatives of , and one�particle�irreducible
amplitudes� we could write the other two conditions as Fourier transforms to
momentum space of functional derivatives of ,$
cl%� In this way� it is possi�
ble in principle to reconstruct the particular renormalization scheme used in
Section ���

However� if we want to visualize the modi�cation of the lowest�order re�
sults that is induced by the quantum corrections� we can apply a renormaliza�
tion scheme that can be implemented more easily� One such scheme� known as
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minimal subtraction �MS�� is simply to remove the ���� poles �for � � �� d�
in potentially divergent quantities� Normally� though� these ���� poles are ac�
companied by terms involving � and log����� It is convenient� and no more
arbitrary� to subtract these terms as well� In this prescription� known as mod�
i�ed minimal subtraction or MS ��em�ess�bar��� one replaces

,���d
� �

����d���m����d��
�



�����

��
�
� � � log����� log�m��

�
�� 

�����
�� log�m��M��

�
� �����

whereM is an arbitrary mass parameter that we have introduced to make the
�nal equation dimensionally correct� You should think of M as parametrizing
a sequence of possible renormalization conditions� The MS renormalization
scheme usually puts one�loop corrections in an especially simple form� The
price of this simplicity is that it normally takes some e�ort to express physi�
cally measurable quantities in terms of the parameters of the MS expression�

To apply the MS renormalization prescription to ������ we need to
expand the divergent terms in this equation in powers of �� As an example�
consider the MS regularization of expression ������

,��d
� �

����d��
�m��d�� �


d
� �

d
� � �

,���d
� �

����d��
�m��d��

�
m�

������

��
�
� � � log����� log�m�� �

�

�

�
�� m�

������

�
� log�m��M�� �

�

�

�
� �����

Modifying our result ����� in this way� we �nd

Ve� �� 

�
��
�cl �

�

�

�cl

�


�



�����

�
�N � ���
�cl � ����

�
log
�
��
�cl � ����M�

�� �
�

�
� ���
�cl � ����

�
log
�
���
�cl � ����M�

�� �
�

��
� �����

The e�ective potential is thus modi�ed to be slightly steeper at large values
of 
cl and more negative at smaller values� as shown in Fig� ��� For each
set of values of �� �� and M � we can determine the preferred vacuum state
by minimizing Ve��
� with respect to 
cl� The correction to Ve� is unde�ned
when the arguments of the logarithms become negative� but fortunately the
minima of Ve� occur outside of this region� as is illustrated in the �gure�

Before going on� we would like to raise two questions about this expression
for the e�ective potential� The problems that we will raise occur generically in
quantum �eld theory calculations� but expression ����� provides a concrete
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Figure ���	� The e�ective potential for �� theory �N � ��� with quantum
corrections included as in Eq� �����	�� The lighter�weight curve shows the
classical potential energy� for comparison�

illustration of these di	culties� Most of our discussion in the next two chapters
will be devoted to building a formalism within which these questions can be
answered�

First� it is troubling that� while our classical Lagrangian contained only
two parameters� � and �� the result ����� depends on three parameters� of
which one is the arbitrary mass scale M � A super�cial reply to this complaint
can be given as follows� Consider the change in Ve��
cl� that results from
changing the value of M� to M� � �M�� From the explicit form of ������
we can see that this change is compensated completely by shifting the values
of � and �� according to

�� ��
��

�����
�N � �� � �M

�

M�
�

�� � �� � ���

�����
�N � �� � �M

�

M�
� �����

Thus� a change in M� is completely equivalent to changes in the parameters
� and �� It is not clear� however� why this should be true or how this fact
helps us understand the dependence of our formulae on M��

The second problem arises from the fact that the one�loop correction in
Eq� ����� includes a logarithm that can become large enough to compensate
the small coupling constant �� The problem is particularly clear in the limit
�� � �� then Eq� ����� takes the form

Ve� �
�

�

�cl �
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�����

�cl
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�
log��
�cl�M
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Where is the minimum of this potential� If we take this expression at face
value� we �nd that Ve� �
cl� passes through zero when 
cl reaches a very small
value of order


�cl �
M�

�
� exp

� �����

�N � ���

�
�

and� near this point� attains a minimum with a nonzero value of 
cl� But
the zero occurs by the cancellation of the leading term against the quantum
correction� In other words� perturbation theory breaks down completely before
we can address the question of whether Ve� �
cl�� for �

� � �� has a symmetry�
breaking minimum� It seems that our present tools are quite inadequate to
resolve this case�

Although it is far from obvious� these two problems turn out to be related
to each other� One of our major results in Chapter � will be an explanation of
the interrelation of M�� �� and �� displayed in Eq� ������ Then� in Chapter
�� we will use the insight we have gained from this analysis to solve completely
the second problem of the appearance of large logarithms� Before beginning
that study� however� there are a few issues we have yet to discuss in the more
formal aspects of the renormalization of theories with spontaneously broken
symmetry�

���� The E�ective Action as a Generating Functional

Now that we have de�ned the e�ective action and computed it for one partic�
ular theory� let us return to our goal of understanding the renormalization of
theories with hidden symmetry� In Section �� we will use the e�ective ac�
tion as a tool in achieving this goal� First� however� we must investigate in
more detail the relation between the e�ective action and Feynman diagrams�

We saw in Section ��� that the functional derivatives of Z$J % with respect
to J�x� produce the correlation functions of the scalar �eld �see� for example�
Eq� ����
��� In other words� Z$J % is the generating functional of correlation
functions� Our goal now is to show that ,$
cl% is also such a generating func�
tional� speci�cally� it is the generating functional of one�particle�irreducible
�PI� correlation functions� Since the PI correlation functions �gure promi�
nently in the theory of renormalization� this result will be central in the dis�
cussion of renormalization in the following section�

To begin� let us consider the functional derivatives not of ,$
cl%� but
of E$J % � i logZ$J %� The �rst derivative� given in Eq� ������ is precisely
�h
�x�i� The second derivative is

��E$J %

�J�x��J�y�
� � i

Z

Z
D
 ei

R
�L�J��
�x�
�y�

�
i

Z�

Z
D
 ei

R
�L�J��
�x� �

Z
D
 ei

R
�L�J��
�y�

� �i
h
h
�x�
�y�i � h
�x�i h
�y�i

i
� �����
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If we were to compute the term h
�x�
�y�i from Feynman diagrams� there
would be two types of contributions�

�����

where each circle corresponds to a sum of connected diagrams� The second
term in the last line of Eq� ����� cancels the second� disconnected� term of
������ Thus the second derivative of E$J % contains only those contributions
to h
�x�
�y�i that come from connected Feynman diagrams� Let us call this
object the connected correlator �

��E$J %

�J�x��J�y�
� �i h
�x�
�y�iconn � �����

Similarly� the third functional derivative of E$J % is

��E$J %

�J�x��J�y��J�z�
�
h
h
�x�
�y�
�z�i � h
�x�
�y�i h
�z�i � h
�x�
�z�i h
�y�i

� h
�y�
�z�i h
�x�i � � h
�x�i h
�y�i h
�z�i
i

� h
�x�
�y�
�z�iconn � ���
�

In each successive derivative of E$J % all contributions cancel except for those
from fully connected diagrams� The general formula for n derivatives is

�nE$J %

�J�x�� � � � �J�xn� � �i�n�� h
�x�� � � �
�xn�iconn � �����

We therefore refer to E$J % as the generating functional of connected correlation
functions�

So much for E$J %� Now what about the functional derivatives of the ef�
fective action� Consider �rst the derivative of Eq� ����� with respect to
J�y��

�

�J�y�

�,

�
cl�x�
� ���x� y��

We can rewrite the left�hand side of this equation using the chain rule� to
obtain

��x� y� � �
Z
d�z

�
cl�z�

�J�y�

��,

�
cl�z��
cl�x�

�

Z
d�z

��E

�J�y��J�z�

��,

�
cl�z��
cl�x�

�

�
��E

�J�J

�
yz

�
��,

�
cl�
cl

�
zx

� �����

In the second line we have used Eq� ������ The last line is an abstract repre�
sentation of the second line� where we think of each of the second derivatives as
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an in�nite�dimensional matrix� with the integral over z represented by matrix
multiplication� What we have shown is that these two matrices are inverses
of each other� �

��E

�J�J

�
�

�
��,

�
cl�
cl

���
� �����

Now according to Eq� ������ the �rst of these matrices is �i times the
connected two�point function� that is� the exact propagator of the �eld 
� Let
us call this propagator D�x� y���

��E

�J�x��J�y�

�
� �i h
�x�
�y�iconn � �iD�x� y�� �����

We will therefore refer to the other matrix �times �i� as the inverse propaga�
tor � �

��,

�
cl�x��
cl�y�

�
� iD���x� y�� �����

This provides an interpretation� of sorts� for the second functional derivative
of the e�ective action� This interpretation becomes more concrete if we go
to momentum space� On a translation�invariant vacuum state �one with 
cl
constant�� the matrix D�x� y� must be diagonal in momentum�

D�x� y� �

Z
d�p

�����
e�ip��x�y� eD�p�� ����

We showed in Eq� ������ that the momentum�space propagator eD�p� is a
geometric series in one�particle�irreducible Feynman diagrams� The Fourier
transform of D���x� y� then gives the inverse propagator�eD���p� � �i�p� �m� �M��p���� �����

where M��p� is the sum of one�particle�irreducible two�point diagrams�
To evaluate higher derivatives of the e�ective action we again use the

chain rule�

�

�J�z�
�

Z
d�w

�
cl�w�

�J�z�

�

�
cl�w�
� i

Z
d�wD�z� w�

�

�
cl�w�
� �����

together with the standard rule for di�erentiating matrix inverses�

�

�	
M���	� � �M���M

�	
M��� �����

Applying these identities to Eq� ������ we �nd �with some abbreviated no�
tation�

��E$J %

�Jx�Jy�Jz
� i

Z
d�wD�z� w�

�

�
clw

�
��,

�
clx �

cl
y

���
� i

Z
d�wDzw ���

Z
d�u

Z
d�v
��iDxu

� ��,

�
clu �

cl
v �


cl
w

��iDvy

�
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� i

Z
d�u d�v d�wDxuDyvDzw

��,

�
clu �

cl
v �


cl
w

� ���
�

This relation is more clearly expressed diagrammatically� The left�hand side
is the connected three�point function� If we extract exact propagators as in�
dicated in ���
�� this decomposes as follows�

In this picture� each dark gray circle represents the sum of connected diagrams�
while the light gray circle on the right�hand side represents the third derivative
of i,$
cl%� We see that the third derivative of i,$
cl% is just the connected
correlation function with all three full propagators removed� that is� the one�
particle�irreducible three�point function�

i��,

�
cl�x�
cl�y�
cl�z�
� h
�x�
�y�
�z�i�PI �

By similar� if increasingly complicated� manipulations� one can derive the
same relation for each successive derivative of ,� For example� di�erentiating
Eq� ���
�� we eventually �nd �using matrix notation with repeated indices
implicitly integrated over�

�i��E
�Jw�Jx�Jy�Jz

� DswDxtDyuDzv


i��,

�
cls �

cl
t �


cl
u �


cl
v

�
i��,

�
cls �

cl
t �


cl
r

Dqr
i��,

�
clq �

cl
u �


cl
v

� �t� u� � �t� v�

�
�

Since the left�hand side of this equation is the connected four�point function�
we can rewrite it diagrammatically as



���� Renormalization and Symmetry� General Analysis ���

As above� the dark gray circles represent the sum of connected diagrams� while
the light gray circles represent i times various derivatives of ,� Subtracting
the last three terms from each side removes all one�particle reducible pieces
from the connected four�point function and so identi�es the fourth derivative
of i, as the one�particle�irreducible four�point function� The general relation
�for n � �� is

�n,$
cl%

�
cl�x�� � � � �
cl�xn� � �i h
�x�� � � �
�xn�i�PI � �����

In other words� the e�ective action is the generating functional of one�particle�
irreducible correlation functions�

This conclusion implies that , contains the complete set of physical pre�
dictions of the quantum �eld theory� Let us review how this information is
encoded� The vacuum state of the �eld theory is identi�ed as the minimum
of the e�ective potential� The location of the minimum determines whether
the symmetries of the Lagrangian are preserved or spontaneously broken� The
second derivative of , is the inverse propagator� The poles of the propagator�
or the zeros of the inverse propagator� give the values of the particle masses�
Thus the particle masses m� are determined as the values of p� that solve the
equation eD���p�� �

Z
d�x eip��x�y�

��,

�
�

�x� y� � �� �����

The higher derivatives of , are the one�particle�irreducible amplitudes� These
can be connected by full propagators and joined together to construct four�
and higher�point connected amplitudes� which give the S�matrix elements�
Thus� from the knowledge of ,� we can reconstruct the qualitative behavior
of the quantum �eld theory� its pattern of symmetry�breaking� and then the
quantitative details of its particles and their interactions�

���� Renormalization and Symmetry General Analysis

In our analysis of the divergences of quantum �eld theories �especially in the
paragraph below Eq� ������� we noted that the basic divergences of Feyn�
man integrals are associated with one�particle�irreducible diagrams� Thus we
might expect that the e�ective action will be a useful object in discussing
the renormalizability of quantum �eld theories� especially those with spon�
taneously broken symmetry� In this section we will make use of the e�ective
action in precisely this way�

In Section ��� we saw in a particular example that the formalism for
calculating the e�ective action provides the counterterms needed to remove
the ultraviolet divergences� at least at the one�loop level� These counterterms
were exactly those of the original Lagrangian� We will now argue that this
set of counterterms is always su	cient�to all orders and for any renormaliz�
able �eld theory�by applying the power�counting arguments of Section ��
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directly to the computation of the e�ective action� We will use the language
of scalar �eld theories� but the arguments can be generalized to theories of
spinor and vector �elds�

Consider �rst the computation of the e�ective potential for constant �x�
independent� classical �elds� in a �eld theory with an arbitrary number of
�elds 
i� The e�ective potential has mass dimension �� so we expect that
Ve��
cl� will have divergent terms up to &�� To understand these divergences�
expand Ve��
cl� in a Taylor series�

Ve� �
cl� � A� �Aij
� 


i
cl


j
cl �Aijk�

� 
icl

j
cl


k
cl


�
cl � � � � �

In theories without a symmetry 
i � �
i� there might also be terms lin�
ear and cubic in 
i� we omit these for simplicity� The coe	cients A�� A�� A�

have mass dimension� respectively� �� �� and �� thus we expect them to con�
tain &�� &�� and log& divergences� respectively� The power�counting analysis
predicts that all higher terms in the Taylor series expansion should be �nite�
The constant term A� is independent of 
cl� it has no physical signi�cance�
However� the divergences in A� and A� appear in physical quantities� since
these coe	cients enter the inverse propagator ����� and the irreducible four�
point function ����� and therefore appear in the computation of S�matrix
elements� There is one further coe	cient in the e�ective action that has non�
negative mass dimension by power counting� this is the coe	cient of the term
quadratic in ��


i
cl� which appears when the e�ective action is evaluated for a

nonconstant background �eld�

�,$
cl% �

Z
d�xBij

� ��

i
cl�

�
jcl� �����

All other coe	cients in the Taylor expansion of the e�ective action in powers
of 
icl are �nite by power counting�

We can now argue that the counterterms of the original Lagrangian su	ce
to remove the divergences that might appear in the computation of ,$
cl%�
The argument proceeds in two steps� We �rst use the BPHZ theorem to argue
that the divergences of Green�s functions can be removed by adjusting a set
of counterterms corresponding to the possible operators that can be added
to the Lagrangian with coe	cients of mass dimension greater than or equal
to zero� The coe	cients of these counterterms are in �to� correspondence
with the coe	cients A�� A�� and B� of the e�ective action� Next� we use the
fact that the e�ective action is manifestly invariant to the original symmetry
group of the model� This is true even if the vacuum state of the model has
spontaneous symmetry breaking� This symmetry of the e�ective action follows
from the analysis of Section ��� since the method we presented there for
computing the e�ective action is manifestly invariant to the original symmetry
of the Lagrangian� Combining these two results� we conclude that the e�ective
action can always be made �nite by adjusting the set of counterterms that
are invariant to the original symmetry of the theory� even if this symmetry is
spontaneously broken� By using the results of Section �
� which explain how



���� Renormalization and Symmetry� General Analysis ���

to construct the Green�s functions of the theory from the functional derivatives
of the e�ective action� this conclusion of renormalizability extends to all the
Green�s functions of the theory�

To make this abstract argument more concrete� we will demonstrate in a
simple example how the functional derivatives of the e�ective action yield a
set of Feynman diagrams whose divergences correspond to symmetric coun�
terterms� Let us� then� return once again to the O�N��invariant linear sigma
model and compute the second functional derivative of ,$
cl%� If the whole for�
malism we have constructed hangs together� we should be able to recognize
the result as the Feynman diagram expansion of the inverse propagator� with
divergences corresponding to the counterterms of O�N��symmetric scalar �eld
theory�

To begin� we write out expression ����� explicitly for this model�

,$
cl% �

Z
d�x
�
�
����


i
cl�

� �


�
���
icl�

� � �

�
��
icl�

��� �
i

�
log det$�iDij % � � � �

�
�

�����
where

�iDij � � ��L
�
i�
j

� ���ij �
�
��
kcl�x��

� � ��
�
�ij ���
icl�x�


j
cl�x�� �����

For constant 
icl� Dij is the operator that� acting on a given component of
the scalar �eld� equals the Klein�Gordon operator with mass squared given by
Eq� ������ This is the leading�order approximation to the inverse propagator
of the linear sigma model�

To �nd the higher�order corrrections to the inverse propagator� we must
compute the second functional derivative of the quantum correction terms in
,$
cl%� From ������ we �nd

��,

�
icl�x��

j
cl�y�

�
��L

�
icl�x��

j
cl�y�

�
i

�

��

�
icl�x��

j
cl�y�

log det$�iD% � � � � �

The �rst term is just the Klein�Gordon operator iDij��x � y�� To compute
the second term� use identity ������ for determinants of matrices�

�

�	
log detM�	� �

�

�	
tr logM�	� � trM���M

�	
� ����

Using this identity� we �nd

i

�

�

�
kcl�z�
log det$�iD%

� iTr
h
�
�

kcl�z��

ij � 
icl�z��
jk � 
jcl�z��

ik
�
�iD���ij�z� z�

i
� ��

�

kcl�z��

ij � 
icl�z��
jk � 
jcl�z��

ik
�
�D���ij�z� z�� �����
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The quantity �D���ij�x� y� is the Klein�Gordon propagator� To di�erentiate
a second time� we can use the identity ������ this yields

i

�

��

�
kcl�z��

�
cl�w�

log det$�iD%

� ����k��ij � �ik�j� � �i��jk��D���ij�z� z���z � w�

� �i���
kcl�z��
ij � 
icl�z��

jk � 
jcl�z��
ik��D���im�z� w�

� �
�cl�z��mn � 
mcl �z��
n� � 
ncl�z��

m���D���nj�w� z�� �����

This is expected to be the formal correction to the inverse propagator at one�
loop order� and indeed we can recognize in ����� the values of the one�loop
diagrams

Notice how� in this derivation� every functional derivative on D�� adds an�
other propagator to the diagram and thus lowers the degree of divergence� in
conformity with our general arguments in Section ���

This example illustrates that the successive functional derivatives of ,$
cl%
are computed by a Feynman diagram expansion� with propagators and vertices
that depend on the classical �eld� When the classical �eld is a constant� the
propagators reduce to ordinary Klein�Gordon propagators and so the BPHZ
theorem applies� All ultraviolet divergences can be removed from all of the
amplitudes obtained by di�erentiating ,$
cl% by the use of the most general
set of mass� vertex� and �eld�strength renormalizations� At the same time� the
perturbation theory is manifestly invariant to the symmetry of the original
Lagrangian� and so the only divergences that appear�and thus the only coun�
terterms required�are those that respect this symmetry� In general� then� all
amplitudes of a renormalizable theory of scalar �elds invariant under a sym�
metry group can be made �nite using only the set of counterterms invariant
to the symmetry� This gives a complete and quite satisfactory answer to the
question posed at the beginning of Section ���

The computation of the e�ective action in spatially varying background
�elds has not been analyzed at the level of rigor involved in the proof of
the BPHZ theorem� However� it is expected that in this situation also� the
standard set of counterterms for the symmetric theory should su	ce� We
can argue this intuitively by using the fact that the ultraviolet divergences of
Feynman diagrams are local in spacetime� Thus� to understand the divergences
of a computation in a background 
cl�x� that is smoothly varying� we can
divide spacetime into small boxes� in each of which 
cl�x� is approximately
constant� and expand in the derivatives ��
cl�x�� In this expansion in powers
of ��
cl�x�� the Taylor series coe	cients are functional derivatives of , in a
constant background� which we know can be renormalized� The conclusion
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of this intuitive argument has been checked at the two�loop level for several
nontrivial background �eld con�gurations�

Our general result on the renormalization of theories with spontaneously
broken symmetry has an important implication for the physical predictions
of these theories� In a renormalizable �eld theory� the most basic quantities
of the theory cannot be predicted� because they are the quantities that must
be speci�ed as part of the de�nition of the theory� For example� in QED� the
mass and charge of the electron must be adjusted from outside in order to
de�ne the theory� The predictions of QED are quantities that do not appear
in the basic Lagrangian� for example� the anomalous magnetic moment of
the electron� In renormalizable theories with spontaneously broken symmetry�
however� the symmetry�breaking produces a large number of distinct masses
and couplings� which depend on the relatively small number of parameters of
the original symmetric theory� After the original parameters of the theory are
�xed� any additional observable of the theory can be predicted unambiguously�
For example� in the linear sigma model studied in this chapter� we took the
values of the four�point coupling � and the vacuum expectation value h
i as
input parameters� we then calculated the mass of the � particle in terms of
these parameters in an unambiguous way�

There is a general argument that implies that� once we �x the parame�
ters of the Lagrangian� we must �nd an unambiguous� �nite formula for the
� mass in 
� theory� or� more generally� for any additional parameter of a
renormalizable quantum �eld theory� In general� this parameter will be deter�
mined at the classical level in terms of the couplings in the Lagrangian� For
the example of the � mass in the linear sigma model� this classical relation is

m�
p
�� h
i � �� �����

where m is the mass of the � and � gives the four�
 scattering amplitude
at threshold� In general� loop corrections will modify this relation� contribut�
ing some nonzero expression to the right�hand side of this equation� How�
ever� since Eq� ����� is valid at the classical level however the parameters
of the Lagrangian are modi�ed� it holds equally well when we add counter�
terms to the Lagrangian and then adjust these counterterms order by order�
Thus� the counterterms must give zero contributions to the right�hand side of
Eq� ������ Therefore� the perturbative corrections to Eq� ����� must be
automatically ultraviolet��nite� A relation of this type� true at the classical
level for all values of the couplings in the Lagrangian� but corrected by loop
e�ects� is called a zeroth�order natural relation� The argument we have given
implies that� for any such relation� the loop corrections are �nite and consti�
tute predictions of the quantum �eld theory� We will see another example of
such a relation in Problem ���
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Goldstone�s Theorem Revisited

As a �nal application of the e�ective action formalism� let us return to the
question of whether Goldstone�s theorem is valid in the presence of quantum
corrections� Recall that we proved this theorem at the classical level at the end
of Section �� We showed in ���� that� if the Lagrangian has a continuous
symmetry that is spontaneously broken� the matrix of second derivatives of
the classical potential V �
� has a corresponding zero eigenvalue� According
to Eq� ���� this implies that the classical theory contains a massless scalar
particle� associated with the spontaneously broken symmetry�

Using the e�ective action formalism� this argument can be repeated al�
most verbatim in the full quantum �eld theory� The e�ective potential Ve��
cl�
encapsulates the full solution to the theory� including all orders of quantum
corrections� At the same time� it satis�es the general properties of the classi�
cal potential� It is invariant to the symmetries of the theory� and its minimum
gives the vacuum expectation value of 
� This means that the argument we
gave in ���� works in exactly the same way for Ve� as it does for V � If a
continuous symmetry of the original Lagrangian is spontaneously broken by
h
i� the matrix of second derivatives of Ve� �
cl� has a zero eigenvalue along
the symmetry direction�

We now argue that� just as at the classical level� the presence of such a zero
eigenvalue implies the existence of a massless scalar particle� In our discussion
of the general properties of the e�ective action� we showed that its second
functional derivative is the inverse propagator� and that� through Eq� ������
this derivative yields the spectrum of masses in the quantum theory� Let us
rewrite Eq� ����� for a theory that contains several scalar �elds�Z

d�x e�ip��x�y�
��,

�
i�
j
�x� y� � �� ���
�

A particle of mass m corresponds to a zero eigenvalue of this matrix equation
at p� � m�� Now set p � �� This implies that we di�erentiate ,$
cl% with re�
spect to constant �elds� Thus� we can replace ,$
cl% by its value with constant
classical �elds� which is just the e�ective potential� We �nd that the quantum
�eld theory contains a scalar particle of zero mass when the matrix of second
derivatives�

��Ve�

�
icl�

j
cl

�

has a zero eigenvalue� This completes the proof of Goldstone�s theorem�
This argument for Goldstone�s theorem illustrates the power of the e�ec�

tive action formalism� The formalism gives a geometrical picture of sponta�
neous symmetry breaking that is valid to any order in quantum corrections�
As a bonus� it is built up from objects that are renormalized in a simple way�
This formalism will prove useful in understanding the applications of sponta�
neously broken symmetry that occur� in several di�erent contexts� throughout
the rest of this book�
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Problems

���� Spin�wave theory�

�a� Prove the following wonderful formula� Let ��x� be a free scalar �eld with prop�
agator hT��x�����i � D�x�� ThenD

Tei��x�e�i����
E
� e�D�x��D�����

�The factor D��� gives a formally divergent adjustment of the overall normal�
ization��

�b� We can use this formula in Euclidean �eld theory to discuss correlation functions
in a theory with spontaneously broken symmetry for T � TC � Let us consider
only the simplest case of a broken O��� or U��� symmetry� We can write the
local spin density as a complex variable

s�x� � s��x� � is��x��

The global symmetry is the transformation

s�x�� e�i�s�x��

If we assume that the physics freezes the modulus of s�x�� we can parametrize

s�x� � Aei��x�

and write an e�ective Lagrangian for the �eld ��x�� The symmetry of the theory
becomes the translation symmetry

��x�� ��x�� ��

Show that �for d � �� the most general renormalizable Lagrangian consistent
with this symmetry is the free �eld theory

L � �
���

�r����

In statistical mechanics� the constant � is called the spin wave modulus� A rea�
sonable hypothesis for � is that it is �nite for T � TC and tends to � as T � TC
from below�

�c� Compute the correlation function hs�x�s����i� Adjust A to give a physically sen�
sible normalization �assuming that the system has a physical cuto� at the scale
of one atomic spacing� and display the dependence of this correlation function
on x for d � �� �� � �� Explain the signi�cance of your results�

���� A zeroth�order natural relation� This problem studies an N � � linear
sigma model coupled to fermions�

L � �
�
����

i�� �
�

�
����i�� � �

�
���i���� � ��i ���� � g���� � i����� ���

where �i is a two�component �eld� i � �� ��
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�a� Show that this theory has the following global symmetry�

�� � cos��� � sin����
�� � sin��� � cos����
� � e�i��

��� ��

���

Show also that the solution to the classical equations of motion with the mini�
mum energy breaks this symmetry spontaneously�

�b� Denote the vacuum expectation value of the �eld �i by v and make the change
of variables

�i�x� � �v � 	�x�� ��x��� ��

Write out the Lagrangian in these new variables� and show that the fermion
acquires a mass given by

mf � g � v� ���

�c� Compute the one�loop radiative correction to mf � choosing renormalization con�
ditions so that v and g �de�ned as the ��� vertex at zero momentum transfer�
receive no radiative corrections� Show that relation ��� receives nonzero correc�
tions but that these corrections are �nite� This is in accord with our general
discussion in Section �����

���� The Gross�Neveu model� The Gross�Neveu model is a model in two spacetime
dimensions of fermions with a discrete chiral symmetry�

L � �ii���i � �
�g

���i�i�
�

with i � �� � � � �N � The kinetic term of two�dimensional fermions is built from matrices
�� that satisfy the two�dimensional Dirac algebra� These matrices can be �� ��

�� � 	�� �� � i	��

where 	i are Pauli sigma matrices� De�ne

� � ���� � 	��

this matrix anticommutes with the ���

�a� Show that this theory is invariant with respect to

�i � ��i�

and that this symmetry forbids the appearance of a fermion mass�

�b� Show that this theory is renormalizable in � dimensions �at the level of dimen�
sional analysis��

�c� Show that the functional integral for this theory can be represented in the fol�
lowing form�Z

D� e
i
R
d�xL

�

Z
D�D	 exp


i

Z
d�x
n
�ii���i � 	�i�i �

�

�g�
	�
o�

�

where 	�x� �not to be confused with a Pauli matrix� is a new scalar �eld with
no kinetic energy terms�
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�d� Compute the leading correction to the e�ective potential for 	 by integrating over
the fermion �elds �i� You will encounter the determinant of a Dirac operator�
to evaluate this determinant� diagonalize the operator by �rst going to Fourier
components and then diagonalizing the �� � Pauli matrix associated with each
Fourier mode� �Alternatively� you might just take the determinant of this �� �
matrix�� This ��loop contribution requires a renormalization proportional to 	�

�that is� a renormalization of g��� Renormalize by minimal subtraction�

�e� Ignoring two�loop and higher�order contributions� minimize this potential� Show
that the 	 �eld acquires a vacuum expectation value which breaks the symmetry
of part �a�� Convince yourself that this result does not depend on the particular
renormalization condition chosen�

�f� Note that the e�ective potential derived in part �e� depends on g and N accord�
ing to the form

Ve��	cl� � N � f�g�N��
�The overall factor of N is expected in a theory with N �elds�� Construct a
few of the higher�order contributions to the e�ective potential and show that
they contain additional factors of N�� which suppress them if we take the limit
N ��� �g�N� �xed� In this limit� the result of part �e� is unambiguous�





Chapter ��

The Renormalization Group

In the past two chapters� our main goal has been to determine when� and
how� the cancellation of ultraviolet divergences in quantum �eld theory takes
place� We have seen that� in a large class of �eld theories� the divergences
appear only in the values of a few parameters� the bare masses and coupling
constants� or� in renormalized perturbation theory� the counterterms� Aside
from the shift in these parameters� virtual particles with very large momenta
have no e�ect on computations in these theories�

The cancellation of ultraviolet divergences is essential if a theory is to
yield quantitative physical predictions� But� at a deep level� the fact that
high�momentum virtual quanta can have so little e�ect on a theory is quite
surprising� One of the essential features of quantum �eld theory is locality� that
is� the fact that �elds at di�erent spacetime points are independent degrees of
freedom with independent quantum �uctuations� The quantum �uctuations
at arbitrarily short distances appear in Feynman diagram computations as
virtual quanta with arbitrarily high momenta� In a renormalizable theory� the
loop integrals over virtual�particle momenta are always dominated by values
comparable to the �nite external particle momenta� But why� It is not easy
to understand how the quantum �uctuations associated with extremely short
distances can be so innocuous as to a�ect a theory only through the values of
a few of its parameters�

This chapter begins with a physical picture� due to Kenneth Wilson� that
explains this unusual and counterintuitive simpli�cation� This picture general�
izes the idea of the distance� or scale�dependent electric charge� introduced at
the end of Chapter �� and suggests that all of the parameters of a renormaliz�
able �eld theory can usefully be thought of as scale�dependent entities� We will
see that this scale dependence is described by simple di�erential equations�
called renormalization group equations� The solutions of these equations will
lead to physical predictions of a completely new type� predictions that� un�
der certain circumstances� the correlation functions of a quantum �eld exhibit
unusual but computable scaling laws as a function of their coordinates�

�	�
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���� Wilson
s Approach to Renormalization Theory

Wilson�s method is based on the functional integral approach to �eld theory� in
which the degrees of freedom of a quantum �eld are variables of integration� In
this approach� one can study the origin of ultraviolet divergences by isolating
the dependence of the functional integral on the short�distance degrees of
freedom of the �eld�! In this section� we will illustrate this idea in the simplest
example of 
� theory�

To make our analysis more concrete� we will drop the elegant but some�
what mysterious method of dimensional regularization in this section and
instead use a sharp momentum cuto�� Since we will be working here only in

� theory� we will not be concerned that this cuto� makes it di	cult to satisfy
Ward identities� Wilson�s analysis can be adapted to QED and other situa�
tions where this subtlety is important� but the case of 
� theory is su	cient
to give us the basic qualitative results of this approach�

In Section ���� we constructed the Green�s functions of 
� theory in terms
of a functional integral representation of the generating functional Z$J %� The
basic integration variables are the Fourier components of the �eld 
�k�� so
Z$J % is given concretely by the expression

Z$J % �

Z
D
 ei

R
�L�J�� �

�Q
k

Z
d
�k�

�
ei
R
�L�J��� ����

To impose a sharp ultraviolet cuto� &� we restrict the number of the integra�
tion variables displayed in ����� That is� we integrate only over 
�k� with
jkj � &� and set 
�k� � � for jkj � &�

This modi�cation of the functional integral suggests a method for assess�
ing the in�uence of the quantum �uctuations at very short distances or very
large momenta� In the functional integral representation� these �uctuations
are represented by the integrals over the Fourier components of 
 with mo�
menta near the cuto�� Why not explicitly perform the integrals over these
variables� Then we can compare the result to the original functional integral�
and determine precisely the in�uence of these high�momentum modes on the
physical predictions of the theory�

Before beginning this analysis� though� we must introduce one modi�ca�
tion� At �rst sight� it seems most natural to de�ne the ultraviolet cuto� in
Minkowski space� However� a cuto� k� � &� is not completely e�ective in con�
trolling large momenta� since in lightlike directions the components of k can
be very large while k� remains small� We will therefore consider the cuto� to
be imposed on the Euclidean momenta obtained after Wick rotation� Equiv�
alently� we consider the Euclidean form of the functional integral� presented
in Section ���� and restrict its variables 
�k�� with k Euclidean� to jkj � &�

�Wilson�s ideas are reviewed in K� G� Wilson and J� Kogut� Phys� Repts� ��C�
�� ��	����
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The transition to Euclidean space also brings us closer to the connec�
tion between renormalization theory and statistical mechanics advertised in
Chapter �� As we saw in Section ���� the Euclidean functional integral for 
�

theory has precisely the same form as the continuum description of the statis�
tical mechanics of a magnet� The �eld 
�x� is interpreted as the �uctuating
spin �eld s�x�� A real magnet is built of atoms� and the atomic spacing pro�
vides a physical cuto�� a shortest distance over which �uctuations can take
place� The cut�o� functional integral models the e�ects of this atomic size in
a crude way�

By pursuing this analogy� we can derive some physical intuition about the
e�ects of the ultraviolet cuto� in a �eld theory� In a magnet� it is quite easy
to visualize statistical �uctuations of the spins at the atomic scale� In fact� for
values of the temperature away from any critical points� the statistical �uc�
tuations are restricted to this scale� over distances of tens of atomic spacings�
the magnet already shows its homogeneous macroscopic behavior� We have
seen in Chapter � that we can approximate the correlation function of the
spin �eld by the propagator of a Euclidean 
� theory� In this approximation�

hs�x�s���i �
Z

d�k

�����
eik�x

k� �m�
��
jxj��



���jxj� e
�mjxj� �����

As long as the temperature is far from the critical temperature� the size of the
�mass� m is determined by the one natural scale in the problem� the atomic
spacing� Thus� we expect m � &� In our �eld theory calculations� we were
speci�cally interested in the situation where m � &� and we adjusted the
parameters of the theory to satisfy this condition� In describing a magnet� it
appears that no such adjustment is called for�

However� we saw in Chapter � that there is one circumstance in which
the correlations of the spin �eld are much longer than the atomic spacing� so
that� indeed� m� &� When the spin system begins to magnetize� just in the
vicinity of the critical point� the spins become correlated over arbitrarily long
distances as the �uctuating spins attempt to choose their eventual direction of
magnetization� To study these long�range correlations in a magnet� one must
carefully adjust the temperature to bring the system into the vicinity of the
phase transition� In the same way� we can imagine making a �ne adjustment of
the parameter m of 
� theory to bring the quantum �eld theory into a region
of parameters where we do �nd correlations of the �eld 
�x� over distances
much larger than �&�

Integrating Over a Single Momentum Shell

With this introduction� we will now carry out the integration over the high�
momentum degrees of freedom of 
� We begin by writing the functional in�
tegral ���� more explicitly for the case of 
� theory� We apply the cuto�



�	� Chapter �� The Renormalization Group

prescription described earlier� and set J � � for simplicity� Then

Z �

Z
$D
%	 exp

�
�
Z
ddx
h
�
���
�

� �


�
m�
� �

�

�-

�
i�
� �����

where
$D
%	 �

Y
jkj�	

d
�k�� �����

In the Lagrangian of Eq� ������m and � are the bare parameters� and so there
are no counterterms� As in our study of the super�cial degree of divergence� it
will be useful to carry out this analysis in an arbitrary spacetime dimension d�

We now divide the integration variables 
�k� into two groups� Choose a
fraction b � � The variables 
�k� with b& � jkj � & are the high�momentum
degrees of freedom that we will integrate over� To label these degrees of free�
dom� let us de�ne

)
�k� �
n

�k� for b& � jkj � &�
� otherwise�

Next� let us de�ne a new 
�k�� which is identical to the old for jkj � b& and

zero for jkj � b&� Then we can replace the old 
 in the Lagrangian with 
� )
�
and rewrite Eq� ����� as

Z �

Z
D

Z
D )
 exp

�
�
Z
ddx
h
�
���
� �� )
�

� �


�
m��
� )
�� �

�

�-
�
� )
��

i�
�

Z
D
 e�

R
L���
Z
D )
 exp

�
�
Z
ddx
h
�
��� )
�

� �


�
m� )
�

� �
�
�

� )
�



�

� )
� �



�

)
� �



�-
)
�
�i�

� ���
�

In the �nal expression we have gathered all terms independent of )
 into L�
��
Note that quadratic terms of the form 
)
 vanish� since Fourier components
of di�erent wavelengths are orthogonal�

The next few paragraphs will explain how to perform the integral over )
�
This integration will transform ���
� into an expression of the form

Z �

Z
$D
%b	 exp

�
�
Z
ddxLe�

�
� �����

where Le��
� involves only the Fourier components 
�k� with jkj � b&� We
will see that Le��
� � L�
� plus corrections proportional to powers of ��
These correction terms compensate for the removal of the large�k Fourier
components )
� by supplying the interactions among the remaining 
�k� that

were previously mediated by �uctuations of the )
�
To carry out the integrals over the )
�k�� we use the same method that we

applied in Section ��� to derive Feynman rules� In fact� we will see below that
the new terms in Le� can be written in a diagrammatic form� In this analysis�
we treat the quartic terms in ���
�� all proportional to �� as perturbations�
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Since we are mainly interested in the situation m� � &�� we will also treat
the mass term �

�m
� )
� as a perturbation� Then the leading�order term in the

portion of the Lagrangian involving )
 isZ
L� �

Z
b	�jkj�	

ddk

����d
)
��k�k� )
�k�� �����

This term leads to a propagator

)
�k�)
�p� �

R D )
 e�
R
L� )
�k�)
�p�R D )
 e�
R
L�

�


k�
����d��d��k � p�5�k�� �����

where

5�k� �
n
 if b& � jkj � &�
� otherwise�

�����

We will regard the remaining )
 terms in Eq� ���
� as perturbations� and
expand the exponential� The various contributions from these perturbations
can be evaluated by using Wick�s theorem with ����� as the propagator�

First consider the term that results from expanding to one power of the

� )
� term in the exponent of ���
�� We �nd

�
Z
ddx

�

�

� )
)
 � �

�

Z
ddk�
����d

�
�k��
��k��� �����

where the coe	cient � is the result of contracting the two )
 �elds�

� �
�

�

Z
b	�jkj�	

ddk

����d


k�
�

�

����d��,�d� �

� bd��

d� �
&d��� ����

The term ����� could just as well have arisen from an expansion of the
exponential

exp
�
�
Z
ddx



�
�
� � � � �

�
� �����

We will soon see that the rest of the perturbation series also organizes itself
into this form� The coe	cient � therefore gives a positive correction to the
m� term in L�

The higher orders of the perturbation theory in the correction terms can
be worked out in a similar way� As in our derivation of the standard pertur�
bation theory for 
� theory� it is useful to adopt a diagrammatic notation�
Represent the propagator ����� by a double line� This propagator will con�

nect pairs of �elds )
 from the various quartic interactions� Represent the �elds

 in these interactions� which are not integrated over� as single external lines�
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Then� for example� the contribution of ����� corresponds to the following
diagram�

At order ��� we will have� among other contributions� terms involving the
contractions of two interaction terms �
� )
�� Each term corresponds to a ver�
tex connecting two single lines and two double lines� There are two possible
contractions�

�����

Of these� the �rst� which is a disconnected diagram� supplies the order���

term in the exponential ������ The second is a new contribution� which will
become a correction to the 
� interaction in L�
��

Let us now evaluate this second contribution� For simplicity� we consider
the limit in which the external momenta carried by the factors 
 are very
small compared to b&� so we can ignore them� Then this diagram has the
value

� 

�-

Z
ddx � 
�� �����

where

� � ��- �
�-

��
�

�� Z
b	�jkj�	

ddk

����d

� 

k�

��
�

����
����d��,�d� �

�� bd���
d� �

&d��

��
d��

� ���

���
log



b
� ���
�

The � in the numerator counts the two possible contractions� there are no
additional combinatoric factors from counting external legs or vertices� In
the analysis of 
� theory in Section ���� we encountered a similar diagram�
integrated over a range of momenta from � to &� producing a logarithmic
ultraviolet divergence� In Wilson�s treatment this divergence is not a pathol�
ogy but simply a sign that the diagram is receiving contributions from all
momentum scales� Indeed� it receives an equal contribution from each loga�
rithmic interval between the momentum scales m and &� We will see below
that the ��nite� contribution to this diagram from each momentum interval
has a natural physical importance�

The diagrammatic perturbation theory we have described not only gen�
erates contributions proportional to 
� and 
� but also to higher powers of 
�
For example� the following diagram generates a contribution to a 
� interac�
tion�

� ��

�p� � p� � p���
5�p� � p� � p��� �����
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There are also derivative interactions� which arise when we no longer neglect
the external momenta of the diagrams� A more exact treatment would Taylor�
expand in these momenta� for instance� in addition to expression ������ we
would obtain terms with two powers of external momenta� which we could
rewrite as

�

�

Z
ddx � 
����
�

�� �����

We would also �nd terms with four� six� and more powers of the momenta
carried by the 
� In general� the procedure of integrating out the )
 generates
all possible interactions of the �elds 
 and their derivatives�

The diagrammatic corrections can be simpli�ed slightly by resumming
them as an exponential� We have seen already in ����� that our diagram�
matic expansion generates disconnected diagrams� By the same combinatoric
argument that we used in Eq� ���
��� we can rewrite the sum of the series as
the exponential of the sum of the connected diagrams� This leads precisely to
expression ������ with

Le� �


�
���
�

� �


�
m�
� �



�-
�
� � �sum of connected diagrams�� �����

The diagrammatic contributions include corrections to m� and �� as well as
all possible higher�dimension operators� We can now use the new Lagrangian
Le��
� to compute correlation functions of the 
�k�� or to compute S�matrix
elements� Since the 
�k� include only momenta up to b&� the loop diagrams
in such a calculation would be integrated only up to that lowered cuto�� The
correction terms in ����� precisely compensate for this change�

One might well be puzzled by the appearance of higher�dimension opera�
tors in Eq� ������ We chose the original Lagrangian of 
� theory to contain
only renormalizable interactions� At �rst sight� it is disturbing that all pos�
sible nonrenormalizable interactions appear when we integrate out the vari�
ables )
� However� we will see below that our procedure actually keeps the
contributions of these nonrenormalizable interactions under control� In fact�
our analysis will imply that the presence of nonrenormalizable interactions
in the original Lagrangian� de�ned to be used with very large cuto� &� has
negligible e�ect on physics at scales much less than &�

Renormalization Group Flows

Let us now make a more careful comparison of the new functional integral
����� and the one we started with ������ The most convenient way to do
this is to rescale distances and momenta in ����� according to

k� � k�b� x� � xb� �����

so that the variable k� is integrated over jk�j � &� Let us express the explicit
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form of ����� schematically asZ
ddxLe� �

Z
ddx




�
� ��Z����
�

� �


�
�m� ��m��
�

�


�
�� ����
� ��C���
�

� ��D
� � � � �
�
�

������

In terms of the rescaled variable x�� this becomesZ
ddxLe� �

Z
ddx� b�d




�
� ��Z�b�����
�

� �


�
�m� ��m��
�

�


�
������
� ��Cb�����
�

� ��D
� � � � �
�
�

�����

Throughout this analysis� we have treated all terms beyond the �rst as small
perturbations� As long as the original couplings are small� this is still a valid
approximation in treating ������

The original functional integral led to the propagator ������ The new
action ����� will give rise to exactly the same propagator� if we rescale the
�eld 
 according to


� �
�
b��d� ��Z�

����

� ������

After this rescaling� the unperturbed action returns to its initial form� while
the various perturbations undergo a transformation�Z

ddxLe� �

Z
ddx�



�
����


��� �


�
m��
��

�


�
��
�� � C �����


��� �D�
�� � � � �
�
�

������

The new parameters of the Lagrangian are

m�� � �m� ��m��� � �Z���b���

�� � ������� � �Z���bd���

C � � �C ��C�� ��Z���bd�

D� � �D ��D�� ��Z���b�d���

������

and so on� �The original Lagrangian had C � D � �� but the same equations
would apply if the initial values of C and D were nonzero�� All of the correc�
tions� �m�� ��� and so on� arise from diagrams and thus are small compared
to the leading terms if perturbation theory is justi�ed�

By combining the operation of integrating out high�momentum degrees
of freedom with the rescaling ������ we have rewritten this operation as a
transformation of the Lagrangian� Continuing this procedure� we could inte�
grate over another shell of momentum space and transform the Lagrangian
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further� Successive integrations produce further iterations of the transforma�
tion ������� If we take the parameter b to be close to � so that the shells
of momentum space are in�nitesimally thin� the transformation becomes a
continuous one� We can then describe the result of integrating over the high�
momentum degrees of freedom of a �eld theory as a trajectory or a �ow in
the space of all possible Lagrangians�

For historical reasons� these continuously generated transformations of
Lagrangians are referred to as the renormalization group� They do not form a
group in the formal sense� because the operation of integrating out degrees of
freedom is not invertible� On the other hand� they are most certainly connected
to renormalization� as we will now see�

Imagine that we wish to compute a correlation function of �elds whose
momenta pi are all much less than &� We could compute this correlation func�
tion perturbatively using either the original Lagrangian L� or the e�ective La�
grangian Le� obtained after integrating over all momentum shells down to the
scale of the external momenta pi� Both procedures must ultimately yield the
same result� But in the �rst case� the e�ects of high�momentum �uctuations
of the �eld do not show up until we compute loop diagrams� In the second
case� these e�ects have already been absorbed into the new coupling constants
�m�� ��� etc��� so their in�uence can be seen directly from the Lagrangian� In
the �rst procedure� the large shifts from the original �bare� parameters to the
values appropriate to low�momentum processes appear suddenly in one�loop
diagrams� and seem to invalidate the use of perturbation theory� In the sec�
ond approach� these corrections are introduced slowly and systematically� A
perturbative treatment is valid at every step as long as the e�ective coupling
constants such as �� remain small�

However� the parameters of the e�ective Lagrangian may be very di�erent
from those of the original Lagrangian� since we must iterate the transforma�
tion ������ many times to get from the large momentum & down to the
momentum scale of typical experiments� Let us therefore look more closely at
how the Lagrangian tends to vary under the renormalization group transfor�
mations�

The simplest case to consider is a Lagrangian in the vicinity of the point
m� � � � C � D � � � � � �� where all the perturbations vanish� We have
de�ned our transformation so that this point is left unchanged� we say that
the free��eld Lagrangian

L� � �
� ���
�

� ����
�

is a �xed point of the renormalization group transformation�
In the vicinity of L�� we can ignore the terms �m�� ��� etc�� in the

iteration equations ������ and keep only those terms that are linear in the
perturbations� This gives an especially simple transformation law�

m�� � m�b��� �� � �bd��� C � � Cbd� D� � Db�d��� etc� ������

Since b � � those parameters that are multiplied by negative powers of b
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grow� while those that are multiplied by positive powers of b decay� If the
Lagrangian contains growing coe	cients� these will eventually carry it away
from L��

It is conventional to speak of the various terms in the e�ective Lagrangian
as a set of local operators that can be added as perturbations to L�� We call
the operators whose coe	cients grow during the recursion procedure relevant
operators� The coe	cients that die away are associated with irrelevant oper�
ators� For example� the scalar �eld mass operator 
� is always relevant� while
the 
� operator is relevant if d � �� If the coe	cient of some operator is mul�
tiplied by b� �for example� the operator 
� in d � ��� we call this operator
marginal � to �nd out whether its coe	cient grows or decays� we must include
the e�ect of higher�order corrections�

In general� an operator with N powers of 
 and M derivatives has a
coe	cient that transforms as

C �N�M � bN�d������M�dCN�M � ������

Notice that the coe	cient is just �dN�M�d�� where dN�M is the mass dimension
of the operator as computed at the end of Section ��� In other words� relevant
and marginal operators about the free theory L� correspond precisely to super�
renormalizable and renormalizable interaction terms in the power�counting
analysis of Section ���

We can also understand the evolution of coe	cients near the free��eld
�xed point using straightforward dimensional analysis� An operator with mass
dimension di has a coe	cient with dimension �mass�d�di � The natural order
of magnitude for this mass is the cuto� &� Thus� if di � d� the perturbation
is increasingly important at low momenta� On the other hand� if di � d� the
relative size of this term decreases as �p�&�di�d as the momentum p� �� thus
the term is truly irrelevant�

We have now shown that� at least in the vicinity of the zero�coupling
�xed point� an arbitrarily complicated Lagrangian at the scale of the cuto�
degenerates to a Lagrangian containing only a �nite number of renormaliz�
able interactions� It is instructive to compare this result with the conclusions
of Chapter �� There we took the philosophy that the cuto� & should be dis�
posed of by taking the limit & � � as quickly as possible� We found that
this limit gives well�de�ned predictions only if the Lagrangian contains no
parameters with negative mass dimension� From this viewpoint� it seemed ex�
ceedingly fortunate that QED� for example� contained no such parameters�
since otherwise this theory would not yield well�de�ned predictions�

Wilson�s analysis takes just the opposite point of view� that any quantum
�eld theory is de�ned fundamentally with a cuto� & that has some physical
signi�cance� In statistical mechanical applications� this momentum scale is
the inverse atomic spacing� In QED and other quantum �eld theories appro�
priate to elementary particle physics� the cuto� would have to be associated
with some fundamental graininess of spacetime� perhaps a result of quantum
�uctuations in gravity� We discuss some speculations on the nature of this
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Figure ����� Renormalization group #ows near the free��eld �xed point in
scalar �eld theory� �a� d � �� �b� d � ��

cuto� in the Epilogue� But whatever this scale is� it lies far beyond the reach
of present�day experiments� The argument we have just given shows that this
circumstance explains the renormalizability of QED and other quantum �eld
theories of particle interactions� Whatever the Lagrangian of QED was at
its fundamental scale� as long as its couplings are su	ciently weak� it must
be described at the energies of our experiments by a renormalizable e�ective
Lagrangian�

On the other hand� we should emphasize that these simple conclusions can
be altered by su	ciently strong �eld theory interactions� Away from the free�
�eld �xed point� the simple transformation laws ������ receive corrections
proportional to higher powers of the coupling constants� If these corrections
are large enough� they can halt or reverse the renormalization group �ow� They
could even create new �xed points� which would give new types of & � �
limits�

To illustrate the possible in�uences of interactions in a relatively simple
context� let us discuss the renormalization group �ows near L� for the speci�c
case of 
� theory� It is instructive to consider the three cases d � �� d � �� and
d � � in turn� When d � �� the only relevant operator is the scalar �eld mass
term� Then the renormalization group �ows near L� have the form shown
in Fig� ���a�� The 
� interaction and possible higher�order interactions die
away� while the mass term increases in importance�

In previous chapters� we have always discussed 
� theory in the limit in
which the mass is small compared to the cuto�� Let us take a moment to
rewrite this condition in the language of renormalization group �ows� In the
course of the �ow� the e�ective mass term m�� becomes large and eventually
comes to equal the current cuto�� For example� near the free��eld �xed point�
after n iterations� m�� � m�b��n� and eventually there is an n such that
m�� � &�� At this point� we have integrated out the entire momentum region
between the original & and the e�ective mass of the scalar �eld� The mass term
then suppresses the remaining quantum �uctuations� In general� the criterion
that the scalar �eld mass is small compared to the cuto� is equivalent to
the statement that m�� � &� only after a large number of iterations of the
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renormalization group transformation�
This criterion is met whenever the initial conditions for the renormaliza�

tion group �ow are adjusted so that the trajectory passes very close to a �xed
point� In principle� the �ow could begin far away� along the direction of an ir�
relevant operator� The original value of m� need not be particularly small� as
long as this original value is canceled by corrections arising from the diagram�
matic contributions to Le� � Thus we could imagine constructing a scalar �eld
theory in d � � by writing a complicated nonlinear Lagrangian� but adjusting
the original m� so the trajectory that begins at this Lagrangian eventually
passes close to the free��eld �xed point L�� In this case� the e�ective theory at
momenta small compared to the cuto� should be extremely simple� It will be
a free �eld theory with negligible nonlinear interaction� As will be discussed in
the next chapter� this remarkable prediction has been veri�ed in mathemat�
ical models of magnetic systems in more than four dimensions� Even though
the original model is highly nonlinear� the correlation function of spins near
the phase transition has the free��eld form given by the higher�dimensional
analogue of Eq� ������

Next consider the case d � �� For this case� Eq� ������ does not give
enough information to tell us whether the 
� interaction is important or unim�
portant at large distances� So we must go back to the complete transformation
law ������� The leading contribution to �� is given by Eq� ���
�� The lead�
ing contribution to �Z is of order �� and can be neglected� �This is just what
happened with the �rst correction to �Z in Section ����� Thus we �nd the
transformation

�� � �� ���

���
log��b�� ������

This says that � slowly decreases as we integrate out high�momentum degrees
of freedom�

The diagram contributing to the correction �� has the same structure
as the one�loop diagrams computed in Section ���� In fact� these are essen�
tially the same diagrams� and di�er only in whether the integrals are carried
out iteratively or all at once� However� whereas the diagrams in Section ���
had ultraviolet divergences� the corresponding diagram in Wilson�s approach
is well de�ned and gives the coe	cient of a simple evolution equation of the
coupling constant� This transformation gives a �rst example of the reinterpre�
tation of ultraviolet divergences that we will make in this chapter�

The transformation law ������ implies that the renormalization group
�ows near L� have the form shown in Fig� ���b�� with one slowly decaying
direction� If we follow the �ows far enough� the behavior should again be that
of a free �eld� This picture has the puzzling implication that four�dimensional
interacting 
� theory does not exist in the limit in which the cuto� goes to
in�nity� We will discuss this result further�and explain why it nevertheless
makes sense to use 
� theory as a model �eld theory�in Section ����

Finally consider the case d � �� Now � becomes a relevant parameter�
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Figure ����� Renormalization group #ows near the free��eld �xed point in
scalar �eld theory� d � ��

The theory thus �ows away from the free theory L� as we integrate out de�
grees of freedom� at large distances� the 
� interaction becomes increasingly
important� However� when � becomes large� the nonlinear corrections such
as that displayed in Eq� ������ must also be considered� If we include this
speci�c e�ect in d � �� we �nd the recursion formula

�� �
h
�� ���

����d��,�d� �

bd�� � 

�� d
&d��

i
bd��� ������

This equation implies that there is a value of � at which the increase due
to rescaling is compensated by the decrease caused by the nonlinear e�ect�
At this value� � is unchanged when we integrate out degrees of freedom� The
corresponding Lagrangian is a second �xed point of the renormalization group
�ow� In the limit d� �� the �ow ������ tends to ������ and so the new �xed
point merges with the free �eld �xed point� For d su	ciently close to �� the
new �xed point will share with L� the property that the mass parameterm� is
increased by the iteration� Then the mass operator will be a relevant operator
near the new �xed point� so that the renormalization group �ows will have
the form shown in Fig� ����

In this example� the new �xed point of the renormalization group had
a Lagrangian with couplings weak enough that the transformation equations
could be computed in perturbation theory� In principle� one could also �nd
�xed points whose Lagrangians are strongly coupled� so that the renormal�
ization group transformations cannot be understood by Feynman diagram
analysis� Many examples of such �xed points are known in exactly solvable
model �eld theories in two dimensions�y However� up to the present� all of
the examples of quantum �eld theories that are important for physical appli�
cations have been found to be controlled either by the free �eld �xed point
or by �xed points� like the one described in the previous paragraph� that ap�
proach the free��eld �xed point in a speci�c limit� No one understands why
this should be� This observation implies that Feynman diagram analysis has

yWe mention some of these examples� and discuss other nonperturbative ap�
proaches to quantum �eld theory� in the Epilogue�



�
� Chapter �� The Renormalization Group

unexpected power in evaluating the physical consequences of quantum �eld
theories�

One more aspect of 
� theory deserves comment� Since the mass term�
m�
�� is a relevant operator� its coe	cient diverges rapidly under the renor�
malization group �ow� We have seen above that� in order to end up at the
desired value of m� at low momentum� we must imagine that the value of m�

in the original Lagrangian has been adjusted very delicately� This adjustment
has a natural interpretation in a magnetic system as the need to sensitively
adjust the temperature to be very close to the critical point� However� it seems
quite arti�cial when applied to the quantum �eld theory of elementary par�
ticles� which purports to be a fundamental theory of Nature� This problem
appears only for scalar �elds� since for fermions the renormalization of the
mass is proportional to the bare mass rather than being an arbitrary addi�
tive constant� Perhaps this is the reason why there seem to be no elementary
scalar �elds in Nature� We will return to this question in the Epilogue�

���� The Callan�Symanzik Equation

Wilson�s picture of renormalization� as a �ow in the space of possible La�
grangians� is beautifully intuitive� and gives us a deep understanding of why
Nature should be describable in terms of renormalizable quantum �eld theo�
ries� In addition� however� this idea can be applied to extract further quan�
titative predictions from these theories� In the remainder of this chapter we
will develop a formalism for extracting these predictions� Speci�cally� we will
see that Wilson�s picture leads to predictions for the form of the high� and
low�momentum behavior of correlation functions� In the simplest cases� the
correlation functions turn out to scale as powers of their external momenta�
with power laws that do not appear at any �xed order of perturbation theory�

It is possible to derive these predictions directly from Wilson�s procedure
of integrating out slices in momentum space� as Wilson originally did� How�
ever� now that we understand the basic idea of renormalization group �ows�
it will be technically easier to work in the more familiar context of ordinary
renormalized perturbation theory� The discussion of the previous section was
physically motivated but technically complex� It involved awkward integrals
over �nite domains� and used the arti�cial parameter b� which must cancel
out in any �nal results� Furthermore� we know from Section ��
 that a cut�
o� regulator leads to even more trouble in QED� since it con�icts with the
Ward identity� The discussion of the present section will be much more ab�
stract and formal� but it will remove these technical problems� In this section
and the next we will derive a �ow equation for the coupling constant� similar
to the one we derived in Section ��� To obtain the �ows of the most general
Lagrangians� we will need some additional tools� to be developed in Sections
��� and ��
�
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How can we hope to obtain information on renormalization group �ows
from the expressions for renormalized Green�s functions� in which the cuto�
has already been taken to in�nity� We must �rst realize that renormalized
quantum �eld theories correspond to a restricted class of the full set of possible
Lagrangians that we considered in the previous section� In Wilson�s language�
a renormalized �eld theory with the cuto� taken arbitrarily large corresponds
to a trajectory that takes an arbitrarily long time to evolve to a large value of
the mass parameter� Such a trajectory must� then� pass arbitrarily close to a
�xed point� which we will assume to be the weak�coupling �xed point� In the
slow evolution past this �xed point� the irrelevant operators in the original
Lagrangian die away� and we are left only with the relevant and marginal
operators� The coe	cients of these operators are in one�to�one correspondence
with the parameters of the renormalizable �eld theory� Thus� in working with
a renormalized �eld theory� we are throwing away information on the evolution
of irrelevant perturbations� but keeping information on the �ows of relevant
and marginal perturbations�

The �ows of these parameters cannot be determined from the cuto� de�
pendence� because� in this framework� the cuto� has already been sent to
in�nity� However� we have an alternative� though more abstract� tool at our
disposal� The parameters of a renormalized �eld theory are determined by a
set of renormalization conditions� which are applied at a certain momentum
scale �called the renormalization scale�� By looking at how the parameters of
the theory depend on the renormalization scale� we can recover the informa�
tion contained in the renormalization group �ows of the previous section�

We consider �rst the speci�c case of 
� theory in four dimensions� where
the coupling constant � is dimensionless and the corresponding operator is
marginal� For simplicity� we will also assume that the mass term m� has been
adjusted to zero� so that the theory sits just at its critical point� We will
perform this analysis in Minkowski space� using spacelike reference momenta�
However� the analysis would be essentially identical if carried out in Euclidean
space� If we wish to consider renormalization group predictions at timelike
momenta� we must consider the possibilities of new singularities which make
the analysis more complicated� These include both physical thresholds and the
Sudakov double logarithms discussed in Section ���� We postpone discussion
of these complications until Chapters � and ��

Renormalization Conditions

To de�ne the theory properly� we must specify the renormalization conditions�
In Chapter � we used a natural set of renormalization conditions ����� for

� theory� de�ned in terms of the physical massm� However� in a theory where
m � �� these conditions cannot be used because they lead to singularities in
the counterterms� �Consider� for example� the limit m� � � of Eq� ��������
To avoid such singularities� we choose an arbitrary momentum scale M and
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impose the renormalization conditions at a spacelike momentum p with p� �
�M��

� � at p� � �M��

d

dp�

� �
� � at p� � �M��

������

� �i�
at �p� � p��

� � �p� � p��
� � �p� � p��

� � �M��

The parameter M is called the renormalization scale� These conditions de�ne
the values of the two� and four�point Green�s functions at a certain point and�
in the process� remove all ultraviolet divergences� Speaking loosely� we say
that we are �de�ning the theory at the scale M��

These new renormalization conditions take some getting used to� The
second condition� in particular� implies that the two�point Green�s function
has a coe	cient of  at the unphysical momentum p� � �M�� rather than on
shell �at p� � ���

h�j
�p�
��p� j�i � i

p�
at p� � �M��

Here 
 is the renormalized �eld� related to the bare �eld 
� by a scale factor
that we again call Z�


 � Z����
�� �����

This Z� however� is not the residue of the physical pole in the two�point
Green�s function of bare �elds� as it was in Chapters � and �� Instead� we
now have

h�j
��p�
���p� j�i � iZ

p�
at p� � �M��

The Feynman rules for renormalized perturbation theory are the same as in
Chapter �� with the same relation between Z and the counterterm �Z �

�Z � Z � �

Now� however� the counterterms �Z and �� must be adjusted to maintain the
new conditions �������

The �rst renormalization condition in ������ holds the physical mass of
the scalar �eld �xed at zero� We saw in Chapter � that� in 
� theory� the
one�loop propagator correction is momentum�independent and is completely
canceled by the mass renormalization counterterm� At two�loop order� how�
ever� the situation becomes more complicated� and the propagator corrections
require both mass and �eld strength renormalizations� In more general scalar
�eld theories� such as the Yukawa theory example considered at the end of
Section ���� this complication arises already at one�loop order� Since the �eld
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strength renormalization counterterm will play an important role in the dis�
cussion below� it will be helpful to discuss brie�y how we will treat this double
subtraction�

The evaluation of propagator corrections has some special simpli�cations
for the case of a massless scalar �eld� which we consider here� and speci�cally
with the use of dimensional regularization� Consider� for example� the one�
loop propagator correction in Yukawa theory� In Section ��� we found an
expression of the form

� ,��d
� �

���d�� � ������

where � is a linear combination of the fermion massmf and p�� If we compute
the diagram using massless propagators only� � is proportional to p�� Expres�
sion ������ has a pole at d � �� corresponding to the quadratically divergent
mass renormalization� However� the residue of this pole is independent of p��
so we can completely cancel the pole with the mass counterterm �m� This al�
lows us to analytically continue ������ to d � �� Then this expression takes
the form

�p�
� 

�� d��
� log



�p� � C
�
� ������

and gives no additional mass shift but only a �eld strength renormalization�
The remaining divergence is canceled by the counterterm �Z � If we adopt the
rule that we should simply continue expressions of the form ������ to d � ��
we can forget about the counterterm �m altogether�

In a regularization scheme with a momentum cuto�� the contributions to
�m and �Z become tangled up with one another� Then it is more awkward to
de�ne the massless limit� In the following discussion� we will assume the use
of dimensional regularization� However� to emphasize the physical role of the
cuto�� we will write expressions of the form ������ as

�p�
�
log

&�

�p� � C
�
� ������

The logarithmically divergent terms proportional to p� will agree with the
divergences obtained with a momentum cuto�� the constant terms will not
agree� but these will drop out of our �nal results�

In 
� theory� where the one�loop propagator correction is momentum�
independent� the one�loop diagram is simply set to zero by this prescription�
Then the preceding analysis applies to the two�loop and higher correction
terms�

The generalization of the analysis of this section to massive scalar �eld
theory requires some additional formalism� which we postpone to Section ��
�
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The Callan�Symanzik Equation

In the renormalization conditions ������� the renormalization scale M is ar�
bitrary� We could just as well have de�ned the same theory at a di�erent
scale M �� By �the same theory�� we mean a theory whose bare Green�s func�
tions�

h�jT
��x��
��x�� � � �
��xn� j�i �
are given by the same functions of the bare coupling constant �� and the
cuto� &� These functions make no reference to M � The dependence on M
enters only when we remove the cuto� dependence by rescaling the �elds
and eliminating �� in favor of the renormalized coupling �� The renormalized
Green�s functions are numerically equal to the bare Green�s functions� up to
a rescaling by powers of the �eld strength renormalization Z�

h�jT
�x��
�x�� � � �
�xn� j�i � Z�n�� h�jT
��x��
��x�� � � �
��xn� j�i �
����
�

The renormalized Green�s functions could be de�ned equally well at another
scale M �� using a new renormalized coupling �� and a new rescaling factor Z ��

Let us write more explicitly the e�ect of an in�nitesimal shift of M � Let
G�n��x�� � � � � xn� be the connected n�point function� computed in renormalized
perturbation theory�

G�n��x�� � � � � xn� � h�jT
�x�� � � �
�xn� j�iconnected � ������

Now suppose that we shift M by �M � There is a corresponding shift in the
coupling constant and the �eld strength such that the bare Green�s functions
remain �xed�

M �M � �M�

�� �� ���


� � � ���
�

������

Then the shift in any renormalized Green�s function is simply that induced
by the �eld rescaling�

G�n� � � � n���G�n��

If we think of G�n� as a function of M and �� we can write this transformation
as

dG�n� �
�G�n�

�M
�M �

�G�n�

��
�� � n��G�n�� ������

Rather than writing this relation in terms of �� and ��� it is conventional
to de�ne the dimensionless parameters

� � M

�M
��� � � � M

�M
��� ������

Making these substitutions in Eq� ������ and multiplying through byM��M �
we obtain h

M
�

�M
� �

�

��
� n�

i
G�n��x�� � � � � xn�M��� � �� ������
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The parameters � and � are the same for every n� and must be independent
of the xi� Since the Green�s function G�n� is renormalized� � and � cannot
depend on the cuto�� and hence� by dimensional analysis� these functions
cannot depend on M � Therefore they are functions only of the dimensionless
variable �� We conclude that any Green�s function of massless 
� theory must
satisfy h

M
�

�M
� ����

�

��
� n����

i
G�n��fxig�M��� � �� �����

This relation is called the Callan�Symanzik equation�z It asserts that there ex�
ist two universal functions ���� and ����� related to the shifts in the coupling
constant and �eld strength� that compensate for the shift in the renormaliza�
tion scale M �

The preceding argument generalizes without di	culty to other massless
theories with dimensionless couplings� In theories with multiple �elds and cou�
plings� there is a � term for each �eld and a � term for each coupling� For
example� we can de�ne QED at zero electron mass by introducing a renor�
malization scale as in Eqs� ������� The renormalization conditions for the
propagators are applied at p� � �M�� and those for the vertex at a point
where all three invariants are of order �M�� Then the renormalized Green�s
functions of this theory satisfy the Callan�Symanzik equationh

M
�

�M
� ��e�

�

�e
� n���e� �m���e�

i
G�n�m��fxig�M� e� � �� ������

where n and m are� respectively� the number of electron and photon �elds in
the Green�s function G�n�m� and �� and �� are the rescaling functions of the
electron and photon �elds�

Computation of � and �

Before we work out the implications of the Callan�Symanzik equation� let us
look more closely at the functions � and � that appear in it� From their de��
nitions ������� we see that they are proportional to the shift in the coupling
constant and the shift in the �eld normalization� respectively� when the renor�
malization scale M is increased� The behavior of the coupling constant as a
function of M is of particular interest� since it determines the strength of the
interaction and the conditions under which perturbation theory is valid� We
will see in the next section that the shift in the �eld strength is also re�ected
directly in the values of Green�s functions�

The easiest way to compute the Callan�Symanzik functions is to begin
with explicit perturbative expressions for some conveniently chosen Green�s
functions� If we insist that these expressions satisfy the Callan�Symanzik equa�
tion� we will obtain equations that can be solved for � and �� Because the

zC� G� Callan� Phys� Rev� D�� ���� ��	���� K� Symanzik� Comm� Math� Phys�
��� ��� ��	����
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M dependence of a renormalized Green�s function originates in the counter�
terms that cancel its logarithmic divergences� we will �nd that the � and �
functions are simply related to these counterterms� or equivalently� to the co�
e	cients of the divergent logarithms� The precise formulae that relate � and
� to the counterterms will depend on the speci�c renormalization prescription
and other details of the calculational scheme� At one�loop order� however� the
expressions for � and � are simple and unambiguous�

As a �rst example� let us calculate the one�loop contributions to ����
and ���� in massless 
� theory� We can simplify the analysis by working in
momentum space rather than coordinate space� Our strategy will be to apply
the Callan�Symanzik equation to the diagrammatic expressions for the two�
and four�point Green�s functions�

The two�point function is given by

In massless 
� theory� the one�loop propagator correction is completely can�
celed by the mass counterterm� Then the �rst nontrivial correction to the
propagator comes from the two�loop diagram and its counterterm� and is of
order ��� Meanwhile� the four�point function is given by

where we have omitted the canceled one�loop propagator corrections to the
external legs� The diagrams of order �� include nonvanishing two�loop prop�
agator corrections to the external legs�

To calculate �� we apply the Callan�Symanzik equation to the four�point
function� h

M
�

�M
� ����

�

��
� �����

i
G����p�� � � � � p�� � �� ������

Borrowing our result ����� from Section ���� we can write G��� as

G��� �
��i�� ��i����iV �s� � iV �t� � iV �u�

�� i��
� � Y

i
�������

i

p�i
�

where V �s� represents the loop integral in ������� Our renormalization con�
dition ������ requires that the correction terms cancel at s � t � u � �M��
The order��� vertex counterterm is therefore

�� � ��i��� � �V ��M�� �
���

�����d��

�Z
�

dx
,���d

� �

�x��x�M����d��
� ������
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The last expression follows from setting m � � and p� � �M� in Eq� ������
for V �p��� In the limit as d� �� Eq� ������ becomes

�� �
���

������

h 

�� d��
� logM� � �nite

i
� ����
�

where the �nite terms are independent of M � This counterterm gives G��� its
M dependence�

M
�

�M
G��� �

�i��

�����

Y
i

i

p�i
�

Let us assume for the moment that ���� has no term of order �� we will justify
this in the next paragraph� Then the Callan�Symanzik equation ������ can
be satis�ed to order �� only if the � function of 
� theory is given by

���� �
���

���
�O����� ������

Next� consider the Callan�Symanzik equation for the two�point function�h
M

�

�M
� ����

�

��
� �����

i
G����p� � �� ������

Since� to one�loop order� there are no propagator corrections to G���� no de�
pendence on M or � is introduced to order �� Thus the � function is zero to
this order�

� � � �O����� ������

This justi�es the assumption made in the previous paragraph� The two�loop
propagator correction is divergent� and its counterterm contains a term of
order �� which depends onM � This contributes to the �rst term in Eq� �������
Since � is of order �� and the corrections to G��� are of order ��� the leading
contributions to the second term in ������ are of order ��� Thus � acquires a
nonzero contribution in order ��� This leading contribution to � is computed
in Problem ����

The preceding example illustrates how � and � can be calculated in more
general theories with dimensionless couplings� In such theories� the M depen�
dence of Green�s functions enters through the �eld�strength and vertex coun�
terterms� which are used to subtract the divergent logarithms� The lowest�
order expressions for � and � can be computed directly from these counter�
terms� or from the coe	cients of the divergent logarithms�

In any renormalizable massless scalar �eld theory� the two�point Green�s
function has the generic form

G����p� �

�
i

p�
�

i

p�

�
A log

&�

�p� � �nite
�
�

i

p�
�ip��Z�

i

p�
� � � � � ������

The M dependence of this expression� to lowest order� comes entirely from
the counterterm �Z � Applying the Callan�Symanzik equation to G����p�� and
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neglecting the � term �which is always smaller by at least one power of the
coupling constant�� we �nd

� i

p�
M

�

�M
�Z � ��

i

p�
� ��

or

� �


�
M

�

�M
�Z �to lowest order�� ���
��

To make this result more explicit� note that the counterterm must be

�Z � A log
&�

M�
� �nite

in order to cancel the divergent logarithm in G���� Thus � is simply the coef�
�cient of the logarithm�

� � �A �to lowest order�� ���
�

In most theories �e�g�� Yukawa theory or QED�� the �rst logarithmic diver�
gence in �Z occurs at the one�loop level� However� even in 
� theory� formulae
���
�� and ���
� are true for the �rst nonvanishing term in �Z � in this case
the two�loop contribution�! By replacing the scalar �eld propagator �i�p��
with a fermion propagator �i�p�� we could repeat this argument line for line
to compute the � function for a fermion �eld in terms of its �eld strength
counterterm �Z �

We can derive similar expressions for the � function of a generic dimen�
sionless coupling constant g� associated with an n�point vertex� Taking propa�
gator corrections into account� the full connected Green�s function� to one�loop
order� has the general form

G�n� �

�
tree�level

diagram

�
�

�
PI loop

diagrams

�
�

�
vertex

counterterm

�
�

�
external leg

corrections

�
�
�Y

i

i

p�i

�h
�ig � iB log

&�

�p� � i�g � ��ig�
X
i

�
Ai log

&�

�p�i
� �Zi

�i
� �nite terms� ���
��

In this expression� pi are the momenta on the external legs� and p� represents
a typical invariant built from these momenta� We assume that renormaliza�
tion conditions are applied at a point where all such invariants are spacelike
and of order �M�� The M dependence of this expression comes from the
counterterms �g and �Zi� Applying the Callan�Symanzik equation� we obtain

M
�

�M

�
�g � g

X
i

�Zi

�
� ��g� � g

X
i



�
M

�

�M
�Zi � ��

�At one loop� formula ����� implies that we can also identify A as the coe�cient
of �
���d� in the �PI self�energy� in the limit d � �� This relation changes in higher
loops� However� Eq� ������� remains correct�
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or

��g� �M
�

�M

�
��g � 

�
g
X
i

�Zi

�
�to lowest order�� ���
��

To be more explicit� we note that

�g � �B log
&�

M�
� �nite�

Thus the � function is just a combination of the coe	cients of the divergent
logarithms�

��g� � ��B � g
X
i

Ai �to lowest order�� ���
��

Notice that the �nite parts of counterterms are independent of M and
therefore never contribute to � or �� This means that� to compute the leading
terms in the Callan�Symanzik functions� we needn�t be too precise in specify�
ing renormalization conditions� Any momentum scale of order M� will yield
the same results� The divergent parts of the counterterms can be estimated
simply by setting all invariants inside of logarithms equal to M�� as we did
above in our expression for the n�point Green�s function�

As in the computation of �� this argument can be applied almost without
change to coupling constants for �elds with spin� In Yukawa theory� for ex�
ample� we consider the three�point function with one incoming fermion� one
outgoing fermion� and one scalar� with momenta p�� p�� and p�� respectively�
Then the tree�level expression for the three�point function is

i

p�
i

p�


p��
��ig�� ���

�

The one�loop corrections replace the quantity ��ig� by the expression in
brackets in Eq� ���
��� Then formulae ���
�� and ���
�� hold also for the
� function of this theory�

Similar expressions also apply in QED� though there are a number of
small complications� The �rst comes in computing the � function for the
photon propagator� In Eq� ������� we saw that the general form of the photon
propagator in Feynman gauge is

D���q� � D�q�
�
g�� � q�q�

q�

�
�
�i
q�

q�q�

q�
� ���
��

The coe	cient of the last term in ���
�� depends on the gauge� Fortunately�
this term drops out of all gauge�invariant observables� Thus it makes sense
to concentrate on the �rst term� projecting all external photons onto their
transverse components� Projecting the photon propagator� we see that D�q�
satis�es the Callan�Symanzik equation� Since the corrections to this function
have the form ������� the arguments following that formula are valid for
photons as well as for electrons and scalars� Thus� to leading order�

�� �


�
M

�

�M
��� �� �



�
M

�

�M
��� ���
��
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where �� and �� are the counterterms de�ned in Section ����
Similarly� we may consider the three�point connected Green�s function�

��p����p��A��q�
�
� projected onto transverse components of the photon� At

leading order� this function equals

i

p�
��ie��� ip�

�i
q�

�
g�� � q�q�

q�

�
�

The divergent one�loop corrections have the same form� with ��ie� replaced
by logarithmically divergent terms� Thus� Eq� ���
�� gives the lowest�order
expression for the � function�

��e� � M
�

�M

��e�� � e�� �
e

�
��
�
� ���
��

To �nd explicit expressions for the Callan�Symanzik functions of QED�
we must write expressions for the counterterms ��� ��� ��� In Section ����
we evaluated these counterterms using on�shell renormalization conditions
with massive fermions� We must now re�evaluate these terms for massless
fermions and renormalization at �M�� Fortunately� we need only evaluate
the logarithmically divergent pieces of these counterterms� which are identical
in the two cases� Reading from Eqs� ������ and ������� we �nd

�� � �� � � e�

�����
,���d

� �

�M����d��
� �nite�

�� � � e�

�����
�

�

,���d
� �

�M����d��
� �nite�

���
��

Using formulae ���
�� and ���
��� we obtain at leading order

���e� �
e�

���
� ���e� �

e�

���
� ������

And from Eq� ���
��� we �nd

��e� �
e�

���
� �����

It is important to remember that the expression we have used for ��
explicitly assumes the use of Feynman gauge� In fact� �� depends on the gauge
parameter� and this makes sense� because Green�s functions of individual �
and � �elds are not gauge invariant� On the other hand� the QED vacuum
polarization� and therefore �� and �� are gauge invariant�

The Meaning of � and �

We can obtain a deeper insight into the nature of � and � by expressing them
in terms of the parameters of bare perturbation theory� Z� ��� and & for the
case of 
� theory�
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First recall that the bare and renormalized �eld are related by


�p� � Z�M�����
��p�� ������

This equation expresses the dependence of the �eld rescaling on M � If M is
increased by �M � the renormalized �eld is shifted by

�� �
Z�M � �M�����

Z�M�����
� �

Hence our original de�nition ������ of � gives us immediately

���� �


�

M

Z

�

�M
Z� ������

Since �Z � Z �  �Eq� ������� this formula is in agreement with ���
�� to
leading order� Formula ������� however� is an exact relation� This expression
clari�es the relation of � to the �eld strength rescaling� However� it obscures
the fact that � is independent of the cuto� &� To understand this aspect of
�� we have to go back to the original de�nition of this function in terms of
renormalized Green�s functions� whose cuto� independence follows from the
renormalizability of the theory�

Similarly� we can �nd an instructive expression for � in terms of the
parameters of bare perturbation theory� Our original de�nition of � in
Eq� ������ made use of a quantity ��� de�ned to be the shift of the renor�
malized coupling � needed to preserve the values of the bare Green�s func�
tions when the renormalization point is shifted in�nitesimally� Since the bare
Green�s functions depend on the bare coupling �� and the cuto�� this de�ni�
tion can be rewritten as

���� �M
�

�M
�
���
���	

� ������

Thus the � function is the rate of change of the renormalized coupling at
the scale M corresponding to a �xed bare coupling� Recalling our analysis in
Section ��� it is tempting to associate ��M� with the coupling constant ��

obtained by integrating out degrees of freedom down to the scaleM � With this
correspondence� the � function is just the rate of the renormalization group
�ow of the coupling constant �� A positive sign for the � function indicates
a renormalized coupling that increases at large momenta and decreases at
small momenta� We can see explicitly that this relation works for 
� theory�
to leading order in �� by comparing Eqs� ������ and ������� We will justify
this correspondence further in the following section�

The equality of the exact formula ������ with the �rst�order formula
���
�� again follows from the counterterm de�nitions ������ As with �������
it is not obvious that this formula for ���� is independent of &� but that fact
again follows from renormalizability� Conversely� it is possible to prove the
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renormalizability of 
� theory by demonstrating� order by order in perturba�
tion theory� that expressions ������ and ������ are independent of &�y

���� Evolution of Coupling Constants

Now that we have discussed all of the ingredients of the Callan�Symanzik
equation� let us investigate its implications� We begin by �nding the explicit
solution to the Callan�Symanzik equation for the simplest situation� the two�
point Green�s function of a scalar �eld theory� This solution will clarify the
physical implications of the equation� In particular� it will cement the relation
suggested at the end of the previous section� which identi�es the � function
with the rate of the renormalization group �ow of the coupling constant� We
will then use this relation to discuss the qualitative features of the renormal�
ization group �ow in renormalizable �eld theories�

Solution of the Callan�Symanzik Equation

We would like to solve the Callan�Symanzik equation for the two�point Green�s
function� G����p�� in a theory with a single scalar �eld� Since G����p� has
dimensions of �mass���� we can express its dependence on p and M as

G����p� �
i

p�
g��p��M��� ����
�

This equation allows us to trade the derivative with respect toM for a deriva�
tive with respect to p�� For the remainder of this chapter� we will use the vari�
able p to represent the magnitude of the spacelike momentum� p � ��p������
Then we can rewrite the Callan�Symanzik equation ash

p
�

�p
� ����

�

��
� �� �����

i
G����p� � �� ������

In free �eld theory� � and � vanish and we recover the trivial result

G����p� �
i

p�
� ������

In an interacting theory� � and � are nonzero functions of �� However�
it is still possible to write the explicit solution to the Callan�Symanzik equa�
tion� using the method of characteristics� Equivalently �for those not well
versed in the theory of partial di�erential equations�� we will apply a lovely
hydrodynamic�bacteriological analogy due to Sidney Coleman�z Imagine a
narrow pipe running in the x direction� containing a �uid whose velocity

yCallan has given a beautiful proof of the renormalizability of �� theory� based
on proving that the Callan�Symanzik equation holds order by order in �� in his arti�
cle in Methods in Field Theory� R� Balian and J� Zinn�Justin� eds� �North Holland�
Amsterdam� �	����

zColeman ��	
��� chap� �



��� Evolution of Coupling Constants ��	

Figure ����� Coleman�s bacteriological analogy to the Callan�Symanzik
equation� The pipe is inhabited by bacteria with a given initial density Di�x��
The growth rate �determined by the illumination� and #ow velocity are given
functions of x� The problem is to determine the density D�t� x� at all subse�
quent times�

is v�x�� as shown in Fig� ���� The pipe is inhabited by bacteria� whose den�
sity is D�t� x� and whose rate of growth is ��x�� Then the future behavior of
the function D�t� x� is governed by the di�erential equation

h �
�t

� v�x�
�

�x
� ��x�

i
D�t� x� � �� ������

The second term allows for the fact that the bacteria are swept along with the
�uid� so their present density here determines their future density not here�
but some distance ahead� This equation is identical to Eq� ������� with the
replacements

log�p�M�� t�

�� x�

������ v�x��

�������� ��x��

G����p� ��� D�t� x��

������

Now suppose we know the initial concentration of the bacteria� D�t� x� �
Di�x� at time t � �� Then we can determine the concentration of bacteria in
a �uid element at the point x at any later time by computing the history of
that �uid element and then integrating the rate of growth along that path�
Consider the �uid element that is at x at the time t� We can �nd out where
it was at time zero by integrating its motion backward in time� The position
of this element at time t � � is given by x�t�x�� which satis�es the di�erential
equation

d

dt�
x�t��x� � �v�x�� with x���x� � x� ������
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Then� immediately�

D�t� x� � Di

�
x�t�x�

� � exp� tZ
�

dt� �
�
x�t��x�

��

� Di

�
x�t�x�

� � exp� xZ
�x�t�

dx�
��x��
v�x��

�
�

�����

Now bring this solution back to our �eld theory problem by replacing
each bacteriological parameter with its corresponding �eld theory parameter�
The time t � � corresponds to �p� � M�� and the initial concentration Di�x�
becomes an unknown function )G���� Then

G����p� �� � )G���p���� � exp�� p�
pZ
p�
M

d log�p��M� � ��� �
�
��p����

���
� ������

where ��p��� solves

d

d log�p�M�
��p��� � ����� ��M ��� � �� ������

This di�erential equation describes the �ow of a modi�ed coupling constant
��p��� as a function of momentum� The rate of this �ow is just the � function�
Thus� this �ow is strongly reminiscent of the dependence of the renormalized
coupling on the renormalization scale given by Eq� ������� We will refer to
��p� as the running coupling constant� Its equation ������ is often called the
renormalization group equation�

One can check directly that ������ solves the Callan�Symanzik equation
by using the identity

��Z
�

d��

�����
�

p�
pZ
p�
M

d log�p��M�� ������

from which it follows that �
p
�

�p
� ����

�

��

�
� � �� ����
�

A convenient way of writing the solution ������ is

G����p� �� �
i

p�
G���p���� � exp�� pZ

M

d log�p��M� ����p�����
�
� ������

in which G��� is a function that must be determined� This function cannot
be determined from the general principles of renormalization theory� Instead�
we must compute G����p� as a perturbation series in � and match terms to
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the expansion of ������ as a series in the same parameter� For the two�point

function in 
� theory� this matching is rather trivial� G��� �  �O��
�
��

The preceding analysis can be applied to any family of Green�s functions
that are related by uniform rescaling of the momenta� Consider� for example�
the connected four�point function of 
� theory evaluated at spacelike momenta
pi such that p�i � �P �� pi � pj � �� so that s� t� and u are of order �P �� To
leading order in perturbation theory� this function is given by

G����P � �
� i

P �

��
��i��� ������

Using the fact that G��� has dimensions of �mass���� we can exchange M for
P in the Callan�Symanzik equation and write this equation ash

P
�

�P
� ����

�

��
� �� �����

i
G����P ��� � �� ������

The solution to this equation is

G����P ��� �


P �
G������p���� � exp�� pZ

M

d log�p��M� ����p�����
�
� ������

This formula must agree with ������ to leading order in �� this matching
requires that

G������p���� � �i��O��
�
�� ������

We can now see the physical implication of the Callan�Symanzik equa�
tion� The ordinary Feynman perturbation series for a Green�s function de�
pends both on the coupling constant � and on the dimensionless parameter
log��p��M��� The perturbation theory can be badly behaved even when � is
small if the ratio p��M� is large� The solutions ������ and ������ reorga�
nize this dependence into a function of the running coupling constant and an
exponential scale factor� We consider these two pieces in turn�

The �rst factor in Eqs� ������ and ������ is a function of the running
coupling constant� evaluated at the momentum scale p� If p were of order M �
the renormalization scale� this function would essentially be the ordinary per�
turbative evaluation of the Green�s function� The results ������ and ������
instruct us to make use of this same expression at the scale p� but to replace
� with a new coupling constant � appropriate to that scale� Thus� the run�
ning coupling constant ��p� is precisely the e�ective coupling constant of the
renormalization group �ow� This interpretation is particularly clear in the so�
lution ������ for G����P �� since this function directly measures the strength
of the 
� coupling constant�

The exponential factor in Eqs� ������ and ������ has an equally simple
interpretation� It is the accumulated �eld strength rescaling of the correlation
function from the reference point M to the actual momentum p at which the
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Green�s function is evaluated� This factor receives a multiplicative contribu�
tion from each intermediate scale between M and p� Each of these contribu�
tions is� appropriately� computed using the running coupling constant at that
particular scale�

As a check on these formal arguments� we can use the explicit form of the
� function of 
� theory found in Eq� ������ and the renormalization group
equation ������ to evaluate the running coupling constant of 
� theory� This
running coupling constant satis�es the di�erential equation

d

d log�p�M�
� �

��
�

���
� with ��M ��� � �� �����

Integrating� we �nd � �

���

��� 
�
� 

�

�
� log

p

M
�

and thus�

��p� �
�

� �������� log�p�M�
� ������

Many properties of the solution to the Callan�Symanzik equation are vis�
ible in this relation� First� the expansion of this formula for � to order ��

agrees precisely with Eq� ������� the rate of the renormalization group �ow
from Wilson�s method� Second� this expression for the running coupling con�
stant goes to zero at a logarithmic rate as p � �� This coincides with our
expectation that a positive value for the � function should imply an e�ec�
tive coupling that becomes stronger at large momenta and weaker at small
momenta�

If we expand the running coupling constant ��p� in powers of �� we �nd
that the successive powers of the coupling constant are multiplied by powers
of logarithms�

�n���log p�M�n�

which become large and invalidate a simple perturbation expansion for pmuch
greater or much less than M � We have seen this problem of large logarithms
arising several times in our diagram calculations� and we have remarked on it
speci�cally as a problem in the discussion following Eq� ����� We now see
that the renormalization group gives a partial solution to this problem� In this
example� and in many others that we will study� the Callan�Symanzik equation
tells us how to sum these large logarithms into the running coupling constant
and multiplicative rescalings� If the running coupling constant becomes large�
as happens in 
� theory for p � �� the perturbation expansion will break
down anyway� and we will need more advanced methods� However� if the
running coupling constant becomes small� as for 
� theory as p � �� we will
have successfully organized the powers of logarithms into a meaningful and
controlled expression� The speci�c problem posed at the end of Section ��
will be solved explicitly by this method in Section ����
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An Application to QED

For a more concrete application of the Callan�Symanzik equation� we can look
again at the electromagnetic potential between static charges� V �x�� which we
studied in Section ��
� At very short distances or at large momenta� we can
ignore the electron mass in the computation of QED corrections to this po�
tential� In this approximation� the potential should obey the Callan�Symanzik
equation of massless QED� We could write this equation either for V �x� it�
self or for its Fourier transform� we choose to work in Fourier space in order
to make contact more easily with the results of Section ��
�

We de�ne the massless limit of QED by specifying a renormalization
scale M at which the renormalized coupling er is de�ned� If M is taken close
to the electron mass m� at the point where the massless approximation is
just becoming valid� then the value of er will be close to the physical elec�
tron charge e� The potential between static charges is a measurable energy�
so its normalization is unambiguous and is not shifted from one renormal�
ization point to another� Thus the Callan�Symanzik equation for the Fourier
transform of the potential has no � term� being simplyh

M
�

�M
� ��er�

�

�er

i
V �q�M� er� � �� ������

The Fourier transform of the potential has dimensions of �mass���� so we
can trade dependence on M for dependence on q as in the scalar �eld theory
discussion above� This givesh

q
�

�q
� ��er�

�

�er
� �
i
V �q�M� er� � �� ������

Equation ������ is almost the same as Eq� ������� so we can immediately
write down the solution as a special case of �������

V �q� er� �


q�
V�e�q� er��� ����
�

where e�q� is the solution of the renormalization group equation

d

d log�q�M�
e�q� er� � ��e�� e�M � er� � er� ������

By comparing this formula for V �q� to the leading�order result

V �q� � e�

q�
�

we can identify V�e� � e� �O�e��� Then

V �q� er� �
e��q� er�

q�
� ������

up to corrections that are suppressed by powers of e�r and contain no compen�
satory large logarithms of q�M �
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To turn Eq� ������ into a completely explicit formula� we need only
solve the renormalization group equation ������� Using the QED � function
������ we can integrate ������ to �nd

���

�

� 

e�r
� 

e�

�
� log

q

M
�

This simpli�es to

e��q� �
e�r

� �e�r���
�� log�q�M�

� ������

This result is almost identical to the formula for the e�ective electric charge
that we found in Eq� ������� To cement the identi�cation� setM to be of order
the electron mass� M� � Am�� and approximate er at this point by e� with
	 � e����� Then Eq� ������ takes the form

	�q� �
	

� �	���� log��q��Am��
� ������

The particular choice A � exp�
��� reproduces Eq� ������� Of course� we could
not �nd this exact correspondence without the detailed one�loop calculation of
Section ��
� Nevertheless� our present analysis produces the correct asymptotic
formula for the e�ective charge� Furthermore� our present formalism can be
applied to any renormalizable quantum �eld theory� it does not rely on the
special symmetries of QED that we exploited in Section ��
�

Alternatives for the Running of Coupling Constants

Now that we have computed the behavior of the running coupling constant in
two speci�c quantum �eld theories� let us consider more generally what be�
haviors of the running coupling constant are possible in principle� We continue
to restrict our discussion to renormalizable theories in the massless limit� with
a single dimensionless coupling constant ��

By the arguments of the previous section� the Green�s functions in any
such theory obey a Callan�Symanzik equation� The solution of this equation
depends on a running coupling constant� ��p�� which satis�es a di�erential
equation

�

� log�p�M�
� � ����� ������

in which the function ���� is computable as a power series in the coupling
constant� In the examples we have just discussed� the leading coe	cient in this
power series was positive� However� as a matter of principle� three behaviors
are possible in the region of small ��

�� ���� � ��

��� ���� � ��

��� ���� � ��



��� Evolution of Coupling Constants ���

Examples of quantum �elds are known that exhibit each of these behaviors�
We have already seen how� in theories of the �rst class� the running cou�

pling constant goes to zero in the infrared� leading to de�nite predictions about
the small�momentum behavior of the theory� However� the running coupling
constant becomes large in the region of high momenta� Thus the short�distance
behavior of the theory cannot be computed using Feynman diagram pertur�
bation theory� In fact� in the examples studied above� the coupling constant
formally goes to in�nity at a large but �nite value of the momentum� thus it is
not even clear that these theories possess a nontrivial limit &��� A Feyn�
man diagram analysis is useful in such theories if one is mainly interested in
large�distance or macroscopic behavior� In Chapter � we will use this obser�
vation to solve problems in the statistical mechanics of systems with critical
points�

In theories of the second class� the coupling constant does not �ow� In
these theories� the running coupling constant is independent of the momen�
tum scale� and thus equal to the bare coupling� This means that there can be
no ultraviolet divergences in the relation of coupling constants� The only pos�
sible ultraviolet divergences in such theories are those associated with �eld
rescaling� which automatically cancel in the computation of S�matrix ele�
ments� Such theories are called �nite quantum �eld theories� Before the emer�
gence of our modern understanding of renormalization� these theories would
have been embraced as the solution to the problem of ultraviolet in�nities�
But in fact the known �nite �eld theories in four dimensions are very special
constructions�the so�called gauge theories with extended supersymmetry�
with no known physical application�

In theories of the third class� the running coupling constant becomes large
in the large�distance regime and becomes small at large momenta or short
distances� Imagine� for instance� that the sign of the QED � function were
reversed�

��e� � � �
�Ce

�� �����

Then� following our earlier analysis� we would have

e��p� �
e�

 � Ce� log�p�M�
� ������

This coupling constant tends to zero at a logarithmic rate as the momentum
scale increases� Such theories are called asymptotically free� In theories of this
class� the short�distance behavior is completely solvable by Feynman diagram
methods� Though ultraviolet divergences appear in every order of perturbation
theory� the renormalization group tells us that the sum of these divergences is
completely harmless� If we interpret these theories in terms of a bare coupling
eb and a �nite cuto� &� the result ������ indicates that there is a smooth
limit in which eb tends to zero as & tends to in�nity� Thus� asymptotically
free theories give another� more sophisticated� resolution of the problem of
ultraviolet divergences� In Chapter �� we will see that asymptotic freedom
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plays an essential role in the formulation of a �eld theory that describes the
strong interactions of elementary particle physics�

Now that we have enumerated the possibilities for the renormalization
group �ow in the region of weak coupling� let us turn our attention to the
region of strong coupling� Here we will not be able to compute the � function
quantitatively� but we can at least use the renormalization group equation
to discuss qualitatively the possibilities for the coupling constant �ow� All of
our explicit solutions for running coupling constants�Eqs� ������� �������
and �������predict that the running coupling becomes in�nite at a �nite
value of the momentum p� For example� according to Eq� ������� the running
coupling constant of 
� theory should diverge at

p �M exp
����

��

�
� ������

It is possible that this is the true behavior of the quantum �eld theory� but we
have not proved this� because when the running coupling constant becomes
large� the approximation we have made� ignoring the higher�order terms in the
� function� is no longer valid� It is a logical possibility that the higher terms
of the � function are negative� so that the � function has the form shown
in Fig� ����a�� In this case the � function has a zero at a nonzero value ���
When � approaches this value� the renormalization group �ow slows to a halt�
thus � � �� would be a nontrivial �xed point of the renormalization group� In
this model� the running coupling constant � tends to �� in the limit of large
momentum�

For the speci�c case of 
� theory in four dimensions� we have strong
evidence from numerical studies that there is no such nontrivial �xed point�
However� we will soon demonstrate that there is a nontrivial �xed point in 
�

theory in d � �� and many more examples are known� It is thus worthwhile
to explore the implications of a �xed point in the renormalization group �ow�

For a � function of the form of Fig� ����a�� the � function behaves in the
vicinity of the �xed point as

� � �B��� ���� ������

where B is a positive constant� For � near ���

d

d log p
� � �B��� ���� ����
�

The solution of this equation is

��p� � �� � C
�M
p

�B
� ������

Thus� � indeed tends to �� as p � �� and the rate of approach is governed
by the slope of the � function at the �xed point�

This behavior has a dramatic consequence for the exact solution ������
of the Callan�Symanzik equation for G�p�� For p su	ciently large� the integral
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Figure ����� Possible forms of the  function with nontrivial zeros�
�a� ultraviolet�stable �xed point� �b� infrared�stable �xed point�

in the exponential factor in this equation will be dominated by values of p for
which ��p� is close to ��� Then

G�p� � G���� exp
h
�
�
log

p

M

�
� ��� �����

�i
� C �

� 

p�

��������
�

������

Thus the two�point correlation function returns to the form of a simple scal�
ing law� but with a power law di�erent from that expected by dimensional
analysis� At the �xed point we have a scale�invariant quantum �eld theory in
which the interactions of the theory a�ect the law of rescaling� The shift of
the exponent ����� is called the anomalous dimension of the scalar �eld� By
convention� the function ���� is often called the anomalous dimension even if
there is no �xed point in the theory�

A similar behavior is possible in an asymptotically free theory� If the �
function has the form shown in Fig� ����b�� the running coupling constant
will tend to a �xed point �� as p � �� The two�point correlation function
of �elds G�p� will tend to a power law as in ������ for asymptotically small
momenta� The two cases shown in Figs� ����a� and �b� are called� respectively�
ultraviolet�stable and infrared�stable �xed points�

In the previous section� we saw that the leading�order expressions for
the Callan�Symanzik functions � and � are related in a simple way to the
ultraviolet divergent parts of the one�loop counterterms� However� we noted
that� in higher orders of perturbation theory� � and � depend on the speci�c
renormalization conventions used to de�ne the Green�s functions� Still� there
are some properties of these functions that are independent of any convention�
The coe	cient of the logarithm in the denominator of such expressions as
������ or ������ can be determined unambiguously from experiments that
measure this coupling constant� This con�rms the convention independence of
the �rst ��function coe	cient� Experiments sensitive to the coupling constant
can also determine the existence of a zero of the � function at strong coupling�
and the rate of approach to this asymptote� Thus the existence of a zero of
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the � function �but not necessarily the value of ���� the slope B at the zero�
and the value of the anomalous dimension at the �xed point should all be
independent of the conventions used to compute � and ��

���� Renormalization of Local Operators

The analysis of the previous two sections has been restricted to quantum �eld
theories with only dimensionless coe	cients� that is� strictly renormalizable
�eld theories in the massless limit� It is not di	cult to generalize this for�
malism to theories with mass terms and other operators whose coe	cients
have mass dimension� However� it is worthwhile to �rst devote some attention
to an intermediate step� by analyzing the renormalization group properties
of matrix elements of local operators� This is an interesting problem in its
own right� and we will devote considerable space to the applications of this
formalism in Chapter ��

Matrix elements of local operators appear often in quantum �eld theory
calculations� Typically one considers a set of interacting particles that couple
weakly to an additional particle� which mediates new forces� Consider� for
example� the theory of strongly interacting quarks perturbed by the e�ects of
weak decay processes� The weak interaction is mediated by a massive vector
boson� the W � Let us write the interaction of the quarks with the W very
schematically as

�L �
gp
�
W���

��� ���� ������

and assign the W boson the propagator

�ig��
q� �m�

W � i�
� ������

�We will discuss this interaction more correctly in Section ��� and in Chap�
ter ���� Exchange of a W boson leads to the interaction shown in Fig� ��
�
For momentum transfers small compared to mW � we can ignore the q� in the
W propagator and write this interaction as the matrix element of the operator

g�

�m�
W

O�x�� where O�x� � ����� ��� ����� ���� ������

In the spirit of Wilson�s renormalization group procedure� we can say that� on
distance scales larger than m��

W � the W boson can be integrated out� leaving
over the interaction �������

How would we analyze the e�ects of the operator ������ on strongly
interacting particles composed of quarks and antiquarks� A useful way to
begin is to compute the Green�s function of the operator O together with
�elds that create and destroy quarks� If we approximate the theory of quarks
by a theory of free fermions� it is easy to compute these Green�s functions� for
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Figure ����� Interaction of quarks generated by the exchange of aW boson�

example��
��p�����p����p�����p��O���

�
� SF �p���

��� ��SF �p��SF �p������ ��SF �p���
�����

However� in an interacting �eld theory� the answer will be much more compli�
cated� Some of these complications will involve the low�energy interactions of
quarks� and we will leave them outside of the present discussion� However� in
a renormalizable theory of quark interactions� one will also �nd that Green�s
functions containing O have new ultraviolet divergences� The one�loop correc�
tions to ����� will contain diagrams that evaluate to the right�hand side of
����� times a divergent integral� These diagrams can be interpreted as �eld
strength renormalizations of the operator O� As with correlation functions of
elementary �elds� we can obtain �nite and well�de�ned matrix elements of
local operators only if we establish conventions for the normalization of lo�
cal operators and introduce operator rescalings in the form of counterterms�
order by order in perturbation theory� to preserve these conventions� More
speci�cally� in a massless� renormalizable �eld theory of the fermions �� we
should make the convention that Eq� ����� is exact at some spacelike nor�
malization point for which p�� � p�� � p�� � p�� � �M�� Then we should add a
counterterm of the form �OO�x�� and adjust this counterterm at each order
of perturbation theory to insure that these relations are preserved� We refer
to the operator satisfying the normalization condition ����� at M� as OM �

The renormalized operator OM is a rescaled version of the operator O�

built of bare �elds�

O��x� � ���
��� ���������� ����� ������

As we did for the elementary �elds� we can write this relation as

O� � ZO�M�OM � ������

This allows us to write the generalization of the relation ����
� between
Green�s functions of bare and renormalized �elds� Let us return to the lan�
guage of scalar �eld theories and consider O�x� to be a local operator in a
scalar �eld theory� De�ne

G�n����p�� � � � � pn� k� � h
�p�� � � �
�pn�OM �k�i � ������
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Then G�n��� is related to a Green�s function of bare �elds by

G�n��p�� � � � � pn� k� � Z�M��n��ZO�M��� h
��p�� � � �
��pn�O��k�i �
����
�

Repeating the derivation of Eqs� ������ and ������� we �nd that the Green�s
functions containing a local operator obey the Callan�Symanzik equationh

M
�

�M
� ����

�

��
� n���� � �O���

i
G�n� � �� ������

where

�O �M
�

�M
logZO�M�� ������

It often happens that a quantum �eld theory contains several operators
with the same quantum numbers� For example� in quantum electrodynamics�
the operators �$��D����D�%� and F ��F �

� are both symmetric tensors with
zero electric charge� in addition� both operators have mass dimension �� Such
operators� with the same quantum numbers and the same mass dimension�
can be mixed by quantum corrections�! For such a set of operators fOig� the
relation of renormalized and bare operators must be generalized to

Oi
� � Zij

O �M�Oj
M � ������

This relation in turn implies that the anomalous dimension function �O in
the Callan�Symanzik equation must be generalized to a matrix�

�ijO � $Z��O �M�%ikM
�

�M
$ZO�M�%kj � ������

Most of our applications of ������ in Chapter � will require this general�
ization�

On the other hand� there are some operators for which the rescaling and
anomalous dimensions are especially simple� If O is the quark number current
����� its normalization is �xed once and for all because the associated charge

Q �

Z
d�x����

is just the conserved integer number of quarks minus antiquarks in a given
state� More generally� for any conserved current J�� ZJ �M� �  and �J � ��
The same argument applies to the energy�momentum tensor� Thus� in the
QED example above� the speci�c linear combination

T�� �


�
�$��D� � ��D�%� �



�
F��F �

� �����

receives no rescaling and no anomalous dimension� This linear combination of
operators must be an eigenvector of the matrix �ij with eigenvalue zero�

�Our assumption that we are working in a massless �eld theory constrains the pos�
sibilities for operator mixing� In a massive �eld theory� operators of a given dimension
can also mix with operators of lower dimension�
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So far� our discussion of operator matrix elements has been rather ab�
stract� To make it more concrete� we will construct a formula for computing
�O to leading order from one�loop counterterms� and then apply this formula
to a simple example in 
� theory�

To �nd a simple formula for �O� we follow the same path that took us from
Eq� ���
�� to the formula ���
�� for the � function� Consider an operator
whose normalization condition is based on a Green�s function with m scalar
�elds�

G�m��� � h
�p�� � � �
�pm�OM �k�i � ����

To compute this Green�s function to one�loop order� we �nd the set of dia�
grams�

The last diagram is the counterterm �O needed to maintain the renormal�
ization condition� Notice that the counterterm �Z also appears� If we insist
that this sum of diagrams satis�es the Callan�Symanzik equation ������ to
leading order in �� we �nd� analogously to ���
��� the relation

�O��� � M
�

�M

�
��O �

m

�
�Z

�
� �����

As a speci�c example of the use of this formula� let us compute the anoma�
lous dimension �O of the mass operator 
� in 
� theory� There is a small
subtlety involved in this computation� The Feynman diagrams of 
� theory
generate an additive mass renormalization� which must be removed by the
mass counterterm at each order in perturbation theory� We would like to de�
�ne the mass operator as a perturbation which we can add to the massless
theory de�ned in this way� To clarify the distinction between the underlying
mass� which is renormalized to zero� and the explicit mass perturbation� we
will analyze a Green�s function of 
� in which this operator carries a speci�c
nonzero momentum� We thus choose to de�ne the normalization of 
� by the
convention

�
�

�p�
�q�
��k�

�
�

i

p�
i

q�
� � �����

at p� � q� � k� � �M��
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The one�particle�irreducible one�loop correction to ����� is

�
i

p�
i

q�

Z
d�r

�����
��i�� i

r�
i

�k � r��

�
i

p�
i

q�

h
� �

�����
,���d

� �

���d��

i
�

�����

where � is a function of the external momenta� At �M�� this contribution
must be canceled by a counterterm diagram�

�
i

p�
i

q�
���� � ���
�

Thus� the counterterm must be

��� �
�

������
,���d

� �

�M����d��
� �����

Since �Z is �nite to order �� this is the only contribution to ������ and we
�nd

��� �
�

���
� �����

This function can be used together with the � and � functions of pure massless

� theory to discuss the scaling of Green�s functions that include the mass
operator�

���� Evolution of Mass Parameters

Finally� we discuss the renormalization group for theories with masses� We
note� though� that although we treat these masses as arbitrary parameters�
we will continue to use renormalization conventions that are independent of
mass� and we will often treat the masses as small parameters� This approach
breaks down at momentum scales much less than the scale of masses� but
it is su	cient� and simpler than alternative approaches� for most practical
applications of the renormalization group�

In the previous section� we worked out the scaling of Green�s functions
containing one power of the mass operator� It is a small step to generalize
this discussion to include an arbitrary number � of mass operators� one sim�
ply �nds the equation ������ with the coe	cient � in front of the term �O�
Now consider what would happen if we add the mass operator directly to the
Lagrangian of the massless 
� theory� treating this operator as a perturba�
tion� If LM is the massless Lagrangian renormalized at the scale M � the new
Lagrangian will be

LM � �
�m

�
�M � �����
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The Green�s function of n scalar �elds in the theory ����� could be ex�
pressed as a perturbation series in the mass parameter m�� The coe	cient
of �m��� would be a joint correlation function of the n scalar �elds with
� powers of 
�M � and would therefore satisfy the Callan�Symanzik equation
������ with the extra factor � as noted above� In general� we can use the
operator m�����m�� to count the number of insertions � of 
�� Then the
Green�s functions of the massive 
� theory� renormalized according to the
mass�independent scheme� satisfy the equationh
M

�

�M
�����

�

��
�n��������m

� �

�m�

i
G�n��fpig�M���m�� � �� �����

This argument extends to any perturbation of massless 
� theory� In the
general case�

L�Ci� � LM � CiOi
M �x�� ������

and the Green�s functions of this perturbed theory satisfyh
M

�

�M
� ����

�

��
� n���� �

X
i

�i���Ci
�

�Ci

i
G�n��fpig�M��� fCig� � ��

�����
To interpret this equation� it will help to make a slight change to bring

the notation in line with our new viewpoint� Let di be the mass dimension of
the operator Oi� Then rewrite ������ by representing each coe	cient Ci as
a power of M and a dimensionless coe	cient �i�

L��i� � LM � �iM
��diOi

M �x�� ������

The size of each �i indicates the importance of the corresponding operator at
the scale M � This new convention introduces further explicit M dependence
into the Green�s functions� which is compensated by a rescaling of the �i�
Thus ����� must be modi�ed toh
M

�

�M
� �

�

��
� n� �

X
i

�
�i��� � di � �

�
�i

�

��i

i
G�n��fpig�M��� f�ig� � ��

������
The meaning of this equation becomes clearer if we de�ne

�i � �di � � � �i��i� ������

Thenh
M

�

�M
� �

�

��
�
X
i

�i
�

��i
� n�

i
G�n��fpig�M��� f�ig� � �� ����
�

Now all of the coupling constants �i appear on the same footing as �� We can
solve this generalized Callan�Symanzik equation using the same method as in
Section ���� by introducing bacteria� which now live in a multidimensional
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velocity �eld ��� �i�� The solution will depend on a set of running coupling
constants which obey the equations

d

d log�p�M�
�i � �i��� ��� ������

It is interesting to examine this �ow of coupling constants for the case
where all the dimensionless parameters �� �i are small� so that we are close
to the free scalar �eld Lagrangian� In this situation� we can ignore the contri�
bution of �i to �i� then

d

d log�p�M�
�i � $di � � � � � � %�i� ������

The solution to this equation is

�i � �i

� p

M

�di��
� ������

Operators with mass dimension greater than �� corresponding to nonrenor�
malizable interactions� become less important as a power of p as p� �� This
is exactly the behavior that we found in Eq� ������ using Wilson�s method�
Since we have now generalized the Callan�Symanzik equation to incorporate
the most general perturbation of the free��eld Lagrangian� it is pleasing that
we recover the full structure of the Wilson �ow of coupling constants� In ad�
dition� this more formal method gives us a way to compute the corrections to
the Wilson �ow due to �
� interactions� order by order in �� using Feynman
diagrams�

We can move one step closer to the generality of Section �� by moving
from four dimensions to an arbitrary dimension d� We require only two small
changes in the formalism� First� the operator 
� acquires a dimensionful co�
e	cient when d � �� and we must take account of this� We have seen in the
discussion below Eq� ����� that a scalar �eld has mass dimension �d� �����
Thus� the operator 
� has mass dimension ��d� ��� and so its coe	cient has
dimension � � d� To implement the renormalization group� we rede�ne � so
that this coe	cient remains dimensionless in d dimensions� We treat the mass
term similarly� replacing m� � �mM

�� Thus the expansion of the Lagrangian
about the free scalar �eld theory L� reads�

L � L� � 

�
�mM

�
�M � 

�
�M��d
�M � � � � � ������

The second required change in the formalism is that of recomputing the
� and � functions in the new dimension� To order �� the result is surprisingly
innocuous� Consider� for example� the computation of ��� � Eq� ������ This
computation� which was performed in dimensional regularization� is essentially
unchanged� For general values of d� the derivative of the counterterm ��� with
respect to logM still involves the factor

M
�

�M

�
,���d

� �

�M����d��

�
� �� �O��� d�� ������
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This observation holds for all of the �i� and the � function is shifted only by
the contribution of the mass dimension of �� Thus� for d near ��

� � �d� ���� ������� � � � � �
�m � $�� � �

���
�� %�m � � � � �

�i � $di � d� �
���
i %�i � � � � �

�����

where the functions with a superscript ��� are the four�dimensional results
obtained earlier in this section� and the omitted correction terms are of order
���d���� The precise form of these corrections depends on the renormalization
scheme�y

Using the explicit four�dimensional result ������ for �� we now �nd

� � ����d���
���

���
� ������

For d � �� this function is positive and predicts that the coupling constant
�ows smoothly to zero at large distances� However� when d � �� this ���� has
the form shown in Fig� ����b�� Thus it generates just the coupling constant
�ow that we discussed from Wilson�s viewpoint below Eq� ������� At small
values of �� the coupling constant increases in importance with increasing
distance� as dimensional analysis predicts� However� at larger �� the coupling
constant decreases as a result of its own nonlinear e�ects� These two tendencies
come into balance at the zero of the beta function�

�� �
���

�
��� d�� ������

which gives a nontrivial �xed point of the renormalization group �ows in scalar
�eld theory for d � �� If we formally consider values of d close to �� this �xed
point occurs in a region where the coupling constant is small and we can use
Feynman diagrams to investigate its properties� This �xed point� which was
discovered by Wilson and Fisher�z has important consequences for statistical
mechanics� which we will discuss in Chapter ��

Critical Exponents� A First Look

As an application of the formalism of this section� let us calculate the renor�
malization group �ow of the coe	cient of the mass operator in 
� theory� This
is found by integrating Eq� ������� using the value of �m from ������

d

d log p
�m � $�� � ������%�m� ������

yThis expansion is displayed to rather high order in E� Brezin� J� C� Le Gillou�
and J� Zinn�Justin� Phys� Rev� D	� ���� ��	����

zK� G� Wilson and M� E� Fisher� Phys� Rev� Lett� ��� ��� ��	����
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For � � �� this equation gives the trivial relation

�m � �m

�M
p

��
� ����
�

If we recall that we originally de�ned �m � m��M�� this is just a complicated
way of saying that� when p becomes of order m� the mass term becomes an
important term in the Lagrangian� At this point� the correlations in the 

�eld begin to die away exponentially� The characteristic range of correlations�
which in statistical mechanics would be called the correlation length �� is given
by

� � p��� � where �m�p�� � � ������

If we evaluate this criterion� we �nd � � �M��m������ that is� � � m��� as
we would have expected�

However� the application of this criterion at the �xed point �� gives a
much more interesting result� If we set � � ��� then Eq� ������ has the
solution

�m � �m

�M
p

������ ����
� ������

This gives a nontrivial relation

� � ���m � ������

where the exponent � is given formally by the expression

� �


�� �������
� ������

Using the results ������ and ������ we can evaluate this explicitly for d
near ��

��� � �� 

�
��� d�� ������

Wilson and Fisher showed that this expression can be extended to a systematic
expansion of � in powers of � � ��� d��

Because the exponent � has an interpretation in statistical mechanics� it is
directly measurable in the realistic case of three dimensions� In the statistical
mechanical interpretation of scalar �eld theory� �m is just the parameter that
one must adjust �nely to bring the system to the critical temperature� Thus �m
is proportional to the deviation from the critical temperature� �T � TC�� Our
�eld theoretic analysis thus implies that the correlation length in a magnet
grows as T � TC according to the scaling relation

� � �T � TC�
�� � �����

It also gives a de�nite� and somewhat unusual� prediction for the value of ��
It predicts that � is close to the value �� suggested by the Landau approx�
imation studied in Chapter � �Eq� ������� but that � di�ers from this value
by some systematic corrections�
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A scaling behavior of the type ����� is observed in magnets� and it is
known that several de�nite scaling laws occur� depending on the symmetry of
the spin ordering� Magnets can be characterized by the number of �uctuating
spin components� N� for magnets with a preferred axis� N�� for magnets
with a preferred plane� and N�� for magnets that are isotropic in three�
dimensional space� The experimental value of � depends on this parameter�
The 
� �eld theory discussed in this chapter contained only one �uctuating
�eld� this is the analogue of a magnet with one spin component� In Chapter �
we considered a generalization of 
� theory to a theory of N �elds with O�N�
symmetry� We might guess that this system models magnets of general N �

If this correspondence is correct� Eq� ������ gives a prediction for the
value of � in magnets with a preferred axis� In Section ��� we will repeat
the analysis leading to this equation in the O�N��symmetric 
� theory and
derive the formula

��� � �� N � �

N � �
��� d�� ������

valid for general N to �rst order in �� � d�� For the cases N � � �� � and
d � �� this formula predicts

� � ����� ����� ���
� ������

For comparison� the best current experimental determinations of � in magnetic
systems give!

� � ����� ����� ��� ������

for N � � �� �� The prediction ������ gives a reasonable �rst approximation
to the experimental results�

The ability of quantum �eld theory to predict the critical exponents gives
a concrete application both of the formal connection between quantum �eld
theory and statistical mechanics and of the �ows of coupling constants pre�
dicted by the renormalization group� However� there is another experimental
aspect of critical behavior that is even more remarkable� and more persua�
sive� Critical behavior can be studied not only in magnets but also in �uids�
binary alloys� super�uid helium� and a host of other systems� It has long been
known that� for systems with this disparity of microscopic dynamics� the scal�
ing exponents at the critical point depend only on the dimension N of the
�uctuating variables and not on any other detail of the atomic structure�
Fluids� binary alloys� and uniaxial magnets� for example� have the same crit�
ical exponents� To the untutored eye� this seems to be a miracle� But for a
quantum �eld theorist� this conclusion is the natural outcome of the renor�
malization group idea� in which most details of the �eld theoretic interaction
are described by operators that become irrelevant as the �eld theory �nds its
proper� simple� large�distance behavior�

�For further details� see Table ��� and the accompanying discussion�
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Problems

���� Beta functions in Yukawa theory� In the pseudoscalar Yukawa theory stud�
ied in Problem ����� with masses set to zero�

L � �
�
�����

� � �

�"
�� � ��i���� � ig�����

compute the Callan�Symanzik  functions for � and g�

���� g�� g��� g��

to leading order in coupling constants� assuming that � and g� are of the same order�
Sketch the coupling constant #ows in the ��g plane�

���� Beta function of the Gross�Neveu model� Compute �g� in the two�
dimensional Gross�Neveu model studied in Problem ����

L � �ii���i � �
� g

���i�i�
��

with i � �� � � � �N � You should �nd that this model is asymptotically free� How was
that fact re#ected in the solution to Problem ����

���� Asymptotic symmetry� Consider the following Lagrangian� with two scalar
�elds �� and ���

L � �
�
�������

� � ������
��� �

�"
���� � �����

��

�"
�����

�
���

Notice that� for the special value � � �� this Lagrangian has anO��� invariance rotating
the two �elds into one another�

�a� Working in four dimensions� �nd the  functions for the two coupling constants
� and �� to leading order in the coupling constants�

�b� Write the renormalization group equation for the ratio of couplings �
�� Show
that� if �
� �  at a renormalization point M � this ratio #ows toward the
condition � � � at large distances� Thus the O��� internal symmetry appears
asymptotically�

�c� Write the  functions for � and � in � � � dimensions� Show that there are
nontrivial �xed points of the renormalization group #ow at �
� � �� �� � Which
is the most stable� Sketch the pattern of coupling constant #ows� This #ow
implies that the critical exponents are those of a symmetric two�component
magnet�



Chapter ��

Critical Exponents and Scalar Field Theory

The idea of running coupling constants and renormalization�group �ows gives
us a new language with which to discuss the qualitative behavior of scalar
�eld theory� In our �rst discussion of 
� theory� each value of the coupling
constant�and� more generally� each form of the potential and each spacetime
dimension�gave a separate problem to be explored� But in Chapter �� we
saw that 
� theories with di�erent values of the coupling are connected by
renormalization�group �ows� and that the pattern of these �ows changes con�
tinuously with the spacetime dimension� In this context� it makes sense to ask
the very general question� How does 
� theory behave as a function of the
dimension� This chapter will give a detailed answer to this question�

The central ingredient in our analysis will be the Wilson�Fisher �xed point
discussed in Section ��
� This �xed point exists in spacetime dimensions d
with d � �� in those dimensions it controls the renormalization group �ows of
massless 
� theory� The scalar �eld theory has manifest or spontaneously bro�
ken symmetry according to the sign of the mass parameter m�� Near m� � ��
the theory exhibits scaling behavior with anomalous dimensions whose val�
ues are determined by the renormalization group equations� For d � �� the
Wilson�Fisher �xed point disappears� and only the free��eld �xed point re�
mains� Again� the theory exhibits two distinct phases� but now the behavior
at the transition is determined by the renormalization group �ows near the
free��eld �xed point� so the scaling laws are those that follow from simple
dimensional analysis�

The continuation of these results to Euclidean space has important im�
plications for the theory of phase transitions in magnets and �uids� As we
discussed in the previous chapter� the ideas of the renormalization group im�
ply that the power�law behaviors of thermodynamic quantities near a phase
transition point are determined by the behavior of correlation functions in a
Euclidean 
� theory� The results stated in the previous paragraph then im�
ply the following conclusions for critical scaling laws� For statistical systems
in a space of dimension d � �� the scaling laws are just those following from
simple dimensional analysis� These predictions are precisely those of Landau
theory� which we discussed in Chapter �� On the other hand� for d � �� the
critical scaling laws are modi�ed� in a way that we can compute using the
renormalization group�

��	
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In d � �� we are on the boundary between the two types of scaling behav�
ior� This corresponds to the situation in which 
� theory is precisely renor�
malizable� In this case� the dimensional analysis predictions are corrected� but
only by logarithms� We will analyze this case speci�cally in Section ����

Though it is not obvious� the case d � � provides another boundary� Here
the transition to spontaneous symmetry breaking is described by a di�erent
quantum �eld theory� which becomes renormalizable in two dimensions� In
Section ���� we will introduce that theory� called the nonlinear sigma model�
and show how its renormalization group behavior merges smoothly with that
of 
� theory� By combining all of the results of this chapter� we will obtain
a quantitative understanding of the behavior of 
� theory� and of critical
phenomena� over the whole range of spacetime dimensions�

���� Theory of Critical Exponents

At the end of Chapter �� we used properties of the renormalization group
for scalar �eld theory to make a prediction about the behavior of correla�
tions near the critical point of a thermodynamic system� We argued that the
range of correlations� the correlation length �� should increase to in�nity as
one approaches the critical point� according to the scaling law ������ The
exponent in this equation� called �� should depend only on the symmetry of
the order parameter� We argued� further� that this exponent is related to the
anomalous dimension of a local operator in 
� theory� and that it can be
computed from Feynman diagrams� In this section� we will show that similar
conclusions apply more generally to a large number of scaling laws associated
with a critical point�

To begin� we will de�ne systematically a set of critical exponents� expo�
nents of scaling laws that describe the thermodynamic behavior in the vicinity
of the critical point� We will then show� using the Callan�Symanzik equation�
that all these exponents can be reduced to two basic anomalous dimensions�
Finally� we will compare this remarkable prediction of quantum �eld theory
to experiment�

In suggesting a set of critical scaling laws� we begin with the behavior of
the correlation function of �uctuations of the ordering �eld� For de�niteness�
we will use the language appropriate to a magnet� as in Chapter �� We will
compute classical thermal expectation values as correlation functions in a
Euclidean quantum �eld theory� as explained in Section ���� The �uctuating
�eld will be called the spin �eld s�x�� its integral will be the magnetizationM �
and the external �eld that couples to s�x� will be called the magnetic �eld H �
�In deference to the magnetization� we will denote the renormalization scale
in the Callan�Symanzik equation by � in this section��

De�ne the two�point correlation function by

G�x� � hs�x�s���i � ����

or by the connected expectation value� if we are in the magnetized phase where
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hs�x�i � �� Away from the critical point� G�x� should decay exponentially�
according to

G�x� � exp$�jxj��%� �����

The approach to the critical point is characterized by the parameter

t �
T � TC
TC

� �����

Then we expect that� as t � �� the correlation length should increase to
in�nity� De�ne the exponent �� ������ by the formula

� � jtj�� � �����

Just at t � �� the correlation function should decay only as a power law�
De�ne the exponent � by the formula

G�x� � 

jxjd���
 � ���
�

where d is the Euclidean space dimension�
The behaviors of thermodynamic quantities near the critical point de�ne

a number of additional exponents� Typically� the speci�c heat of the thermo�
dynamic system diverges as t � �� de�ne the exponent 	 by the formula for
the speci�c heat at �xed external �eld H � ��

CH � jtj��� �����

Since the ordering sets in at t � �� the magnetization at zero �eld tends to
zero as t� � from below� De�ne the exponent � �not to be confused with the
Callan�Symanzik function� by

M � jtj	 � �����

Even at t � � one has a nonzero magnetization at nonzero magnetic �eld�
Write the law by which this magnetization tends to zero as H � � as the
relation

M � H��� �����

Finally� the magnetic susceptibility diverges at the critical point� we write this
divergence as the relation

� � jtj�� � �����

Equations �����3����� de�ne a set of critical exponents 	� �� �� �� �� �� which
can be measured experimentally for a variety of thermodynamic systems�!

In Chapter � we argued� following Wilson� that a thermodynamic system
near its critical point can be described by a Euclidean quantum �eld theory�
At the level of the atomic scale� the Lagrangian of this quantum �eld theory
may be complicated� however� when we have integrated out the small�scale

�A variety of further critical exponents and relations are presented in M� E� Fisher�
Repts� Prog� Phys� �
� ��� ��	����
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degrees of freedom� this Lagrangian simpli�es� If we adjust a parameter of the
theory to insure the presence of long�range correlations� the Lagrangian must
closely approach a �xed point of the renormalization group� Generically� the
Lagrangian will approach the �xed point with a single unstable or relevant
direction� corresponding to the mass parameter of 
� theory� In d � �� this
is the Wilson�Fisher �xed point� In d � �� it is the free��eld �xed point� For
de�niteness� we will assume d � � in the following discussion�

Exponents of the Spin Correlation Function

In this setting� we can study the behavior of the spin�spin correlation function
G�x�� By the argument just reviewed� G�x� is proportional to the two�point
correlation function of a Euclidean scalar �eld theory� The technology intro�
duced in the previous chapter can be applied directly� The correlation function
obeys the Callan�Symanzik equation ����
��h

�
�

��
�
X
i

�i
�

��i
� ��
i
G�x��� f�ig� � �� �����

Here we include the 
� coupling � among the generalized couplings �i�
By dimensional analysis� in d dimensions�

G�x� �


jxjd�� g��jxj� f�ig�� ����

where g is an arbitrary function of the dimensionless parameters� �This is
the Fourier transform of the statement that G�p� � p�� times a dimension�
less function�� From this starting point� we can solve the Callan�Symanzik
equation ����� by the method of Section ���� and �nd

G�x� �


jxjd�� h�f�i�x�g� � exp

��

jxjZ
���

d log�jx�j� ��f��x��g�
�
� �����

where h is a dimensionless initial condition� The running coupling constants
�i obey the di�erential equation

d

d log���jxj��i � �i�f�jg�� �����

We studied the solution to this equation in Section ��
� We saw there
that� for �ows that come to the vicinity of the Wilson�Fisher �xed point� the
dimensionless coe	cient of the mass operator grows as one moves toward large
distances� while the other dimensionless parameters become small� Let �� be
the location of the �xed point� Then we can write more explicitly

�m � �m��jxj������ �����
�i � �i��jxj��Ai �

�����
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where Ai � � for i � m� If the deviation of � from the �xed point is treated
as one of the �i� by de�ning

�� � �� ��� ���
�

this parameter also decreases in importance as a power of jxj� as we demon�
strated in Eq� ������� In the language of Section ��� all of the parameters
�i multiply irrelevant operators� except for �m� which multiplies a relevant
operator�

To approach the critical point� we adjust the parameters of the underlying
theory so that� at some scale ���� near the atomic scale� �m � � If �m
is adjusted by tuning the temperature of the thermodynamic system� then
�m � t� The critical scaling laws will be valid if there is a region of distance
scales where �m remains small while the other �i can be neglected� The scaling
laws can then be computed by evaluating the solution to the Callan�Symanzik
equation with �m given by ����� and the other �i set equal to zero� The
corrections to this approximation can be shown to be proportional to positive
powers of t�

In this approximation� we should evaluate the function ���� in ����� at
�� � �� that is� at the �xed point� Using this value and the solution for �m�
Eq� ����� becomes

G�x� �


jxjd�� �


��jxj������� � h
�
t��jxj������ ������ �����

This equation implies the scaling laws ���
� and ������ For the argument of
h su	ciently small� G�x� obeys Eq� ���
�� with

� � ������� �����

At large distances� h must fall o� exponentially� since this function is derived
from a scalar �eld propagator� From the argument of h� we deduce that this
exponential must be of the form

exp$�jxj��t��%� �����

where� as in �������

� �


�� �������
� �����

This is precisely the scaling law ������ ������ with the identi�cation of � in
terms of the anomalous dimension of the operator 
��

Exponents of Thermodynamic Functions

The thermodynamic critical scaling laws can be derived in a similar way� by
studying the scaling behavior of macroscopic thermodynamic variables� These
are derived from the Gibbs free energy� or� in the language of quantum �elds�
from the e�ective potential of the scalar �eld theory� Since the e�ective poten�
tial� and� more generally� the e�ective action� are constructed from correlation
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functions� these quantities should satisfy Callan�Symanzik equations� We will
now construct those equations and then use them to identify the thermody�
namic critical exponents�

In Eq� ������ we showed that the e�ective action , depends on the
classical �eld 
cl in such a way that the nth derivative of , with respect to

cl gives the one�particle�irreducible n�point function of the �eld theory� Thus
we can reconstruct , from the PI functions by writing the Taylor series

,$
cl% � i

�X
�



n-

Z
dx� � � � dxn 
cl�x�� � � �
cl�xn� ,�n��x�� � � � � xn�� ������

where the ,�n� are the PI amplitudes�
To �nd the Callan�Symanzik equation satis�ed by ,$
cl%� it is easiest to

�rst work out the equation satis�ed by ,�n�� We begin by considering the
irreducible three�point function ,���� This function is de�ned as

,����p�� p�� p�� �


G����p��G����p��G����p��
G����p�� p�� p��� �����

Rescaling with factors Z���� we see that ,��� is related to the irreducible
three�point function of bare �elds by

,����p�� p�� p�� � Z�������,
���
� �p�� p�� p���

Similarly� the irreducible n�point function is related to the corresponding func�
tion of bare �elds by

,�n� � Z���n��,
�n�
� � ������

This relation is identical in form to the corresponding relation for the full
Green�s functions� Eq� ����
�� except for the change of sign in the exponent�
From this point� we can follow the logic used to derive the Callan�Symanzik
equation for Green�s functions� Eq� ������ the only di�erence is that the n�
term enters with the opposite sign� Thus we �ndh

�
�

��
� ����

�

��
� n����

i
,�n��fpig��� �� � �� ������

To convert this to an equation for the e�ective action� note that� on the
right�hand side of Eq� ������� the function ,�n� is accompanied by n powers
of the classical �eld� Then Eq� ������� integrated with n powers of 
cl and
summed over n� is equivalent to the equationh

�
�

��
� ����

�

��
� ����

Z
dx
cl�x�

�

�
cl�x�

i
,�$
cl%��� �� � �� ������

The operator multiplying ���� counts the number of powers of 
cl in each term
of the Taylor expansion� By specializing Eq� ������ to the case of constant

cl� we �nd the Callan�Symanzik equation for Ve� �h

�
�

��
� ����

�

��
� �
cl

�

�
cl

i
Ve� �
cl� �� �� � �� ����
�
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To apply Eq� ����
� to the problem of critical exponents� we �rst convert
this equation to the notation of statistical mechanics by replacing 
cl with the
magnetization M � the conjugate source J by H � and the e�ective potential
Ve� by the Gibbs free energy G�M�� At the same time� we will generalize �
to the full set of couplings �i� Then ����
� takes the formh

�
�

��
�
X
i

�i
�

��i
� �M

�

�M

i
G�M��� f�ig� � �� ������

Now let us �nd the solution to this equation� As before� we begin from
a statement of dimensional analysis� In d dimensions� the e�ective potential
has mass dimension d� and a scalar �eld has mass dimension �d� ����� Thus

G�M��� f�ig� �M�d��d���)g
�
M���d������ f�ig

�
� ������

where )g is a new dimensionless function� Inserting ������ into ������� we see
that )g satis�eshX

i

�i
�

��i
�
�d��

�
� �
�
M

�

�M
� d

�

d���
i
)g
�
M���d������ f�ig

�
� �� ������

that is�h
M

�

�M
�
X
i

��i
�d� � � ���

�

��i
�

�d�

�d� ���d� � � ���

i
)g � �� ������

Solving this equation� we �nd

G�M� � M�d��d���)h�f�i�M�g�

	 exp


�

MZ
��d�����

d log�M ��
�d�

�d � ���d� � � ���
�f��M ��g�

�
�

������
where the running coupling constants �i obey

d

d logM
�i �

��i�f�ig�
d� � � ���f�ig�

� �����

As in our discussion of the spin correlation function� we specialize to the
critical region by assuming that we are on a renormalization group �ow that
passes close to the Wilson�Fisher �xed point� We again ignore the e�ects of
irrelevant operators� Then we should set

�m � �m
�
M���d�����

��������� �������d�����������
�i � � for i � m�

������

with �m � t� In this approximation� the Gibbs free energy takes the form

G�M� t� � M�d��d��� � �M���d�����
���d�������d����d����������

� )h�t�M���d�������������� �������d����������
�
�
������
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where )h is a smooth initial condition�
To simplify the form of the exponents in this expression� we anticipate

some of the results below and replace

� �
d� � � ������
���� ��������

�

� �
�d

d� � � ������
�  �

d� �� ������
d� � � ������

�

������

We must demonstrate that these new exponents indeed correspond to the
ones we have de�ned in Eqs� ����� and ������ With these replacements �and
ignoring the dependence on � from here on�� we �nd forG the scaling formula

G�M� t� �M��)h�tM���	�� ����
�

where )h has a smooth limit as t � �� An equivalent way to represent this
formula is

G�M� t� � t	���� )f�Mt�	�� ������

The scaling laws for thermodynamic quantities follow immediately from
these relations� Along the line t � �� we �nd from ����
� that

H �
�G

�M
� )h���M� ������

which is precisely ������ Below the criticial temperature� we �nd the nonzero
value of the magnetization by minimizing G with respect to M � In the scaling
region� this minimum occurs at the minimum m� of the function )f�m� in
������� This leads to relation ������ in the form

Mt�	 � m�� ������

If we work above TC and in zero �eld� the minimum of )f must occur atM � ��
Then

G�t� � t	����� ������

To compute the speci�c heat� we di�erentiate twice with respect to tempera�
ture� this gives the scaling law ������ with

�� 	 � �� � �� �
d

�� �������
� ������

Finally� we must construct the scaling law for the magnetic susceptibility�
From ������� the scaling law for H at nonzero t is

H �
�G

�M
� t	 )f ��Mt�	�� �����

The inverse of this relation is the scaling law

M � t	)c�Ht�	�� ������
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The magnetic susceptibility at zero �eld is then

� �
��M
�H

�
t
� )c����t�����	 � ������

Thus� we con�rm Eq� ������ with the identi�cation

� � �� � �� �
��� ������
�� �������

� ������

We have now found explicit expressions for all of the various critical ex�
ponents in terms of the Callan�Symanzik functions� As the dimensionality d
approaches � from below� the �xed point �� tends to zero� Then the six critical
exponents approach the values that they would attain in simple dimensional
analysis�

� � �� � � �
� � 	 � �� � � �

� �

� � � � � ��
����
�

It is no surprise that the values of �� � and � given in ����
� are those that we
derived in Chapter � from the the Landau theory of critical phenomena� The
other values can similarly be shown to follow from Landau theory� The renor�
malization group analysis tells us how to systematically correct the predictions
of Landau theory to take proper account of the large�scale �uctuations of the
spin �eld�

Notice that all of the exponents associated with thermodynamic quan�
tities are constructed from the same ingredients as the exponents associated
with the correlation function� From the �eld theory viewpoint� this is obvious�
since all of the scaling laws in the �eld theory must ultimately follow from the
anomalous dimensions of the operators 
�x� and 
��x�� which are precisely
����� and �������� This result� however� has an interesting experimental con�
sequence� It implies model�independent relations among critical exponents�
For example� in any system with a critical point� this theory predicts

	 � �� d�� � � �
� �d� � � ���� ������

These relations test the general framework of identifying a critical point with
the �xed point of a renormalization group �ow�

In addition� the �eld theoretic approach to critical phenomena predicts
that critical exponents are universal� in the sense that they take the same
values in condensed matter systems that approach the same scalar �eld �xed
point in the limit T � TC �

Values of the Critical Exponents

Finally� scalar �eld theory actually predicts the values of ����� and ��������
either from the expansion in powers of � � �� d described in Section ��
 or
by direct expansion of the � and � functions in powers of �� We can use these
expressions to generate quantitative predictions for the critical exponents�
We gave an example of such a prediction at the end of Section ��
� when we
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presented in Eq� ������ the �rst two terms of an expansion for �� We now
return to this question to give �eld�theoretic predictions for all of the critical
exponents�

In our discussion at the end of Section ��
� we remarked that magnets
with di�erent numbers of �uctuating spin components are observed to have
di�erent values for the critical exponents� An optimistic hypothesis would
be that any thermodynamic system with N �uctuating spin components� or�
more generally� N �uctuating thermodynamic variables at the critical point�
would be described by the same �xed point �eld theory with N scalar �elds�
A natural candidate for this �xed point would be the Wilson�Fisher �xed
point of the O�N��symmetric 
� theory discussed in Chapter � We will now
describe the computation of critical exponents for general values of N in this
theory�

As a �rst step� we should compute the values of the functions ����� �����
and ������ in four dimensions� This computation parallels the analysis done
in Chapter � for ordinary 
� theory� so we will only indicate the changes
that need to be made for this case� Just as in ordinary 
� theory� the prop�
agator of the massless O�N��symmetric theory receives no �eld strength cor�
rections in one�loop order� and so the one�loop term in ���� again vanishes�
In Problem ���� we compute the leading� two�loop� contribution to ���� in
O�N��symmetric 
� theory�

� � �N � ��
��

�������
�O����� ������

The one�loop contribution to the � function in 
� theory is derived from the
one�loop vertex counterterm ��� given in Eq� ������� For the O�N��symmetric
case� we computed the divergent part of the corresponding vertex counterterm
in Section ��� from Eq� ������

�� �
��

����d��
�N � ��

,���d
� �

�M����d��
� �nite� ������

Following the logic to Eq� ������� or using Eq� ���
��� we �nd

� � �N � ��
��

���
�O����� ������

This reduces to the � function of 
� theory if we set N �  and replace
� � ���� as indicated below Eq� ��
�� Finally� to compute ��� � we must
repeat the computation done at the end of Section ���� If we consider� instead
of ������ the Green�s function

�

i�p�
j�q�
��k�

�
� and replace the vertex of


� theory by the four�point vertex following from the Lagrangian ��
�� the
factor ��i�� in the �rst line of ����� is replaced by

���i��$�ij�k� � �ik�j� � �i��jk % � �k� � ��i��N � ���ij �

Then

��� � �N � ��
�

���
�O����� ���
��
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Next� we consider the same theory in ��� �� dimensions� The � function
now becomes

� � ���� �N � ��
��

���
� ���
�

so there is a Wilson�Fisher �xed point at

�� �
����

N � �
� ���
��

At this �xed point� we �nd

����� �
N � �

��N � ���
�� � � � � � ������� �

N � �

N � �
�� � � � � ���
��

+From these two results� we can work out predictions for the whole set of
critical exponents to order �� As an example� inserting ���
�� into ������
we �nd

��� � �� N � �

N � �
��O����� ���
��

as claimed at the end of Section ��
�
In our discussion in Chapter �� we claimed that the predictions of crit�

ical exponents are in rough agreement with experimental data� However� by
computing to higher order� one can obtain a much more precise comparison
of theory and experiment� The � expansion of critical exponents has now been
worked out through order �� More impressively� the � expansion for criti�
cal exponents in d � � has been worked out through order ��� By summing
this perturbation series� it is possible to obtain very precise estimates of the
anomalous dimensions ����� and ������� and� through them� precise predic�
tions for the critical exponents�

A comparison of these values to direct determinations of the critical expo�
nents is given in Table ��� The column labeled 0QFT� gives values of critical
exponents obtained by anomalous dimension calculations using 
� pertur�
bation theory in three dimensions� The column labeled 0Experiment� lists a
selection of experimental determinations of the critical exponents in a variety
of systems� These include the liquid�gas critical point in Xe� CO�� and other
�uids� the critical point in binary �uid mixtures with liquid�liquid phase sepa�
ration� the order�disorder transition in the atomic arrangement of the Cu3Zn
alloy ��brass� the super�uid transition in �He� and the order�disorder transi�
tions in ferromagnets �EuO� EuS� Ni� and antiferromagnets �RbMnF��� The
agreement between experimental determinations of the exponents in di�erent
systems is a direct test of universality� For the case of systems with a single
order parameter �N � �� there is a remarkable diversity of physical systems
that are characterized by the same critical exponents�

The column labeled 0Lattice� contains estimates of critical exponents in
abstract lattice statistical mechanical models� For these simpli�ed models� the
statistical mechanical partition function can be calculated in an expansion for
large temperature� With some e�ort� these expansions can be carried out to
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Table ���� Values of Critical Exponents
for Three�Dimensional Statistical Systems

Exponent Landau QFT Lattice Experiment

N �  Systems�

� �� ��� ��� ���� ��� ���� ��� binary liquid
��� ��� liquid�gas
��� ��� ��brass

� ��
 ����� ��� ���� ��� ����
 �
� binary liquid
���
 ��� ��brass

	 ��� ��� �
� ���� ��� ��� �
� binary liquid
��� ��� liquid�gas

� ��
 ����
 ��� ����� ��� ����
 �
� binary liquid
���� �� liquid�gas

� ��� ����� ��� ������
� ���� ��� binary liquid
���� ��� ��brass

N � � Systems�

� �� ��� ��� ��� ��
� ��
 ����� ��� ����� ��� ����� �� super�uid �He
	 ��� ������ ��� ��� ��� ����� ��� super�uid �He

N � � Systems�

� �� ���� ��� ��� ��� ��� ��� EuO� EuS
��� ��� Ni
��� ��� RbMnF�

� ��
 ����
 ��� ��� ��� ���� ��� EuO� EuS
����� ��� RbMnF�

	 ��� ���
 ��� ����� ��� ���� ��� Ni
� ��
 ����
 ��� ���� �
� ���� ��� EuO� EuS

����� �
� Ni
���� ��� RbMnF�

� ��� ����� ��� ���� ���

The values of critical exponents in the column .QFT� are obtained by resumming
the perturbation series for anomalous dimensions at the Wilson�Fisher �xed point in
O�N��symmetric �� theory in three dimensions� The values in the column .Lattice�
are based on analysis of high�temperature series expansions for lattice statistical me�
chanical models� The values in the column .Experiment� are taken from experiments
on critical points in the systems described� In all cases� the numbers in parentheses are
the standard errors in the last displayed digits� This table is based on J� C� Le Guil�
lou and J� Zinn�Justin� Phys� Rev� B��� 	�� ��	
��� with some values updated from
J� Zinn�Justin ��		�� Chapter ��� A full set of references for the last two columns can
be found in these sources�
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 terms or more� By resumming these series� one can obtain direct theoretical
estimates of the critical exponents� with an accuracy comparable to that of
the best experiments� The comparison between these values and experiment
tests the identi�cation of experimental systems with the simple Hamiltonians
that were the starting point for our renormalization group analysis�

The agreement of all three types of determinations of the critical expo�
nents presents an impressive picture� The picture is certainly not perfect� and
a careful inspection of Table �� reveals some signi�cant discrepancies� But�
in general� the evidence is compelling that quantum �eld theory provides the
basic explanation for the thermodynamic critical behavior of a broad range
of physical systems�

���� Critical Behavior in Four Dimensions

Now that we have discussed the general theory of critical exponents for d � ��
let us concentrate some attention on the case d � �� This case obviously has
special interest for the applications of quantum �eld theory to elementary
particle physics� In addition� we now know that d � � lies on a boundary at
which the Wilson�Fisher �xed point disappears� We would like to understand
the special behavior of quantum �eld theory predictions at this boundary�

The most obvious di�erence between d � � and d � � is that� while in the
former case the deviation of � from the �xed point multiplies an irrelevant
operator� in the case d � �� � multiplies a marginal operator� We have seen in
Eq� ������ that� at small momenta or large distances� the running value of �
still approaches its �xed point� now located at � � �� However� this approach
is described by a much slower function� not a power but only a logarithm of
the distance scale� Thus it is normally not correct to ignore the deviation of
� from the �xed point� Including this e�ect� we �nd additional logarithmic
terms� analogous to the dependence of correlation functions on log p that we
already know characterizes a renormalizable �eld theory�

To give a nontrivial illustration of this logarithmic dependence� we return
to a problem that we postponed at the end of Chapter � In Eq� �����
we obtained the expression for the e�ective potential of 
� theory to second
order in �� in the limit of vanishing mass parameter�

Ve� �


�

�cl

h
��

��

�����

�
�N � ��

�
log��
�cl�M

��� �
�

�
� � log �

�i
� ���

�

�Note that we now return to our standard notation� in which M is the renor�
malization scale and � is a mass parameter�� This expression seemed to have
a minimum for very small values of 
cl� but only at values so small that��� log��
�cl�M��

�� � � ���
��

Since� at the nth order of perturbation theory� one �nds n powers of this loga�
rithm� Eq� ���
�� implies that the higher�order terms in � are not necessarily
negligible� What we need is a technique that sums these terms�
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This summation is provided by the Callan�Symanzik equation� From
������ or ����
�� the Callan�Symanzik equation for the e�ective potential
in the massless limit of four�dimensional 
� theory ish

M
�

�M
� ����

�

��
� �
cl

�

�
cl

i
Ve��
cl�M� �� � �� ���
��

As before� we can solve for Ve� by combining this equation with the predictions
of dimensional analysis� In d � ��

Ve��
cl�M� �� � 
�clv�
cl�M� ��� ���
��

Then v satis�es h

cl

�

�
cl
� �

 � �

�

��
�

��

 � �

i
v � �� ���
��

This equation for v can be solved by our standard methods� to give

v�
�M� �� � v���� exp


�

�clZ
M

d log
cl
��

 � �

�
��
cl�

��
� ������

where � satis�es
d

d log�
cl�M�
� �

����

 � ����
� �����

However� since we are working only to the order of the leading loop correc�
tions� and since ���� is zero to this order� we can ignore the exponential in
������� In addition� we can ignore the denominator on the right�hand side of
������ so that this equation reduces to the more standard form of the equa�
tion ������ for the running coupling constant� Thus� using the leading�order
Callan�Symanzik function� we �nd

Ve��
cl� � v����
cl��

�
cl� ������

The function v� in ������ is not determined by the Callan�Symanzik
equation� To �nd this function� we compare ������ to the result ���

� that
we obtained from our explicit one�loop evaluation of the e�ective potential�
The precise constraint is the following� After choosing the function v�����
substitute for � the solution ������ to the renormalization group equation�

��
cl� �
�

� ��������N��� log�
cl�M�
� ������

Then expand the result in powers of � and drop terms of order �� and higher�
If v� is chosen correctly� the result should agree with ���

�� Applying this
criterion� we �nd the following result for the e�ective potential�

Ve��
cl� �


�

�cl

h
��

�
�

�����

�
�N���

�
log�� �

�

�
� � log �

�i
� ������

where � is given by �������
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The error in Eq� ������ comes in the determination of v� as a power

series in �� Thus this error is of order �
�
� As 
cl � �� � � �� and so the

representation ������ becomes more and more accurate� Thus this formula
successfully sums the powers of the dangerous logarithm ���
��� Viewed as
a function of 
cl� ������ has its minimum at 
cl � �� Thus the apparent
symmetry�breaking minimum of ���

� is indeed an artifact of the incomplete
perturbation expansion and disappears in a more complete treatment� This
resolves the question that we raised in Section ��� We should note that�
in more complicated examples� an apparent symmetry�breaking minimum of
the e�ective potential found in the one�loop order of perturbation theory can
survive a renormalization�group analysis� An example is given in the Final
Project for Part II�

The procedure we have followed in this argument is called the renor�

malization group improvement of perturbation theory� The technique can be
applied equally well to the computation of correlation functions and other pre�
dictions of Feynman diagram perturbation theory� One compares the solution
of the Callan�Symanzik equation to the result of a straightforward perturba�
tion theory computation to the same order in the coupling constant� choosing
the undetermined function in the renormalization group solution in such a
way as to reproduce the perturbation theory result� In this way� one �nds a
more compact formula in which large logarithms such as those in ���
�� are
resummed into running coupling constants� This resummation produces the
dependence of correlation functions on the logarithm of the mass scale that
characterizes a �eld theory with a marginal or renormalizable perturbation�

In the case of 
� theory� the running coupling constant goes to zero at
small momenta and becomes large at large momenta� Since the error term
in improved perturbation theory is a power of �� the improved perturbation
theory becomes accurate at small momenta but goes out of control at large
momenta� This accords with our physical intuition� We would expect pertur�
bation theory to be accurate only when the running coupling constant stays
small�

In an asymptotically free theory� where the running coupling constant be�
comes small at large momenta� we can �nd accurate expressions for correlation
functions at large momenta using renormalization�group�improved perturba�
tion theory� In Chapters � and � we will use this idea as our major tool in
analyzing the short�distance behavior of the strong interactions�
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���� The Nonlinear Sigma Model

To complete our study of scalar �eld theory� we will discuss a nonlinear theory
of scalar �elds� whose structure is very di�erent from that of 
� theory� This
theory� called the nonlinear sigma model� was �rst proposed as an alternative
description of spontaneous symmetry breaking� It will be interesting to us for
three reasons� First� it provides a simple explicit example of an asymptotically
free theory� Second� it will give us a second dimensional expansion with which
we can study the Wilson�Fisher �xed point� Then we can see where the Wilson�
Fisher �xed point goes in the space of Lagrangians for dimensions d well below
�� Finally� we will show that the nonlinear sigma model is exactly solvable in
a limit that is di�erent from the standard weak�coupling limit� This solution
will give us further insight into the dependence of symmetry breaking on
spacetime dimensionality�

The d � � Nonlinear Sigma Model

We begin our study in two dimensions� In d � �� a scalar �eld is dimensionless�
thus� any theory of scalar �elds 
i with a Lagrangian of the form

L � fij�f
ig���
i��
j ����
�

has dimensionless couplings and so is renormalizable� Since any function
f�f
ig� leads to a renormalizable theory� this class of scalar �eld theories
contains an in�nite number of marginal parameters� To restrict these possible
parameters� we must impose some symmetries on the theory�

A simple choice is to take the scalar �elds 
i to form an N �component
unit vector �eld ni�x�� constrained to satisfy

NX
i
�

��ni�x���� � � ������

If we insist that the �eld theory has O�N� symmetry� the function f in ����
�
can depend only on the invariant length of �n�x�� which is constrained by
������� Thus� the most general possible choice for f is a constant� Similarly�
the only possible nonderivative interaction g�fnig� that one might add to
����
� is a constant� and this would have no e�ect on the Green�s functions
of �n� With these restrictions� the most general Lagrangian one can build from
�n�x� with two derivatives and O�N� symmetry is

L �


�g�
�����n���� ������

This theory has a straightforward physical interpretation� It is a phe�
nomenological description of a system with O�N� symmetry spontaneously
broken by the vacuum expectation value of a �eld that transforms as a vector
of O�N�� Consider� for example� the situation in N �component 
� theory in
its spontaneously broken phase� The �eld 
i acquires a vacuum expectation
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value� which we can write in terms of a magnitude and a direction parame�
terized by a unit vector �


i
�
� 
�n

i�x�� ������

The �uctuations of 
� correspond to a massive �eld� the �eld called � in Chap�
ter � The �uctuations of the direction of the unit vector �n�x� correspond to
the N �  Goldstone bosons� Notice that �n has N components subject to the
one constraint ������� and so contains N �  degrees of freedom� Formally�
the nonlinear sigma model is the limit of 
� theory as the mass of the � �eld
is taken to in�nity while 
� is held constant�

Despite this suggestive connection� we will �rst analyze the nonlinear
sigma model on its own footing as an independent quantum �eld theory� It
is convenient to solve the constraint and parametrize �n by N �  Goldstone
boson �elds �k�

ni �
�
��� � � � � �N��� ��� ������

where� by de�nition�

� � �� ������� ������

The con�guration �k � � corresponds to a uniform state of spontaneous
symmetry breaking� oriented in the N direction� The representation ������
implies that ����ni��� � ��������� � ��� � ������

� ��
� �����

Then the Lagrangian ������ takes the form

L �


�g�

��������� � ��� � ������
� ��

�
� ������

Notice that there is no mass term for the �eld ��� as required by Goldstone�s
theorem�

The perturbation theory for the �k �eld can be read o� straightforwardly
by expanding the Lagrangian in powers of �k�

L �


�g�

��������� � 

�g�
��� � ������ � � � � � ������

This leads to the Feynman rules shown in Fig� ��� plus additional vertices
with all even numbers of �k �elds� Since the Lagrangian ������ is the most
general O�N��symmetric Lagrangian with dimensionless coe	cients that can
be built out of these �elds� the theory can be made �nite by renormalization of
the coupling constant g and O�N��symmetric rescaling of the �elds �k and ��
In renormalized perturbation theory� there are divergences and counterterms
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Figure ����� Feynman rules for the nonlinear sigma model�

for each possible �n�� vertex� however� these counterterms are all related by
the basic requirement that the bare Lagrangian preserve the O�N� symmetry�

We now compute the Callan�Symanzik functions for this theory� Since
the theory is renormalizable� its Green�s functions obey the Callan�Symanzik
equation for some functions �� �� Explicitly�h

M
�

�M
� ��g�

�

�g
� n��g�

i
G�n� � �� ������

where G�n� is a Green�s function of n �elds �k or �� To identify the � and �
functions� to the leading order in perturbation theory� we compute two simple
Green�s functions to one�loop order and then see what forms are necessary if
the Callan�Symanzik equation is to be satis�ed�

The �rst Green�s function we consider is

G��� � h��x�i � ����
�

Expanding the de�nition ������� we �nd

h����i � � �
�

�
�����

�
� � � � �  � � ������

To evaluate this formula� we use the propagator of Fig� �� to compute�
�k��������

�
� �

Z
ddk

����d
ig�

k� � ��
�k�� ������

We have added a small mass � as an infrared cuto�� Then�
�k��������

�
�

g�

����d��
,��d

� �

������d��
�k�� ������

Using this result in our expression for h�i and then subtracting at the mo�
mentum scale M � we �nd

h�i � � 

�
�N�� g�

����d��
,��d

� �

�


������d��
� 

�M����d��

�
�O�g��

��
d��

� g��N��
��

log
M�

��
�O�g��� ������
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This expression satis�es the Callan�Symanzik equation to order g� only if

��g� �
g��N��

��
�O�g��� ������

Next� consider the �k two�point function��
�k�p�����p�� �

�
ig�

p�
�k� �

ig�

p�
��i/k��

ig�

p�
� � � � �

�����

In evaluating /k� from the Feynman rules in Fig� ��� we again encounter
the integral ������� and also the integral�

���
k����������

�
�

Z
ddk

����d
ig�k�

k� � ��
�k�

�
g�

����d��

d
�,��d

� �

�����d��
�k��

������

This formula has no pole at d � �� and for d � � it is proportional to a positive
power of ��� hence� we can set this contraction to zero� Then

/k��p� � ��k�p� 

����d��
,��d

� �

������d��
� ������

Subtracting at M as above and taking the limit d� �� we �nd�
�k�p�����p�� � ig�

p�
�k� �

ig�

p�

�
�ip�



��
log

M�

��

� ig�
p�

� � � � �

�
i

p�
�k�
�
g� � g�

��
log

M�

��
�O�g��

�
�

������

Applying the Callan�Symanzik equation to this result givesh
M

�

�M
���g�

�

�g
� ���g�

i �
�k�p�����p�� � ��

�
i�k�

p�
�� g�

��
� ��g� � �g � �g���g�

�
�

����
�

Inserting the result ������ for ��g�� we �nd

��g� � ��N��� g
�

��
�O�g�� ������

At N � � precisely� the beta function vanishes� This is not an accident
but rather is a nontrivial check of our calculation� For N � �� we can make
the change of variables �� � sin �� then � � cos �� and the Lagrangian takes
the form

L �


�g�
�����

�� ������
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This is a free �eld theory for the �eld ��x�� so it can have no renormalization
group �ow�

For N � �� the � function is negative� This theory is asymptotically free�
The running coupling constant g becomes small at small distances and grows
large at large distances�

In quantum electrodynamics� we found an appealing physical picture for
the sign of the coupling constant evolution� As we discussed in Section ��
� the
process of virtual pair creation makes the vacuum a dielectric medium� which
screens electric charge� One would therefore expect the e�ective Coulomb
interaction of charge to decrease at large distances and increase at small dis�
tances� It is easy to imagine that a similar screening phenomenon might occur
in any quantum �eld theory� Thus� it is surprising that� in this theory� we
have found by explicit calculation that the coupling constant evolution has
the opposite sign� What is the physical explanation for this�

In fact� the original derivation of the asymptotic freedom of the nonlin�
ear sigma model� due to Polyakov�y gave a clear physical argument for the
sign of the evolution� Now that we have derived the � function by the au�
tomatic method of the Callan�Symanzik equation� let us review Polyakov�s
more physical derivation�

Polyakov analyzed the nonlinear sigma model using Wilson�s momentum�
slicing technique� which we discussed in Section ��� Consider� then� the
nonlinear sigma model de�ned with a momentum cuto� in place of the di�
mensional regulator� As in Section ��� we work in Euclidean space with
initial cuto� &�

The original integration variables are the Fourier components of the unit
vector �eld ni�x�� We wish to integrate out of the functional integral those
Fourier components corresponding to momenta k in the range b& � jkj � &� If
the remaining components are Fourier�transformed back to coordinate space�
they describe a coarse�grained average of the original unit vector �eld� This
averaged �eld can be rescaled so that it is again a unit vector at each point�
Call this averaged and rescaled �eld 'ni� Then we can write the relation of ni

and 'ni as follows�

ni�x� � 'ni�x�
�
� 
����� �

N��X
a
�


a�x�e
i
a�x�� ������

In this equation� the vectors �ea�x� form a basis of unit vectors orthogonal
to 'n�x�� In Polyakov�s picture� 'n�x� and the �ea�x� are slowly varying� On
the other hand� the coe	cients 
a�x� contain only Fourier components in the
range b& � jkj � &� These are the variables we integrate over to achieve the
renormalization group transformation�

yA� M� Polyakov� Phys� Lett� �	B� �	 ��	����
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To set up the integral over 
a� we �rst work out

��n
i � ��'n

i�� 
����� � 'ni
�


 � ��

�� 
�����

�
� ��
ae

i
a � 
a��e

i
a� ������

By the de�nition of 'n� �ea� these vectors satisfy

j'nj� � � 'n � �ea � �� ������

Taking the derivative of these identities� we �nd

'n � ��'n � �� 'n � ���ea � ��'n � �ea � �� �����

Using the identities in ������ and ������ we can compute the Lagrangian
of the nonlinear sigma model through terms quadratic in the 
a�

L �


�g�
j��nij� � 

�g�

h
j��'nij��� 
�� � ���
a�

� � ��
a�
�
b���ea � ���eb�

� ��
a��'n � �ea � 
a
b�
��ea � ���eb � � � �

i
� ������

We will consider the second term of ������ to be the zeroth�order La�
grangian for 
a� Thus�

L� � 

�g�
���
a�

�� ������

which gives the propagator

h
a�p�
b��p�i � g�

p�
�ab� ������

restricted to the momentum region b& � jpj � &� This propagator can be used
to integrate the remaining terms of the Lagrangian over the 
a� Borrowing
the integrals from the derivation of ������� we can set

h
a�����
b���i � h��
a�����
b���i � � ����
�

and

h
a���
b���i � �ab
g�

��
log

&�

�b&��
� ������

Then� after the integral over 
� the new Lagrangian is given approximately
by

Le� �


�g�

h
j��'nj�

�
� �
���� h
a
bi ���ea � ���eb �O�g��

i
� ������

where the expectation values of 
a are given by �������
To simplify this further� we must simplify the structure ����ea�

� that ap�
pears in the second term of ������� Introduce a complete basis of vectors�

����ea�
� � �'n � ���ea�� � ��ec � ���ea��� ������

The second term on the right is a new structure� associated with the torsion
of the coordinate system for ea� it turns out to correspond to an irrelevant
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operator induced by the renormalization procedure� The �rst term� however�
can be put into a familiar form by using the two identities ������

�'n � ���ea�� � ��ea � ��'n�� � ���'n�
�� ������

Then

Le� �


�g�

h
j��'nj�

�
� �N � �

g�

��
log



b�
�

g�

��
log



b�

�
� � � �

i
�



�

�
g� �

g�

��
�N � �� log



b
� � � �

���
j��'nj��

������

The quantity in parentheses is the square of a running coupling constant� To
the order of our calculation� this quantity satis�es

d

d log b
g � ��N��� g

�

��
� �����

in agreement with �������
In this calculation� the sign of the coupling constant renormalization

comes from the fact that the e�ective length of the unit vector �n is reduced by
averaging over short�wavelength �uctuations� This lowers the e�ective action
associated with a con�guration in which the direction of �n changes over a dis�
placement �x �see Fig� ����� Looking back at ������� we see that a decrease
of the magnitude of L for the same con�guration of �n can be interpreted as
an increase of the e�ective coupling� Thus the nonlinear sigma model is more
strongly coupled� or� in terms of the physical con�guration of the �n �eld� more
disordered� at large distances�

Our calculation implies that� if any two�dimensional statistical system
apparently has spontaneously broken symmetry and Goldstone bosons� then�
at large distances� the ordering disappears� This is an unexpected conclusion�
However� this conclusion is in accord with a theorem proved by Mermin and
Wagnerz that a two�dimensional system with a continuous symmetry cannot
support an ordered state in which a symmetry�breaking �eld has a nonzero
vacuum expectation value� This theorem applies to the case N � � as well as
to N � �� We have motivated this theorem in Problem ��

The Nonlinear Sigma Model for � 	 d 	 �

We now extend the results of this analysis to dimensions d � �� In general d�
we will continue to de�ne the action of the nonlinear sigma model byZ

ddxL �

Z
ddx



�g�
����n�

�� ������

where �n is still dimensionless� since it obeys the constraint j�nj� � � Thus
g has the dimensions �mass����d���� We de�ne a dimensionless coupling by

zN� D� Mermin and H� Wagner� Phys� Rev� Lett� ��� �� ��	����
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Figure ����� Averaging of the direction of �n� and its interpretation as an
increase of the running coupling constant�

writing

T � g�Md��� ������

just as we did in ������� If ������ is viewed as the Boltzmann weight of
a partition function� then T is a dimensionless variable proportional to the
temperature�

+From ������� we can �nd the � function for T in d dimensions� in
analogy to Eq� ������

��T � � �d� ��T � �g�����g�� ������

where the factor of �g in the second term comes from the de�nition T � g��
Since �n is dimensionless� the � function is unchanged from the two�dimensional
result when expressed in terms of dimensionless couplings� Thus� in d � �� ��

��T � � ��T � �N���T
�

��
�

��T � � �N�� T
��

�

����
�

Notice that the � function for T has a nontrivial zero� which approaches
T � � as �� �� This zero is located at

T� �
���

N � �
� ������

The form of the � function is sketched in Fig� ���� In contrast to the Wilson�
Fisher zero in d � �� �� discussed in Section ��
� this is an ultraviolet�stable
�xed point� The �ows to the infrared go out from this �xed point� Since T is
proportional to the temperature of the corresponding statistical system� t� �
is the state of complete order� while t 
  is the state of complete disorder�
This agrees with the intuition that accompanied Polyakov�s derivation of the
� function� The �xed point T� corresponds to the critical temperature� Thus�
the critical temperature tends to zero as d � �� in accord with the Mermin�
Wagner theorem�
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Figure ����� The form of the  function in the nonlinear sigma model for
d � ��

We can now compute the critical exponents of the nonlinear sigma model
in an expansion in � � d� �� The exponent � is given straightforwardly by

� � ���T�� �
�

N � �
� ������

To �nd the second exponent �� we need to identify the relevant perturbation
that corresponds to the renormalization group �ow away from the �xed point
for T � TC � This is just the deviation of T from T��

�T � T � T�� ������

From the renormalization group equation for the running coupling constant�
we �nd that the running �T obeys

d

d log p
�T �


d

dT
��T �

���
T
T�

�
� �T � ������

The quantity in brackets is negative� As in Eqs� ������ and ������� we can
identify this quantity with ������ At a momentum p�M �

�T �p� � �T

� p

M

�����
� �����

thus ��p� becomes of order  at a momentum that is the inverse of � �
�T�T���� � as required� Using the explicit form of the � function from ����
��
we �nd

� �


�
� ����

independent of N to this order in �� �Of course� these results apply only for
N � ��� The thermodynamic critical exponents can be found from ������
and ���� using the model�independent relations derived in Section ���
When the values found here for � and � are extrapolated to d � � �that is�
� � �� the agreement with experiment is not spectacular� but the results at
least suggest that the �xed point we have found here may be the continuation
of the Wilson�Fisher �xed point to the vicinity of two dimensions�
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Exact Solution for Large N

It is possible to obtain further insight into the nature of this �xed point
by attacking the nonlinear sigma model using another approach� Since the
nonlinear sigma model depends on a parameter N � the number of components
of the unit vector� it is reasonable to ask how this model behaves as N ���
We now show that if we take this limit holding g�N �xed� we can obtain an
exact solution to the model with nontrivial behavior�

The manipulations that lead to this solution are most clear if we work in
Euclidean space� regarding the Lagrangian as the Boltzmann weight of a spin
system� Then we must compute the functional integral

Z �

Z
Dn exp


�
Z
ddx



�g��
���n�

�

�
�
Y
x

��n��x� � �� �����

Here g� is the bare value of the coupling constant� while the product of delta
functions� one at each point� enforces the constraint� Introduce an integral
representation of the delta functions� this requires a second functional integral
over a Lagrange multiplier variable 	�x��

Z �

Z
D	Dn exp


�
Z
ddx



�g��
���n�

� � i

�g��

Z
ddx	�n� � �

�
� �����

Now the variable n is unconstrained and appears in the exponent only
quadratically� Thus� we can integrate over n� to obtain

Z �

Z
D	 �det$��� � i	�x�%

��N��
exp
h i

�g��

Z
ddx	

i
�

�

Z
D	 exp

h
�N

�
tr log���� � i	� �

i

�g��

Z
ddx	

i
�

�����

Since we are taking the limit N � � with g��N held �xed� both terms
in the exponent are of order N � Thus it makes sense to evaluate the integral
by steepest descents� This entails dominating the integral by the value of the
function 	�x� that minimizes the exponent� To determine this con�guration�
we compute the functional derivative of the exponent with respect to 	�x��
This gives the variational equation

N

�
hxj 

��� � i	
jxi � 

�g��
� ���
�

The left�hand side of this equation must be constant and real� thus� we should
look for a solution in which 	�x� is constant and pure imaginary� Write

	�x� � �im�� �����

then m� obeys

N

Z
ddk

����d


k� �m�
�



g��
� �����
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We will study this equation �rst in d � �� If we de�ne the integral in
����� with a momentum cuto�� we can evaluate this integral and �nd the
equation for m�

N

��
log

&

m
�



g��
� �����

We can make this equation �nite by the renormalization



g��
�



g�
�

N

��
log

&

M
� �����

which introduces an arbitrary renormalization scale M � Then we can solve for
m� to �nd

m � M exp
h
� ��

g�N

i
� ������

This is a nonzero� O�N��invariant mass term for the N unconstrained com�
ponents of �n� In this solution� h�ni � � and the symmetry is unbroken� for any
value of g� or T �

The solution of the theory does depend on the arbitrary renormalization
scale M � this dependence simply re�ects the arbitrariness of the de�nition
of the renormalized coupling constant� The statement that m follows unam�
biguously from an underlying theory with �xed bare coupling and cuto� is
precisely the statement that m obeys the Callan�Symanzik equation with no
overall rescaling� h

M
�

�M
� ��g��

�

�g

i
m�g��M� � �� �����

Using the large�N limit of �������

��g� � �g
�N

��
� ������

it is easy to check that ����� is satis�ed� Conversely� the validity of �����
with ������ tells us that Eq� ������ is an exact representation of the �
function to all orders in g�N in the limit of largeN � The corrections to ������
are of order ��N� or� equivalently� of order g� with no compensatory factor of
N � Equation ������ agrees with our earlier calculation ������ to this order�

Now let us redo this exercise in d � �� In this case� the integral in �����
diverges as a power of the cuto�� Even when the dependence on & is removed
by renormalization� this change in behavior leads to a change in the depen�
dence of the integral on m� which has important physical implications�

It is not di	cult to work out the integral in ����� as an expansion in
�&�m�� One �nds�Z

ddk

����d


k� �m�
�

	
C�&

d�� � C�m
d�� � � � � for d � ��

C�&
d�� � 'C�m

�&d�� � � � � for d � ��
������
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where C�� C�� 'C� are some functions of d� In particular�

C� �
h
�d����d�����,

�d�
�

�
�d� ��

i��
� ������

In d � �� the �rst derivative of the integral with respect to m� is smooth as
m� � �� this is the reason for the change in behavior�

In the case d � �� the left�hand side of ����� covered the whole range
from � to � as m was varied� thus� we could always �nd a solution for any
value of g��� In d � �� this is no longer true� Equation ����� can be solved
for m only if Ng�� is greater than the critical value

Ng�C �
�
C�&

d������ ����
�

Just at the boundary� m � �� For bare couplings weaker than ����
�� it is
possible to lower the value of the e�ective action by giving one component of
�n a vacuum expectation value while keeping the other components massless�
Thus ����
� is the criterion for the second�order phase transition in this
model� Equation ������ implies that the critical value of g�� � which is pro�
portional to the critical temperature� goes to zero as d � �� in accord with
our renormalization�group analysis�

In the symmetric phase of the nonlinear sigma model� the mass m de�
termines the exponential fall�o� of correlations� so � � m��� Thus we can
determine the exponent � by solving for the dependence of m on the devia�
tion of g�� from the critical temperature� Write

t �
g�� � g�C
g�C

� ������

Then� in � � d � �� we can use ������ to solve ����� for m for small
values of t� This gives



Ng�C
� t � C�m

d��� ������

which implies m � t� with

� �


d� �
� � � d � �� ������

Similarly�

� �


�
� d � �� ������

The discontinuity in the dependence of � on d is exactly what we predicted
from renormalization group analysis� For d � �� the value of � goes over to
the prediction of naive dimensional analysis� The value of � given by ������
is in precise agreement with ����� in the expansion � � d � �� and with
the N � � limit of ������� in the expansion � � �� d� Apparently� all of
our results for critical exponents mesh in a very satisfying way�

By combining all of our results� we arrive at a pleasing picture of the be�
havior of scalar �eld theory as a function of spacetime dimensionality� Above
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four dimensions� any scalar �eld interaction is irrelevant and the expected
behavior is trivial� Just at four dimensions� the coupling constant tends to
zero only logarithmically at large scale� giving rise to a renormalizable the�
ory with predictions such as those in Section ���� Below four dimensions�
the theory is intrinsically a theory of interacting scalar �elds� dominated by
the Wilson�Fisher �xed point� The coupling at this �xed point is small near
four dimensions but grows large as the dimensionality decreases� Finally �for
N � ��� as d� �� the �xed�point theory approaches the weak�coupling limit
of a completely di�erent Lagrangian with the same symmetries� the nonlinear
sigma model�

This evolution of the behavior of the model as a function of d illustrates
the main point of the previous two chapters� The qualitative behavior of a
quantum �eld theory is determined not by the fundamental Lagrangian� but
rather by the nature of the renormalization group �ow and its �xed points�
These� in turn� depend only on the basic symmetries that are imposed on the
family of Lagrangians that �ow into one another� This conclusion signals� at
the deepest level� the importance of symmetry principles in determining the
fundamental laws of physics�

Problems

���� Correction�to�scaling exponent� For critical phenomena in ��� dimensions�
the irrelevant contributions that disappear most slowly are those associated with the
deviation of the coupling constant � from its �xed�point value� This gives the most im�
portant nonuniversal correction to the scaling laws derived in Section ���� By studying
the solution of the Callan�Symanzik equation� show that if the bare value of � di�ers
slightly from ��� the Gibbs free energy receives a correction

G�M� t�� G�M� t� � �� � ��� ���t��*k�tM���	���

This formula de�nes a new critical exponent �� called the correction�to�scaling expo�

nent� Show that

� �
d

d�

���
��
� ��O�����

���� The exponent �� By combining the result of Problem ��� with an appropriate
renormalization prescription� show that the leading term in ���� in �� theory is

� �
��

�������
�

Generalize this result to the O�N��symmetric �� theory to derive Eq� ������� Compute
the leading�order ���� contribution to ��

���� The CPN model� The nonlinear sigma model discussed in the text can be
thought of as a quantum theory of �elds that are coordinates on the unit sphere�
A slightly more complicated space of high symmetry is complex projective space�



Problems ���

CPN � This space can be de�ned as the space of �N ����dimensional complex vectors
�z�� � � � � zN��� subject to the conditionX

j

jzj j� � ��

with points related by an overall phase rotation identi�ed� that is�

�ei�z�� � � � � e
i�zN��� identi�ed with �z�� � � � � zN����

In this problem� we study the two�dimensional quantum �eld theory whose �elds are
coordinates on this space�

�a� One way to represent a theory of coordinates on CPN is to write a Lagrangian
depending on �elds zj�x�� subject to the constraint� which also has the local
symmetry

zj�x�� ei��x�zj�x��

independently at each point x� Show that the following Lagrangian has this
symmetry�

L � �
g�

$j��zj j� � jz�j ��zj j�%�

To prove the invariance� you will need to use the constraint on the zj � and its
consequence

z�j ��zj � ����z�j �zj �
Show that the nonlinear sigma model for the case N �  can be converted to
the CPN model for the case N � � by the substitution

ni � z�	iz�

where 	i are the Pauli sigma matrices�

�b� To write the Lagrangian in a simpler form� introduce a scalar Lagrange multiplier
� which implements the constraint and also a vector Lagrange multiplier A� to
express the local symmetry� More speci�cally� show that the Lagrangian of the
CPN model is obtained from the Lagrangian

L � �
g�

$jD�zj j� � ��jzj j� � ��%�

where D� � ��� � iA��� by functionally integrating over the �elds � and A��

�c� We can solve the CPN model in the limit N �� by integrating over the �elds
zj � Show that this integral leads to the expression

Z �

Z
DAD� exp


�N tr log��D� � �� �

i

g�

Z
d� x�

�
�

where we have kept only the leading terms for N ��� g�N �xed� Using meth�
ods similar to those we used for the nonlinear sigma model� examine the condi�
tions for minimizing the exponent with respect to � and A�� Show that these
conditions have a solution at A� � � and � � m� � �� Show that� if g� is
renormalized at the scale M � m can be written as

m �M exp
h
� ��
g�N

i
�
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�d� Now expand the exponent about A� � �� Show that the �rst nontrivial term
in this expansion is proportional to the vacuum polarization of massive scalar
�elds� Evaluate this expression using dimensional regularization� and show that
it yields a standard kinetic energy term for A�� Thus the strange nonlinear
�eld theory that we started with is �nally transformed into a theory of �N � ��
massive scalar �elds interacting with a massless photon�
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The Coleman�Weinberg Potential

In Chapter  and Section ��� we discussed the e�ective potential for an
O�N��symmetric 
� theory in four dimensions� We computed the perturbative
corrections to this e�ective potential� and used the renormalization group to
clarify the behavior of the potential for small values of the scalar �eld mass�
After all this work� however� we found that the qualitative dependence of the
theory on the mass parameter was unchanged by perturbative corrections�
The theory still possessed a second�order phase transition as a function of
the mass� The loop corrections a�ected this picture only in providing some
logarithmic corrections to the scaling behavior near the phase transition�

However� loop corrections are not always so innocuous� For some sys�
tems� they can change the structure of the phase transition qualitatively� This
Final Project treats the simplest example of such a system� the Coleman�

Weinberg model� The analysis of this model draws on a broad variety of topics
discussed in Part II� it provides a quite nontrivial application of the e�ec�
tive potential formalism and the use of the renormalization group equation�
The phenomenon displayed in this exercise reappears in many contexts� from
displacive phase transitions in solids to the thermodynamics of the early uni�
verse�

This problem makes use of material in starred sections of the book� in
particular� Sections ��� ��� and ���� Parts �a� and �e�� however� depend
only on the unstarred material of Part II� We recommend part �e� as excellent
practice in the computation of renormalization group functions�

The Coleman�Weinberg model is the quantum electrodynamics of a scalar
�eld in four dimensions� considered for small values of the scalar �eld mass�
The Lagrangian is

L � � �
� �F���

� � �D�
�
yD�
�m�
y
� �

� �

y
���

where 
�x� is a complex�valued scalar �eld and D�
 � ��� � ieA��
�


a� Assume that m� � ��� � �� so that the symmetry 
�x� � e�i�
�x� is
spontaneously broken� Write out the expression for L� expanded around
the broken�symmetry state by introducing


�x� � 
� �
p
�

�
��x� � i ��x�

�
�

��	



��
 Final Project

where 
�� ��x�� and � are real�valued� Show that the A� �eld acquires a
mass� This mechanism of mass generation for vector �elds is called the
Higgs mechanism� We will study it in great detail in Chapter ���


b� Working in Landau gauge ���A� � ��� compute the one�loop correction
to the e�ective potential V �
cl�� Show that it is renormalized by counter�
terms for m� and �� Renormalize by minimal subtraction� introducing a
renormalization scale M �


c� In the result of part �b�� take the limit �� � �� The result should be
an e�ective potential that is scale�invariant up to logarithms containing
M � Analyze this expression for � very small� of order �e���� Show that�
with this choice of coupling constants� V �
cl� has a symmetry�breaking
minimum at a value of 
cl for which no logarithm is large� so that a
straightforward perturbation theory analysis should be valid� Thus the
�� � � theory� for this choice of coupling constants� still has sponta�
neously broken symmetry� due to the in�uence of quantum corrections�


d� Sketch the behavior of V �
cl� as a function ofm�� on both sides ofm� � ��
for the choice of coupling constants made in part �c��


e� Compute the Callan�Symanzik � functions for e and �� You should �nd

�e �
e�

����
� �� �



����
�

�� � �e��� 
�e�

�
�

Sketch the renormalization group �ows in the ��� e�� plane� Show that
every renormalization group trajectory passes through the region of cou�
pling constants considered in part �c��


f� Construct the renormalization�group�improved e�ective potential at �� �
� by applying the results of part �e� to the calculation of part �c�� Com�
pute h
i and the mass of the � particle as a function of �� e��M � Compute
the ratio m��mA to leading order in e�� for �� e��


g� Include the e�ects of a nonzero m� in the analysis of part �f�� Show that
m��mA takes a minimum nonzero value asm� increases from zero� before
the broken�symmetry state disappears entirely� Compute this value as a
function of e�� for �� e��


h� The Lagrangian of this problem �in its Euclidean form� is equivalent to
the Landau free energy for a superconductor in d dimensions� coupled
to an electromagnetic �eld� This expression is known as the Landau�
Ginzburg free energy� Compute the � functions for this system and sketch
the renormalization group �ows for d � � � �� Describe the qualitative
behavior you would expect for the superconducting phase transition in
three dimensions� �For realistic superconductors� the value of e��after it
is made dimensionless in the appropriate way�is very small� The e�ect
you will �nd is expected to be important only for jT � TC j�TC � ����
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Chapter ��

Invitation� The PartonModel

of Hadron Structure

In Part II of this book� we explored the structure of quantum �eld theories in a
formal way�We developed sophisticated calculational algorithms �Chapter ���
derived a formalism for the extraction of scaling laws and asymptotic behavior
�Chapter ��� and worked out some of the consequences of spontaneously
broken symmetry �Chapter �� Much of this formalism turned out to have
unexpected applications in statistical mechanics� However� we have not yet
investigated its implications for elementary particle physics� To do so� we must
�rst ask which particular quantum �eld theories describe the interactions of
elementary particles�

Since the mid����s� most high�energy physicists have agreed that the
elementary particles that make up matter are a set of fermions� interacting
primarily through the exchange of vector bosons� The elementary fermions
include the leptons �the electron� its heavy counterparts � and � � and a neu�
tral� almost massless neutrino corresponding to each of these species�� and
the quarks� whose bound states form the particles with nuclear interactions�
mesons and baryons �collectively called hadrons�� These fermions interact
through three forces� the strong� weak� and electromagnetic interactions� Of
these� the strong interaction is responsible for nuclear binding and the inter�
actions of the constituents of nuclei� while the weak interaction is responsible
for radioactive beta decay processes� The electromagnetic interaction is the
familiar Quantum Electrodynamics� coupled minimally to all charged quarks
and leptons� It is not clear that these three forces su	ce to explain the most
subtle properties of the elementary fermions�we will discuss this question
in Chapter ���but these three forces are certainly the most prominent� All
three are now understood to be mediated by the exchange of vector bosons�
The equations describing the electromagnetic interaction were discovered by
Maxwell� and their quantum mechanical implications have been treated in de�
tail in Part I� The correct theories of the weak and strong interactions were
discovered much later�

By the late �
�s� studies of the helicity dependence of weak interaction
cross sections and decay rates had shown that the weak interaction involves

���
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a coupling of vector currents built of quark and lepton �elds�! It was thus
natural to assume that the weak interaction is due to the exchange of very
heavy vector bosons� and indeed� such bosons� the W and Z particles� were
discovered in experiments at CERN in ���� But a complete theory of the
weak interaction must include not only the correct couplings of the bosons
to fermions� but also the equations of motion of the boson �elds themselves�
the analogue� for the W and Z� of Maxwell�s equations� Finding the correct
form of these equations was not straightforward� because Maxwell�s equations
prohibit the generation of a mass for the vector particle� The proper reconcili�
ation of the generalized Maxwell equations with the nonzeroW and Z masses
turned out to require incorporating into the theory a spontaneously broken
symmetry� Chapters �� and � treat this subject in some detail� describing
the interplay of vector �eld theories with spontaneously broken symmetry�
This interplay leads to new twists and new phenomena� beyond those dis�
cussed in our treatment of spontaneous symmetry breaking in Chapter �
A complete theory of the weak interaction also requires the simultaneous in�
corporation of the electromagnetic interaction� forming a uni�ed structure as
�rst hypothesized by Glashow� Weinberg� and Salam�

On the other hand� it was for a long time completely obscure that a theory
of exchanged vector bosons could correctly describe the strong interaction�
Part of the mystery was that quarks do not exist as isolated species� Their
existence� and eventually their quantum numbers� had to be deduced from the
spectrum of observable strongly interacting particles� But� in addition� there
were complications due to the fact that the strong interactions are strong�
The Feynman diagram expansion assumes that the coupling constant is small�
when the coupling becomes strong� a large number of diagrams are important
�if the series converges at all� and it becomes impossible to pick out the
contributions of the elementary interaction vertices� The crucial clue that the
strong interactions have a vector character arose from what at �rst seemed
to be just another mystery� the observation that the strong interactions turn
themselves o� when the momentum transfer is large� in a sense that we will
now describe�

Almost Free Partons

In Section 
� we computed the cross section for the QED process e�e� �
����� We then remarked that the corresponding cross section for e�e� anni�
hilation into hadrons could be computed in the same way� using a simplistic
model in which the quarks are treated as noninterating fermions� This method
gives a surprisingly accurate formula for the cross section� capturing its most
important qualitative features� But we deferred the explanation of this puz�
zle� How can a model of noninteracting quarks represent the behavior of a
force that� under other circumstances� is extremely strong�

�For an overview of weak interaction phenomenology� see Perkins ��	
��� Chap�
ter �� or any other modern particle physics text�
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In fact� there are many circumstances in the study of the strong interaction
at high energy in which this force has an unexpectedly weak e�ect� Historically�
the �rst of these appeared in proton�proton collisions� At high energy� above
� GeV or so in the center of mass� collisions of protons �or any other hadrons�
produce large numbers of pions� One might have imagined that these pions
would �ll all of the allowed phase space� but� in fact� they are mainly produced
with momenta almost collinear with the collision axis� The probability of
producing a pion with a large component of momentum transverse to the
collision axis falls o� exponentially in the value of this transverse momentum�
suppressing the production substantially for transverse momenta greater than
a few hundred MeV�

This phenomenon of limited transverse momentum led to a picture of a
hadron as a loosely bound assemblage of many components� In this picture� a
proton struck by another proton would be torn into a cloud of pieces� These
pieces would have momenta roughly collinear with the original momentum
of the proton and would eventually reform into hadrons moving along the
collision axis� By hypothesis� these pieces could not absorb a large momentum
transfer� We can characterize this hypothesis mathematically as follows� In
a high�energy collision� the momenta of the two initial hadrons are almost
lightlike� The shattered pieces of the hadrons� arrayed along the collision axis�
also have lightlike momenta parallel to the original momentum vectors� This
�nal state can be produced by exchanging momenta q among the pieces in
such a way that� though the components of q might be large� the invariant
q� is always small� The ejection of a hadron at large transverse momentum
would require large �spacelike� q�� but such a process was very rare� Thus it
was hypothesized that hadrons were loose clouds of constituents� like jelly�
which could not absorb a large q��

This picture of hadronic structure was put to a crucial test in the late
���s� in the SLAC�MIT deep inelastic scattering experiments�y In these ex�
periments� a �� GeV electron beam was scattered from a hydrogen target� and
the scattering rate was measured for large de�ection angles� corresponding to
large invariant momentum transfers from the electron to a proton in the tar�
get� The large momentum transfer was delivered through the electromagnetic
rather than the strong interaction� so that the amount of momentum delivered
could be computed from the momentum of the scattered electron� In models
in which hadrons were complex and softly bound� very low scattering rates
were expected�

Instead� the SLAC�MIT experiments saw a substantial rate for hard scat�
tering of electrons from protons� The total reaction rate was comparable to
what would have been expected if the proton were an elementary particle scat�
tering according to the simplest expectations from QED� However� only in rare
cases did a single proton emerge from the scattering process� The largest part

yFor a description of these experiments and their rami�cations� see J� I� Friedman�
H� W� Kendall� and R� E� Taylor� Rev� Mod� Phys� ��� �� ��		���
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of the rate came from the deep inelastic region of phase space� in which the
electromagnetic impulse shattered the proton and produced a system with a
large number of hadrons�

How could one reconcile the presence of electromagnetic hard scattering
processes with the virtual absence of hard scattering in strong interaction pro�
cesses� To answer this question� Bjorken and Feynman advanced the following
simple model� called the parton model � Assume that the proton is a loosely
bound assemblage of a small number of constituents� called partons� These
include quarks �and antiquarks�� which are fermions carrying electric charge�
and possibly other neutral species responsible for their binding� By assump�
tion� these constituents are incapable of exchanging large momenta q� through
the strong interactions� However� the quarks have the electromagnetic inter�
actions of elementary fermions� so that an electron scattering from a quark
can knock it out of the proton� The struck quark then exchanges momentum
softly with the remainder of the proton� so that the pieces of the proton ma�
terialize as a jet of hadrons� The produced hadrons should be collinear with
the direction of the original struck parton�

The parton model� incomplete though it is� imposes a strong constraint
on the cross section for deep inelastic electron scattering� To derive this con�
straint� consider �rst the cross section for electron scattering from a single
constituent quark� We discussed the related process of electron�muon scat�
tering in Section 
��� and we can borrow that result� Since we imagine the
reaction to occur at very high energy� we will ignore all masses� The square of
the invariant matrix element in the massless limit is written in a simple form
in Eq� �
����
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where )s� )t� )u are the Mandelstam variables for the electron�quark collision and
Qi is the electric charge of the quark in units of jej� Recall from Eq� �
���� that�
for a collision involving massless particles� )s�)t� )u � �� Then the di�erential
cross section in the center of mass system is
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To make use of this result� we must relate the invariants )s and )t to ex�
perimental observables of electron�proton inelastic scattering� The kinematic
variables are shown in Fig� ��� The momentum transfer q from the electron
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Figure ����� Kinematics of deep inelastic electron scattering in the parton
model�

can be measured by measuring the �nal momentum and energy of the elec�
tron� without using any information from the hadronic products� Since q� is
a spacelike vector� one conventionally expresses its invariant square in terms
of a positive quantity Q� with

Q� � �q�� �����

Then the invariant )t is simply �Q��
Expressing )s in terms of measurable quantities is more di	cult� If the

collision is viewed from the electron�proton center of mass frame� and we
visualize the proton as a loosely bound collection of partons �and continue
to ignore masses�� we can characterize a given parton by the fraction of the
proton�s total momentum that it carries� We denote this longitudinal fraction
by the parameter �� with � � � � � For each species i of parton� for example�
up�type quarks with electric charge Qi � ����� there will be a function fi���
that expresses the probability that the proton contains a parton of type i and
longitudinal fraction �� The expression for the total cross section for electron�
proton inelastic scattering will contain an integral over the value of � for the
struck parton� The momentum vector of the parton is then p � �P � where
P is the total momentum of the proton� Thus� if k is the initial electron
momentum�

)s � �p� k�� � �p � k � ��P � k � �s� ���
�

where s is the square of the electron�proton center of mass energy�
Remarkably� � can also be determined from measurements of only the

electron momentum� if one makes the assumption that the electron�parton
scattering is elastic� Since the scattered parton has a mass small compared to
s and Q��

� � �p� q�� � �p � q � q� � ��P � q �Q�� �����

Thus

� � x� where x � Q�

�P � q � �����

+From each scattered electron� one can determine the values of Q� and
x for the scattering process� The parton model then predicts the event dis�
tribution in the x�Q� plane� Using the parton distribution functions fi����
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Figure ����� Test of Bjorken scaling using the e�p deep inelastic scattering
cross sections measured by the SLAC�MIT experiment� J� S� Poucher� et� al��
Phys� Rev� Lett� ��� ��
 ��	���� We plot d�	
dxdQ� divided by the factor
����	� against x� for the various initial electron energies and scattering angles
indicated� The data span the range � GeV� � Q� � 
 GeV��

evaluated at � � x� and the cross�section formula ������ we �nd the distribu�
tion

d��

dxdQ�
�
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fi�x�Q
�
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��	�
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�
� Q�
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���
� �����

The distribution functions fi�x� depend on the details of the structure of
the proton and it is not known how to compute them from �rst principles�
But formula ����� still makes a striking prediction� that the deep inelastic
scattering cross section� when divided by the factor

 � ��Q��xs��

Q�
�����

to remove the kinematic dependence of the QED cross section� gives a quantity
that depends only on x and is independent of Q�� This behavior is known as
Bjorken scaling� Indeed� the data from the SLAC�MIT experiment exhibited
Bjorken scaling to about �� accuracy for values of Q above  GeV� as shown
in Fig� ����

Bjorken scaling is� essentially� the statement that the structure of the
proton looks the same to an electromagnetic probe no matter how hard the
proton is struck� In the frame of the proton� the energy of the exchanged
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virtual photon is

q� �
P � q
m

�
Q�

�xm
� �����

where m is the proton mass� The reciprocal of this energy transfer is� roughly�
the duration of the scattering process as seen by the components of the pro�
ton� This time should be compared to the reciprocal of the proton mass� which
is the characteristic time over which the partons interact� The deep inelastic
regime occurs when q� 
 m� that is� when the scattering is very rapid com�
pared to the normal time scales of the proton� Bjorken scaling implies that�
during such a rapid scattering process� interactions among the constituents of
the proton can be ignored� We might imagine that the partons are approxi�
mately free particles over the very short times scales corresponding to energy
transfers of a GeV or more� though they have strong interactions on longer
time scales�

Asymptotically Free Partons

The picture of the proton structure implied by Bjorken scaling was beautifully
simple� but it raised new� fundamental questions� In quantum �eld theory�
fermions interact by exchanging virtual particles� These virtual particles can
have arbitrarily high momenta� hence the �uctuations associated with them
can occur on arbitrarily short time scales� Quantum �eld theory processes do
not turn themselves o� at short times to reveal free�particle equations� Thus
the discovery of Bjorken scaling suggested a con�ict between the observation
of almost free partons and the basic principles of quantum �eld theory�

The resolution of this paradox came from the renormalization group� In
Chapter � we saw that coupling constants vary with distance scale� In QED
and 
� theory� we found that the couplings become strong at large momenta
and weak at small momenta� However� we noted the possibility that� in some
theories� the coupling constant could have the opposite behavior� becoming
strong at small momenta or large times but weak at large momenta or short
times� We referred to such behavior as asymptotic freedom� Section ��� dis�
cussed an example of an asymptotically free quantum �eld theory� the nonlin�
ear sigma model in two dimensions� The problem posed in the previous para�
graph would be resolved if there existed a suitable asymptotically free quan�
tum �eld theory in four dimensions that could describe the interaction and
binding of quarks� Then� at least to some level of approximation� the strong in�
teraction described by this theory would turn o� in large�momentum�transfer
or short�time processes�

At the time of the discovery of Bjorken scaling� no asymptotically free �eld
theories in four dimensions were known� Then� in the early ���s� 0t Hooft�
Politzer� Gross� and Wilczek discovered a class of such theories� These are
the non�Abelian gauge theories � theories of interacting vector bosons that
can be constructed as generalizations of quantum electrodynamics� It was
subsequently shown that these are the only asymptotically free �eld theories
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in four dimensions� This discovery gave the crucial clue for the construction
of the fundamental theory of the strong interactions� Apparently� the quarks
are bound together by interacting vector bosons �called gluons� of precisely
this type�

However� these gauge theories cannot precisely reproduce the expecta�
tions of strict Bjorken scaling� The di�erences between the free parton model
and the quantum �eld theory model with asymptotic freedom appear when
one moves to a higher level of accuracy in measurements of deep inelastic
scattering and other strong interaction processes involving large momentum
transfer� In an asymptotically free quantum �eld theory� the coupling con�
stant is still nonzero at any �nite momentum transfer� In fact� the �nal evo�
lution of the coupling to zero is very slow� logarithmic in momentum� Thus�
at some level� one must �nd small corrections to Bjorken scaling� associated
with the exchange or emission of high�momentum gluons� Similarly� the other
qualitative simpli�cations of hadron physics at high momentum transfer�for
example� the phenomenon of limited transverse momentum in hadron�hadron
collisions�should be only approximate� receiving corrections due to gluon ex�
change and emission� Thus the predictions of an asymptotically free theory of
the strong interaction are twofold� On one hand� such a theory predicts quali�
tative simpli�cations of behavior at high momentum� But� on the other hand�
such a theory predicts a speci�c pattern of corrections to this behavior�

In fact� particle physics experiments of the ���s revealed precisely this
picture� Bjorken scaling was found to be only an approximate relation� show�
ing violations that correspond to a slow evolution of the parton distribu�
tions fi�x� over a logarithmic scale in Q�� The rate of particle production in
hadron�hadron collisions was found to decrease only as a power rather than
exponentially at very large values of the transverse momentum� and the par�
ticles produced at large transverse momentum were shown to be associated
with jets of hadrons created by the soft evolution of a hard�scattered quark
or gluon� Most remarkably� the forms of the cross sections found for these and
other deviations from scaling did� �nally� give direct evidence for the vector
character of the elementary �eld that mediates the strong interaction�

We will review all of these phenomena in Chapter �� as we study the
particular gauge theory that describes the strong interactions� First� however�
we must learn how to construct non�Abelian gauge theories and how to work
out their predictions using Feynman diagrams� Throughout our analysis of
these theories� the renormalization group will play an essential role� One of
the very beautiful aspects of the study of non�Abelian gauge theories is the way
in which the most powerful general ideas of quantum �eld theory acquire even
more strength as they intertwine with the speci�c features of these particular�
intricately built models� This interplay between general principles and the
speci�c features of gauge theories will be the major theme of Part III of this
book�
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Non�Abelian Gauge Invariance

So far in this book we have worked with a rather limited class of quantum �elds
and interactions� restricting our attention to scalar �eld theories� Yukawa the�
ory� and Quantum Electrodynamics� It is hardly surprising that these theories
are not su	cient to describe all of the known interactions of elementary par�
ticles� But what other theories are possible� given that the Lagrangian of a
renormalizable theory can contain no terms of mass dimension higher than ��

The most natural theories to try next would be ones with interactions
among vector �elds� of the form A�A���A� or A�� Sensible theories of this
type are di	cult to construct� however� because of the negative�norm states
produced by the time component A� of the vector �eld operator� In Section 
�

we saw that these negative�norm states cause no di	culty in QED� They are
e�ectively canceled out by the longitudinal polarization states� by virtue of
the Ward identity� The Ward identity� in turn� follows from the invariance of
the QED Lagrangian under local gauge transformations� Perhaps� then� if we
can generalize the principle of local gauge invariance� it will lead us to the
construction of other sensible theories of vector particles�

The goal of this chapter is to do just that� First we will return brie�y to
the study of QED� this time taking the gauge symmetry to be fundamental
and deriving the rest of the theory from this principle� Then� in Section 
���
we will see that the gauge invariance of electrodynamics is only the most
trivial example of an in�nite�parameter symmetry� and that the more gen�
eral examples lead to other interesting Lagrangians� These �eld theories� the
�rst of which was constructed by Yang and Mills�! generalize electrodynamics
in a profound way� They are theories of multiple vector particles� whose in�
teractions are strongly constrained by the symmetry principle� In subsequent
chapters we will study the quantization of these theories and their application
to the real world of elementary particle physics�

�C� N� Yang and R� Mills� Phys� Rev� 	�� �	� ��	����

���
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���� The Geometry of Gauge Invariance

In Section �� we wrote down the Lagrangian of Quantum Electrodynamics
and noted the curious fact that it is invariant under a very large group of
transformations ������ allowing an independent symmetry transformation at
every point in spacetime� This invariance is the famous gauge symmetry of
QED� From the modern viewpoint� however� gauge symmetry is not an in�
cidental curiosity� but rather the fundamental principle that determines the
form of the Lagrangian� Let us now review the elements of the theory� taking
the modern viewpoint�

We begin with the complex�valued Dirac �eld ��x�� and stipulate that
our theory should be invariant under the transformation

��x�� ei��x���x�� �
��

This is a phase rotation through an angle 	�x� that varies arbitrarily from
point to point� How can we write a Lagrangian that is invariant under this
transformation� As long as we consider terms in the Lagrangian that have no
derivatives� this is easy� We simply write the same terms that are invariant to
global phase rotations� For example� the fermion mass term

m���x�

is permitted by global phase invariance� and the local invariance gives no
further restriction�

The di	culty arises when we try to write terms including derivatives� The
derivative of ��x� in the direction of the vector n� is de�ned by the limiting
procedure

n���� �lim
���



�

�
��x � �n�� ��x�

�
� �
���

However� in a theory with local phase invariance� this de�nition is not very
sensible� since the two �elds that are subtracted� ��x � �n� and ��x�� have
completely di�erent transformations under the symmetry �
��� The quantity
���� in other words� has no simple tranformation law and no useful geometric
interpretation�

In order to subtract the values of ��x� at neighboring points in a mean�
ingful way� we must introduce a factor that compensates for the di�erence in
phase transformations from one point to the next� The simplest way to do
this is to de�ne a scalar quantity U�y� x� that depends on the two points and
has the transformation law

U�y� x�� ei��y�U�y� x�e�i��x� �
���

simultaneously with �
��� At zero separation� we set U�y� y� � � in general�
we can require U�y� x� to be a pure phase� U�y� x� � exp$i
�y� x�%� With this
de�nition� the objects ��y� and U�y� x���x� have the same transformation
law� and we can subtract them in a manner that is meaningful despite the
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local symmetry� Thus we can de�ne a sensible derivative� called the covariant
derivative� as follows�

n�D�� �lim
���



�

�
��x� �n�� U�x� �n� x���x�

�
� �
���

To make this de�nition explicit� we need an expression for the comparator
U�y� x� at in�nitesimally separated points� If the phase of U�y� x� is a contin�
uous function of the positions y and x� then U�y� x� can be expanded in the
separation of the two points�

U�x� �n� x� � � ie �n�A��x� �O����� �
�
�

Here we have arbitrarily extracted a constant e� The coe	cient of the dis�
placement �n� is a new vector �eld A��x�� Such a �eld� which appears as
the in�nitesimal limit of a comparator of local symmetry transformations� is
called a connection� The covariant derivative then takes the form

D���x� � ����x� � ieA���x�� �
���

By inserting �
�
� into �
���� one �nds that A� transforms under this local
gauge transformation as

A��x�� A��x� � 

e
��	�x�� �
���

To check that all of these expressions are consistent� we can transformD���x�
according to Eqs� �
�� and �
����

D���x��
h
�� � ie

�
A� � 

e
��	
�i
ei��x���x�

� ei��x�
�
�� � ieA�

�
��x� � ei��x�D���x��

�
���

Thus the covariant derivative transforms in the same way as the �eld ��
exactly as we constructed it to in the original de�nition �
����

We have now recovered most of the familiar ingredients of the QED La�
grangian� From our current viewpoint� however� the de�nition of the covariant
derivative and the transformation law for the connection A� follow from the
postulate of local phase rotation symmetry� Even the very existence of the
vector �eld A� is a consequence of local symmetry� Without it we could not
write an invariant Lagrangian involving derivatives of ��

More generally� our present analysis gives us a way to construct all pos�
sible Lagrangians that are invariant under the local symmetry� In any term
with derivatives of �� replace these with covariant derivatives� According to
Eq� �
���� these transform in exactly the same manner as � itself� Therefore
any combination of � and its covariant derivatives that is invariant under a
global phase rotation �and only these combinations� will also be locally in�
variant�

To complete the construction of a locally invariant Lagrangian� we must
�nd a kinetic energy term for the �eld A�� a locally invariant term that de�
pends on A� and its derivatives� but not on �� This term can be constructed
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Figure ����� Construction of the �eld strength by comparisons around a
small square in the ��� �� plane�

either integrally� from the comparator U�y� x�� or in�nitesimally� from the co�
variant derivative�

Working from U�y� x�� we will need to extend our explicit formula �
�
�
to the next term in the expansion in �� Using the assumption that U�y� x� is
a pure phase and the restriction �U�x� y��y � U�y� x�� it follows that

U�x� �n� x� � exp
��ie�n�A��x� �

�n� �O����
�
� �
���

�Relaxing these restrictions introduces additional vector �elds into the theory�
this is an unnecessary complication�� Using this expansion for U�y� x�� we
link together comparisons of the phase direction around a small square in
spacetime� For de�niteness� we take this square to lie in the �� ���plane� as
de�ned by the unit vectors )� )� �see Fig� 
��� De�ne U�x� to be the product
of the four comparisons around the corners of the loop�

U�x� � U�x� x � �)��U�x� �)�� x� �) � �)��

	 U�x� �) � �)�� x� �)�U�x � �)� x��
�
���

The transformation law �
��� for U implies that U�x� is locally invariant� In
the limit �� �� it will therefore give us a locally invariant function of A�� To
�nd the form of this function� insert the expansion �
��� to obtain

U�x� � exp
n
� i�e

��A��x � �
�
)���A��x � �

�
) � �)��

�A��x� �) � �
�
)�� �A��x � �

�
)�
�
�O����

o
�

�
��

When we expand the exponent in powers of �� this reduces to

U�x� � � i��e
�
��A��x� � ��A��x�

�
�O����� �
���

Therefore the structure

F�� � ��A� � ��A� �
���

is locally invariant� Of course� F�� is the familiar electromagnetic �eld tensor�
and its invariance under �
��� can be checked directly� The preceding con�
struction� however� shows us the geometrical origin of the structure of F�� �
Any function that depends on A� only through F�� and its derivatives is lo�
cally invariant� More general functions� such as the vector �eld mass term
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A�A
�� transform under �
��� in ways that cannot be compensated and thus

cannot appear in an invariant Lagrangian�
A related argument for the invariance of F�� can be made using the co�

variant derivative� We have seen above that� if a �eld has the local transfoma�
tion law �
��� then its covariant derivative has the same transformation law�
Thus the second covariant derivative of � also transforms according to �
���
The same conclusion holds for the commutator of covariant derivatives�

$D�� D� %��x�� ei��x�$D�� D� %��x�� �
���

However� the commutator is not itself a derivative at all�

$D�� D� %� � $��� �� %� � ie
�
$��� A� %� $�� � A�%

�
� � e�$A�� A� %�

� ie
�
��A� � ��A�� � ��

�
�
�

That is�
$D�� D� % � ieF�� � �
���

On the right�hand side of �
���� the factor ��x� accounts for the entire
transformation law� so the multiplicative factor F�� must be invariant� One
can visualize the commutator of covariant derivatives as the comparison of
comparisons across a small square� fundamentally� therefore� this argument is
equivalent to that of the previous paragraph�

Whatever the method of proving the invariance of F�� � we have now
assembled all of the ingredients we need to write the most general locally
invariant Lagrangian for the electron �eld � and its associated connection A��
This Lagrangian must be a function of � and its covariant derivatives� and of
F�� and its derivatives� and must be invariant to global phase transformations�
Up to operators of dimension �� there are only four possible terms�

L� � ��i D�� � 

�
�F�� �

� � c��	��F�	F�� �m��� �
���

By adjusting the normalization of the �elds � and A�� we have set the coe	�
cients of the �rst two terms to their standard values� This normalization of A�

requires the arbitrary scale factor e in our original de�nition �
�
� of A�� The
third term violates the discrete symmetries P and T � so we may exclude it if
we postulate these symmetries�y Then L� contains only two free parameters�
the scale factor e and the coe	cient m�

By using operators of dimension 
 and �� we can form many additional
gauge�invariant combinations�

L� � ic�����F
��� � c�����

� � c����
��� � � � � � �
���

More allowed terms appear at each higher order in mass dimension� But all
of these terms are nonrenormalizable interactions� In the language of Sec�
tion ��� they are irrelevant to physics in four dimensions in the limit where
the cuto� is taken to in�nity�

yThe general systematics of P � C� and T violation are discussed in Section ����
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We have now reached a remarkable conclusion� We began by postulating
that the electron �eld obeys the local symmetry �
��� From this postulate�
we showed that there must be an electromagnetic vector potential� Further�
the symmetry principle implies that the most general Lagrangian in four di�
mensions that is renormalizable �or relevant� in Wilson�s sense� is the general
form L�� If we insist that this Lagrangian also be invariant under time rever�
sal or parity� we are led uniquely to the Maxwell�Dirac Lagrangian that is the
basis of quantum electrodynamics�

���� The Yang�Mills Lagrangian

If the simple geometrical constructions of the previous section yield Maxwell�s
theory of electrodynamics� then surely it must be possible to construct other
interesting theories by starting with more general geometrical principles� Yang
and Mills proposed that the argument of the previous section could be gener�
alized from local phase rotation invariance to invariance under any continuous
symmetry group� In this section� we will introduce this generalization of local
symmetry� For most of the discussion� we will consider our local symmetry to
be the three�dimensional rotation group� O��� or SU���� since in this case the
necessary group theory should be familiar� At the end of the section� we will
generalize further to the case of an arbitrary local symmetry�

Consider� then� the following generalization of the phase rotation �
���
Instead of a single fermion �eld� we start with a doublet of Dirac �elds�

� �

�
���x�
���x�

�
� �
���

which transform into one another under abstract three�dimensional rotations
as a two�component spinor�

� � exp
�
i	i

�i

�

�
�� �
����

Here �i are the Pauli sigma matrices� and� as usual� a sum over repeated
indices is implied� It is important to distinguish this abstract transformation
from a rotation in physical three�dimensional space� in their original paper�
Yang and Mills considered ���� ��� to be the proton�neutron doublet as it is
transformed under isotopic spin� As in the case of a phase rotation� it is not
hard to construct Lagrangians for � that are invariant to �
���� as a global
symmetry�

We now promote �
���� to a local symmetry� by insisting that the La�
grangian be invariant to this transformation for 	i an arbitrary function of x�
Write this transformation as

��x�� V �x���x�� where V �x� � exp
�
i	i�x�

�i

�

�
� �
���
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We can construct a suitable Lagrangian by applying the methods of the previ�
ous section� However� we will encounter a number of additional complications�
due to the fact that there are now three orthogonal symmetry motions� which
do not commute with one another� This feature is su	ciently important to
earn a special name for theories that have it� We refer to the Abelian sym�
metry group of electrodynamics� and the non�Abelian symmetry group of the
more general theories� The �eld theory associated with a noncommuting local
symmetry is termed a non�Abelian gauge theory�

To construct a Lagrangian that is invariant under this new group of trans�
formations� we must again de�ne a covariant derivative that transforms in a
simple way� Again we use the de�nition �
���� but since � is now a two�
component object� the comparator U�y� x� must be a �	� matrix� The trans�
formation law for U�y� x� is now

U�y� x�� V �y�U�y� x�V y�x�� �
����

where V �x� is as in �
���� and again we set U�y� y� � � At points x � y
we can consistently restrict U�y� x� to be a unitary matrix� Near U � � any
such matrix can be expanded in terms of the Hermitian generators of SU����
thus for in�nitesimal separation we can write

U�x� �n� x� �  � ig�n�Ai
�

�i

�
�O����� �
����

Here g is a constant� extracted for later convenience� Inserting this expansion
into the de�nition �
��� of the covariant derivative� we �nd the following
expression for the covariant derivative associated with local SU��� symmetry�

D� � �� � igAi
�

�i

�
� �
����

This covariant derivative requires three vector �elds� one for each generator
of the transformation group�

We can �nd the gauge transformation law of the connection Ai
� by insert�

ing the expansion �
���� into the transformation law �
�����

 � ig�n�Ai
�

�i

�
� V �x� �n�

�
 � ig�n�Ai

�

�i

�

�
V y�x�� �
��
�

We must expand the right�hand side to order �� taking care that the various
Pauli matrices do not commute with one another� The expansion of V �x��n�
is conveniently done using the identity

V �x� �n�V y�x� �
h�

 � �n�
�

�x�
�O����

�
V �x�

i
V y�x�

�  � �n�
� �

�x�
V �x�

�
V y�x� �O����

�  � �n�V �x�
�
� �

�x�
V y�x�

�
�O�����

�
����
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Then the terms proportional to �n� in �
��
� give the transformation

Ai
��x�

�i

�
� V �x�

�
Ai
��x�

�i

�
�

i

g
��

�
V y�x�� �
����

The derivative acts on V y�x� � exp��i	i�i���� it is not so easy to compute
this derivative explicitly because the exponent does not necessarily commute
with its derivative� For in�nitesimal transformations we can expand V �x� to
�rst order in 	� In this case we obtain

Ai
�

�i

�
� Ai

�

�i

�
�



g
���	

i�
�i

�
� i
�
	i
�i

�
� Aj

�

�j

�

�
� � � � � �
����

The last term in this transformation law is new� and arises from the noncom�
mutativity of the local transformations� By combining this relation with the
in�nitesimal form of the fermion transformation�

� �
�
 � i	i

�i

�

�
� � � � � � �
����

we can check the in�nitesimal transformation of the covariant derivative�

D�� �
�
�� � igAi

�

�i

�
� i���	

i�
�i

�
� g
�
	i
�i

�
� Aj

�

�j

�

���
 � i	k

�k

�

�
�

�
�
 � i	i

�i

�

�
D��� �
����

up to terms of order 	�� It is not di	cult to check using �
���� and �
���
that� even for �nite transformations� the covariant derivative has the same
transformation law as the �eld on which it acts�

Using the covariant derivative� we can build the most general gauge�
invariant Lagrangians involving �� But to write a complete Lagrangian� we
must also �nd gauge�invariant terms that depend only on Ai

�� To do this� we
construct the analogue of the electromagnetic �eld tensor� We will use the
second method of the previous section� working from the commutator of co�
variant derivatives� The transformation law of the covariant derivative implies
that

$D�� D� %��x�� V �x�$D�� D� %��x�� �
���

At the same time� by writing out the commutator using formula �
����� we
can show� as in the Abelian case� that $D�� D� % is not a di�erential operator
but merely a multiplicative factor �now a matrix� acting on �� This time� how�
ever� there is a new feature� The last term in the expansion of the commutator
no longer vanishes� Instead� we �nd

$D�� D� % � �igF i
��

�i

�
� �
����

with

F i
��

�i

�
� ��A

i
�

�i

�
� ��A

i
�

�i

�
� ig
�
Ai
�

�i

�
� Aj

�

�j

�

�
� �
����
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We can simplify this relation by applying the standard commutation relations
of Pauli matrices� ��i

�
�
�j

�

�
� i�ijk

�k

�
� �
����

Then

F i
�� � ��A

i
� � ��A

i
� � g�ijkAj

�A
k
� � �
��
�

The transformation law for the �eld strength follows from Eqs� �
���
and �
����

F i
��

�i

�
� V �x�F j

��

�j

�
V y�x�� �
����

The in�nitesimal form is

F i
��

�i

�
� F i

��

�i

�
�
�
i	i

�i

�
� F j

��

�j

�

�
� �
����

Notice that the �eld strength is no longer a gauge�invariant quantity� It cannot
be� since there are now three �eld strengths� each associated with a given
direction of rotation in the abstract space� However� it is easy to form gauge�
invariant combinations of the �eld strengths� For example�

L � �

�
tr
h�
F i
��

�i

�

��i
� �

�

�
F i
��

��
�
����

is a gauge�invariant kinetic energy term for Ai
�� Notice that� in contrast to

the case of electrodynamics� this Lagrangian contains cubic and quartic terms
in Ai

�� Thus� this Lagrangian describes a nontrivial� interacting �eld theory�
called Yang�Mills theory� This is the simplest example of a non�Abelian gauge
theory�

To construct a theory of Yang�Mills vector �elds interacting with fermions�
we simply add the gauge��eld Lagrangian �
���� to the familiar Dirac La�
grangian� with the ordinary derivative of � replaced by the covariant deriva�
tive� The result looks almost identical to the QED Lagrangian�

L � ��iD�� � 

�
�F i

�� �
� �m��� �
����

This is the famous Yang�Mills Lagrangian� Like that of QED� it depends on
two parameters� the scale factor g �which is analogous to the electron charge�
and the fermion mass m� By varying this Lagrangian� we �nd the classical
equations of motion of the gauge theory� These are the Dirac equation for the
fermion �eld and the equation

��F i
�� � g�ijkAj�F k

�� � �g��� �
i

�
� �
����

for the vector �eld�
Everything that we have done for the SU��� symmetry transformation

�
���� generalizes easily to any other continuous group of symmetries� The
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full range of possible symmetry groups is enumerated and classi�ed in Sec�
tion 
��� For any such group� however� the general expressions for elements
of the Lagrangian are quite similar� Consider any continuous group of trans�
formations� represented by a set of n	 n unitary matrices V � Then the basic
�elds ��x� will form an n�plet� and transform according to

��x�� V �x���x�� �
���

where the x dependence of V makes the transformation local� In in�nitesimal
form� V �x� can be expanded in terms of a set of basic generators of the
symmetry group� which can be represented as Hermitian matrices ta�

V �x� �  � i	a�x�ta �O�	��� �
����

Now one can carry through the whole analysis from Eq� �
���� to Eq� �
����
for a general local symmetry group simply by replacing

�i

�
� ta �
����

at each step of the analysis�
To generalize the explicit expression �
��
� for the �eld tensor� we need

to know the commutation relations of the matrices ta� It is conventional to
write these in the standard form

$ta� tb% � ifabctc� �
����

where fabc is a set of numbers called structure constants� This object replaces
�ijk in Eq� �
����� It is conventional to choose a basis for the matrices ta

such that fabc is completely antisymmetric� we will prove that this is always
possible in Section 
���

We can now recapitulate all of our results as follows� The covariant deriva�
tive associated with the general transformation �
��� is

D� � �� � igAa
�t
a� �
��
�

it contains one vector �eld for each independent generator of the local sym�
metry� The in�nitesimal tranformation laws for � and Aa

� are

� � � � i	ata���

Aa
� � Aa

� �


g
��	

a � fabcAb
�	

c�
�
����

The �nite transformation of Aa
� has exactly the form of �
�����

Aa
��x�t

a � V �x�
�
Aa
��x�t

a �
i

g
��

�
V y�x�� �
����

These transformation laws imply that the covariant derivative of � has the
same transformation law as � itself� The �eld tensor is de�ned by

$D�� D� % � �igF a
��t

a� �
����
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or more explicitly�

F a
�� � ��A

a
� � ��A

a
� � gfabcAb

�A
c
� � �
����

This quantity has the in�nitesimal transformation

F a
�� � F a

�� � fabc	bF c
�� � �
�
��

From Eqs� �
���� and �
�
��� one can show that any globally symmetric
function of �� F a

�� � and their covariant derivatives is also locally symmetric�
and is therefore a candidate for a term in a gauge�invariant Lagrangian� How�
ever� there are very few permissible terms up to dimension �� The most general
gauge�invariant Lagrangian that is renormalizable and conserves P and T is
again given by Eq� �
����� The corresponding classical equation of motion is

��F a
�� � gfabcAb�F c

�� � �gja� � �
�
�

where

ja� � ���t
a� �
�
��

is the global symmetry current of the fermion �eld�
Notice that the nonlinear terms in the Yang�Mills Lagrangian �
����

appear in the covariant derivative� where they are proportional to ta� and in
the �eld tensor� where they are proportional to fabc� Thus the form of the
interactions in a non�Abelian gauge theory is dictated by the local symmetry�
The nonlinear interactions of the vector �eld with itself are proportional to
the commutators of symmetry generators and thus explicitly require the non�
Abelian nature of the symmetry group�

���� The Gauge�Invariant Wilson Loop

In both of the previous sections we made use of the comparator� U�y� x�� which
converts the fermion gauge transformation law at point x to that at point y�
So far� in writing expressions for this object� it has su	ced to assume that x
and y are in�nitesimally separated� However� it is worthwhile to think further
about the comparator in the case where x and y are far apart� This discussion
will give us further insights into the geometry of gauge invariance� and will
reveal some additional useful functions of the gauge �eld which we will put to
work in Chapter ��

We �rst return to the Abelian theory and expand upon our discussion
of U�y� x� in that context� In Eq� �
��� we constructed a product of com�
parators on a path that wound around a small square� We showed that this
product U�x� is not trivial� even though we eventually return to the starting
point� rather� we found that U�x� di�ers from  by a term proportional to the
electromagnetic �eld strength and to the area of the square� This is a partic�
ular case of a general conclusion� The comparator between two points x and
y at �nite separation depends on the path taken from x to y�
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To explain this statement� it is useful to reverse some of the logic of
Section 
�� We begin from the connection A�� which we assume to have
the transformation law �
���� and construct U�z� y� as a function of A� that
transforms according to �
���� It is not di	cult to verify that the expression

UP �z� y� � exp
h
�ie
Z
P

dx�A��x�
i

�
�
��

meets this criterion if the integral is taken along any path P that runs from y
to z� This object UP �z� y� is called the Wilson line�z Expression �
�
�� gives
an explicit realization of the abstract comparator U�z� y� for points at �nite
separation�

A crucial property of the Wilson line is that it depends on the path P � If
P is a closed path that returns to y� we obtain the Wilson loop�

UP �y� y� � exp
h
�ie
I
P

dx�A��x�
i
� �
�
��

This quantity is a nontrivial function of A� that is� by construction� locally
gauge invariant� In fact� all gauge�invariant functions of A� can be thought of
as combinations of Wilson loops for various choices of the path P � To motivate
this claim� we use Stokes�s theorem to rewrite the Wilson loop as

UP �y� y� � exp
h
�i e

�

Z
�

d���F��

i
� �
�

�

where * is a surface that spans the closed loop P � d��� is an area element
on this surface� and F�� is the �eld tensor �
���� This relation between the
Wilson loop and the �eld strength is illustrated in Fig� 
��� Since the Wilson
loop is gauge invariant� this argument gives one more way to visualize the
gauge invariance of the �eld strength� Conversely� since �almost� all gauge�
invariant functions of A� can be built up from F�� � this expression gives
weight to the statement that UP �y� y� is the most general gauge invariant�

Both the Wilson line and the Wilson loop can be generalized to the non�
Abelian case� Here� however� additional subtleties arise when we consider ex�
ponentials of noncommuting matrices� Let us �rst construct the Wilson line�
which now transforms according to Eq� �
����� It is not correct to make a
straightforward rewriting of �
�
�� with the integral of Aa

�t
a in the exponent�

since these matrices do not necessarily commute at di�erent points� Instead�
we must order these matrices in a particular way� We will now give the correct
ordering prescription and then prove its transformation law�

Let s be a parameter of the path P � running from � at x � y to  at x � z�
Then de�ne the Wilson line as the power�series expansion of the exponential�
with the matrices in each term ordered so that higher values of s stand to the

zThis path�dependent phase was used long before Wilson�s work� in Schwinger�s
early papers on QED� and in Y� Aharonov and D� B/ohm� Phys� Rev� ���� �
� ��	�	��
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Figure ����� The Wilson loop integral is taken around an arbitrary loop�
It can also be expressed as a #ux integral of the �eld strength over a surface
spanning the loop�

left� This prescription is called path�ordering and is denoted by the symbol
Pfg� Thus the Wilson line is written

UP �z� y� � P

	
exp
h
ig

�Z
�

ds
dx�

ds
Aa
��x�s��t

a
i


� �
�
��

This expression is similar to the time�ordered exponential that we wrote for
the interaction�picture propagator in Eq� ������� Pursuing this analogy� one
can show that this expression for UP is the solution of a di�erential equation
similar to �������

d

ds
UP �x�s�� y� �

�
ig
dx�

ds
Aa
��x�s��t

a
�
UP �x�s�� y�� �
�
��

�Here we consider UP to be a continuous function of the parameter s� rather
than �xing s �  at the endpoint��

To show that expression �
�
�� is the correct generalization of the Wil�
son line� we must show that it satis�es the correct gauge transformation
law �
����� This follows from the di�erential equation �
�
��� which can
be rewritten as

dx�

ds
D�UP �x� y� � �� �
�
��

Now let AV represent the gauge transform of a �eld con�guration A� and use
these arguments to denote explicitly the dependence of gauge functions on
the gauge �eld� We would like to show that

UP �z� y� A
V � � V �z�UP �z� y� A�V

y�y�� �
�
��

which is equivalent to �
����� In �
���� we proved� in its in�nitesimal version�
the relation

D��A
V �V �x� � V �x�D��A�� �
����

This relation implies that the right�hand side of �
�
�� satis�es �
�
�� for
the gauge �eld AV if UP �z� y� A� satis�es this equation for the gauge �eld A�
But the solution of a �rst�order di�erential equation with a �xed boundary
condition is unique� Thus� if UP �z� y� is de�ned to be the solution of �
�
��
or �
�
��� it indeed has the transformation law �
�
���
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The Wilson line associated with a closed path returning to y transforms
only with the gauge parameter at y� however� it is not a gauge invariant�

UP �y� y�� V �y�UP �y� y�V
y�y�� �
���

To understand this transformation better� one can work out the expression
for UP �x� x�� where the path is the small square in the �� �� plane shown
in Fig� 
�� In addition to the terms in Eq� �
��� there are additional
corrections of order �� coming from products of �Aa

�t
a� factors from pairs of

sides� which sum up to a commutator of these factors� One �nds

UP �x� x� �  � ig��F a
���x�t

a �O����� �
����

where F a
�� is given by the full expression in �
����� If we then expand the

transformation law �
��� in powers of �� the term of order �� is the trans�
formation law of F a

�� given in Eq� �
�����
To convert the Wilson line for a closed path into a true gauge invariant�

take the trace� By cyclic invariance� �
��� implies

trUP �x� x� � trUP �x� x�� �
����

Thus for a non�Abelian gauge theory� we de�ne the Wilson loop to be the
trace of the Wilson line around a closed path�

Let us evaluate trUP �x� x� more explicitly for the case of an SU��� gauge
group� If U��� is any � 	 � unitary matrix that tends to  as � � �� we can
expand it in � as follows�

U��� � exp
�
i���i � ���i � � � ���

i

�

�
�  � i���i � ���i � � � ���

i

�
� 

�
���i � ��j � � � ���

i

�

�j

�
� � � � �

�
����

Then� since the Pauli matrices are traceless and satisfy tr$�i�j % � ��ij �

trU��� � �� 

�
����i�� �O����� �
��
�

Applying this formula to Eq� �
����� we �nd

trUP �x� x� � �� 

�
g����F i

���
� �O���� �
����

Thus the gauge invariance of �F i
���

� can be derived from a geometrical argu�
ment� just as in the Abelian case� Using the notation that will be introduced
in the next section� one can show that the same argument goes through for
any gauge group�
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���� Basic Facts about Lie Algebras

At the end of Section 
�� we saw that the class of non�Abelian gauge theories
is very large� To work with these theories most e	ciently� it is worthwhile to
pause and consider the general properties of the continuous groups on which
they are based� In this section we will enumerate all the possible groups that
can be used to construct non�Abelian gauge theories� We will then compute
some numerical factors� built out of group transformation matrices� that are
needed in performing explicit calculations in quantized gauge theories�!

To a mathematician� a group is made up of abstract entities that obey
certain algebraic rules� In quantum mechanics� however� we are interested
speci�cally in groups of unitary operators that act on the vector space of
quantum states� We focus our attention on continuously generated groups�
that is� groups that contain elements arbitrarily close to the identity� such
that the general element can be reached by the repeated action of these in�
�nitesimal elements� Then any in�nitesimal group element g can be written

g�	� �  � i	aT a �O�	��� �
����

The coe	cients of the in�nitesimal group parameters 	a are Hermitian oper�
ators T a� called the generators of the symmetry group� A continuous group
with this structure is called a Lie group�

The set of generators T a must span the space of in�nitesimal group trans�
formations� so the commutator of generators T a must be a linear combination
of generators� Thus the commutation relations of the operators T a can be
written

$T a� T b% � ifabcT c� �
����

the numbers fabc are called structure constants� The vector space spanned by
the generators� with the additional operation of commutation� is called a Lie
Algebra�

The commutation relations �
���� and the identity

$T a� $T b� T c%% � $T b� $T c� T a%% � $T c� $T a� T b%% � � �
����

imply that the structure constants obey

fadef bcd � f bdefcad � fcdefabd � �� �
����

called the Jacobi identity� From the mathematician�s viewpoint �considering
the generators to be abstract entities rather than Hermitian operators�� the

�In this section we will state� without proof� some general results from the theory
of continuous groups� There are many excellent books that review these mathemati�
cal results systematically� Among these� we recommend especially Cahn ��	
��� for a
brief but incisive discussion� and S� Helgason� Di�erential Geometry� Lie Groups� and
Symmetric Spaces �Academic Press� �	�
�� which gives an elegant and rigorous ac�
count� R� Slansky� Phys� Repts� �	� � ��	
��� has compiled an especially useful set of
tables of group�theoretic identities relevant to the construction of non�Abelian gauge
theories�
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Jacobi identity is an axiom that must be satis�ed in order for a given set of
commutation rules to de�ne a Lie algebra�

The commutation relations of the Lie algebra completely determine the
group multiplication law of an associated Lie group su	ciently close to the
identity� For large enough transformations� additional global questions come
into play� to give a familiar example� SU��� and O��� have the same com�
mutation relations but di�erent global structure� However� the Lagrangian
of a non�Abelian gauge theory depends only on the Lie algebra of the local
symmetry group� so we will ignore these global questions from here on�

Classi�cation of Lie Algebras

For the application to gauge theories� the local symmetry is normally a uni�
tary transformation of a set of �elds� Thus we are primarily interested in
Lie algebras that have �nite�dimensional Hermitian representations� leading
to �nite�dimensional unitary representations of the corresponding Lie group�
We will also assume that the number of generators is �nite� Such Lie alge�
bras are called compact� because these conditions imply that the Lie group is
a �nite�dimensional compact manifold�

If one of the generators T a commutes with all of the others� it generates an
independent continuous Abelian group� Such a group� which has the structure
of the group of phase rotations

� � ei��� �
���

we call U��� If the algebra contains no such commuting elements� so that the
group contains no U�� factors� then we call the algebra semi�simple� If� in
addition� the Lie algebra cannot be divided into two mutually commuting sets
of generators� the algebra is simple� A general Lie algebra is the direct sum of
non�Abelian simple components and additional Abelian generators�

Surprisingly� the basic conditions that a Lie algebra be compact and sim�
ple turn out to be extremely restrictive� In one of the triumphs of nineteenth�
century mathematics� Killing and Cartan classi�ed all possible compact simple
Lie algebras� Almost all of these algebras belong to one of three in�nite fam�
ilies� with only �ve exceptions� The three in�nite families are the algebras
corresponding to the so�called classical groups� whose structures are conve�
niently de�ned in terms of particular matrix representations� The de�nitions
of the three families of classical groups are as follows�

� Unitary transformations of N�dimensional vectors� Let � and � be com�
plex N �vectors� A general linear transformation then has the form

�a � Uab�b� �a � Uab�b� �
����

We say that this transformation is unitary if it preserves the inner product
��a�a� The pure phase transformations

�a � ei��a �
����
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form a U�� subgroup which commutes with all other unitary transformations�
we remove this subgroup to form a simple Lie group� called SU�N�� it consists
of all N 	 N unitary transformations satisfying det�U� � � The generators
of SU�N� are represented by N 	 N Hermitian matrices ta� subject to the
condition that they be orthogonal to the generator of �
�����

tr$ta% � �� �
����

There are N� �  independent matrices satisfying these conditions�
�� Orthogonal transformations of N�dimensional vectors� This is the sub�

group of unitary N 	N transformations that preserves the symmetric inner
product

�aEab�b� with Eab � �ab� �
��
�

This is the usual vector product� and so this group is the rotation group in
N dimensions� SO�N�� �Adding the re�ection gives the group O�N��� There
is an independent rotation corresponding to each plane in N dimensions� so
SO�N� has N�N � ��� generators�

�� Symplectic transformations of N�dimensional vectors� This is the sub�
group of unitary N 	N transformations� for N even� that preserves the an�
tisymmetric inner product

�aEab�b� with Eab �

�
� 
� �

�
� �
����

where the elements of the matrix are N��	N�� blocks� This group is called
Sp�N�� it has N�N � ��� generators�

Beyond these three families� there are �ve more exceptional Lie algebras�
denoted in Cartan�s classi�cation system as G�� F�� E�� E�� and E�� Of these�
E� and E� have been applied as local symmetry groups in interesting uni�ed
models of the fundamental interactions� However� we will not consider these
exceptional groups further in this book� In fact� most of our examples will
involve only SU�N� groups�

Representations

Once we have speci�ed the local symmetry group� the �elds that appear in
the Lagrangian most naturally transform according to a �nite�dimensional
unitary representation of this group� Thus we might next ask how to system�
atically �nd all such representations of any given Lie group� Recall that for the
group SU���� the representations can be constructed directly from the com�
mutation relations� using the raising and lowering operators J� and J�� This
construction can be generalized to �nd the �nite�dimensional representations
of any compact Lie algebra� In this book� however� we will work with rela�
tively simple representations whose structure we can work out by less formal
methods�
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Before discussing representations of Lie algebras� we should review some
general aspects of group representations� Given a symmetry group G� a �nite�
dimensional unitary representation of the group�s Lie algebra is a set of d	 d
Hermitian matrices ta that satisfy the commutation relations �
����� The
size d is the dimension of the representation� An arbitrary representation can
generally be decomposed by �nding a basis in which all representation matri�
ces are simultaneously block�diagonal� Through this change of basis� we can
write the representation as the direct sum of irreducible representations� We
denote the representation matrices in the irreducible representation r by tar �

It is standard practice to adopt a normalization convention for the ma�
trices tar � based on traces of their products� If the Lie algebra is semi�simple�
the matrices tar themselves are traceless� Consider� however� the trace of the
product of two generator matrices�

tr$tart
b
r% � Dab� �
����

As long as the generator matrices are Hermitian� the matrix Dab is positive
de�nite� Let us choose a basis for the generators T a so that this matrix is
proportional to the identity� It can be shown that� once this is done for one
irreducible representation� it is true for all irreducible representations� Thus�
in this basis�

tr$tart
b
r% � C�r��ab� �
����

where C�r� is a constant for each representation r� Equation �
���� and
the commutation relations �
���� yield the following representation of the
structure constants�

fabc � � i

C�r�
tr
�
$tar � t

b
r%t

c
r

�
� �
����

This equation implies that fabc is totally antisymmetric�
For each irreducible representation r of G� there is an associated conjugate

representation r� The representation r yields the in�nitesimal transformation


� � � i	atar�
� �
����

The complex conjugate of this transformation�


� � �� i	a�tar�
��
�� �
���

must also be the in�nitesimal element of a representation of G� Thus the
conjugate representation to r has representation matrices

ta�r � ��tar�� � ��tar�T � �
����

Since 
�
 is invariant to unitary transformations� it is possible to combine
�elds transforming in the representations r and r to form a group invariant�

It is possible that the representation r may be equivalent to r� if there is
a unitary transformation U such that ta�r � UtarU

y� If so� the representation
r is real� In this case� there is a matrix Gab such that� if � and � belong to
the representation r� the combination Gab�a�b is an invariant� It is sometimes
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useful to distinguish the case in whichGab is symmetric from that in whichGab

is antisymmetric� In the former case the representation is strictly real � in the
latter case it is pseudoreal� Both cases occur already in SU���� The invariant
combination of two vectors is vawa� so the vector is a real representation� the
invariant combination of two spinors is ��	���	 � so the spinor is a pseudoreal
representation�

With this language we can discuss the simplest representations of the
classical groups� In SU�N�� the basic irreducible representation �often called
the fundamental representation� is the N �dimensional complex vector� For
N � � this representation is complex� so that there is a second� inequiva�
lent� representation N � �In SU��� this representation is the pseudoreal spinor
representation�� In SO�N�� the basic N �dimensional vector is a �strictly� real
representation� In Sp�N�� the N �dimensional vector is a pseudoreal represen�
tation�

Another irreducible representation� present for any simple Lie algebra� is
the one to which the generators of the algebra belong� This representation is
called the adjoint representation and denoted by r � G� The representation
matrices are given by the structure constants�

�tbG�ac � ifabc� �
����

With this de�nition� the statement that taG satis�es the Lie algebra�
$tbG� t

c
G%
�
ae

� if bcd�tdG�ae �
����

is just a rewriting of the Jacobi identity �
����� Since the structure constants
are real and antisymmetric� taG � ��taG��� thus the adjoint representation is
always a real representation� From the descriptions of the Lie groups given
above� the dimension of the adjoint representation d�G� is given� for the clas�
sical groups� by

d�G� �

#$%N� �  for SU�N��
N�N � ��� for SO�N��
N�N � ��� for Sp�N��

�
��
�

The identi�cation of fabc as a representation matrix allows us to gain
further insight into some of the quantities introduced in Section 
��� The
covariant derivative acting on a �eld in the adjoint representation is

�D�
�a � ��
a � igAb
��t

b
G�ac
c

� ��
a � gfabcAb
�
c�

�
����

Thus we can recognize the in�nitesimal form of the gauge transformation of
the vector �eld in �
���� as the motion

Aa
� � Aa

� �


g
�D�	�

a� �
����
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The gauge �eld equation of motion �
�
� can be rewritten as

�D�F���
a � �gja� � �
����

In both of these expressions� the arbitrary�looking terms involving fabc arise
naturally as part of a covariant derivative� An additional identity follows from
considering the antisymmetric double commutator of covariant derivatives�

����� $D� � $D�� D� %%�

This quantity vanishes by its total antisymmetry� in the same way as �
�����
This result can be reduced to the identity

������D�F���
a � �� �
����

This equation� called the Bianchi identity of a non�Abelian gauge theory� is
the analogue of the homogeneous Maxwell equations in electrodynamics�

The Casimir Operator

In SU���� we characterize representations by the eigenvalue of the total spin
J�� In fact� for any simple Lie algebra� the operator

T � � T aT a �
����

�with the repeated index summed� as always� commutes with all group gen�
erators�

$T b� T aT a% � �if bacT c�T a � T a�if bacT c�

� if bacfT c� T ag�
�
���

which vanishes by the antisymmetry of fabc� In other words� T � is an invariant
of the algebra� this implies that T � takes a constant value on each irreducible
representation� Thus� the matrix representation of T � is proportional to the
unit matrix�

tar t
a
r � C��r� � �� �
����

where � is the d�r� 	 d�r� unit matrix and C��r� is a constant� called the
quadratic Casimir operator� for each representation� For the adjoint represen�
tation� Eq� �
���� is more conveniently written as

facdf bcd � C��G��ab� �
����

Casimir operators appear very often in computations in non�Abelian gauge
theories� Furthermore� the related invariant C�r� given by �
���� is simply
related to the Casimir operator� If we contract �
���� with �ab and evaluate
the left�hand side using �
����� we �nd

d�r�C��r� � d�G�C�r�� �
����

Thus it will be useful for us to compute C��r� for the simplest SU�N� repre�
sentations�
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For SU���� the fundamental two�dimensional representation is the spinor
representation� which is given in terms of Pauli matrices by

ta� �
�a

�
� �
��
�

These satisfy tr$ta�t
b
�% �

�
��

ab� We will choose the generators of SU�N� so that
three of these are the generators �
��
�� acting on the �rst two components
of the N �vector �� Then� for any matrices of the fundamental representation�

tr$taN t
b
N % � �

��
ab� �
����

This convention �xes the values of C�r� and C��r� for all of the irreducible
representations of SU�N�� For the fundamental representations N and N �
C�N� is given directly by �
����� and C��N� follows from �
����� We �nd

C�N� �


�
� C��N� �

N� � 

�N
� �
����

To compute the Casimir operator for the adjoint representation� we build
up this representation from the product of the N and N � Let us �rst discuss
the product of irreducible representations more generally� The direct product
of two representations r�� r� is a representation of dimension d�r�� � d�r��� An
object that transforms according to this representation can be written as a
tensor 6pq � in which the �rst index transforms according to r�� the second
according to r�� In general� such a product can be decomposed into a direct
sum of irreducible representations� symbolically� we write

r� 	 r� �
X

ri� �
����

The representation matrices in the representation r� 	 r� are

tar��r� � tar� �  � � tar� � �
����

where the �rst matrix of each product acts on the �rst index of 6pq and the
second matrix acts on the second index�

The Casimir operator in the product representation is

�tar��r��
� � �tar��

� �  � �tar� � tar� � � �tar��
��

Take the trace� since the matrices tar are traceless� the trace of the second
term on the right is zero� Then

tr�tar��r��
� �
�
C��r�� � C��r��

�
d�r��d�r��� �
����

On the other hand� the decomposition �
���� implies

tr�tar��r��
� �
X

C��ri�d�ri�� �
���

Equating �
���� and �
���� we �nd a useful identity for C��r��
Now apply this identity to the product of the N and N representations

of SU�N�� In this case� the tensor 6pq can contain a term proportional to
the invariant �pq � The remaining �N� � � independent components of 6pq
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transform as a general traceless N 	N tensor� the matrices that e�ect these
transformations make up the adjoint representation of SU�N�� In this case
Eq� �
���� becomes explicitly

N 	N �  � �N� � �� �
����

For this decomposition� Eqs� �
���� and �
��� imply the identity�
� � N

� � 

�N

�
N� � � � C��G� � �N� � �� �
����

Thus� for SU�N��

C��G� � C�G� � N� �
����

Some additional examples of the computation of quadratic Casimir oper�
ators are given in Problem 
�
� However� the examples we have discussed in
this section� combined with the basic group�theoretic concepts that we have
reviewed� already provide enough material to carry out the most important
computations of physical interest in non�Abelian gauge theories�

Problems

���� Brute�force computations in SU���� The standard basis for the fundamen�
tal representation of SU�� is

t� �
�

�

�
� � �
� � �
� � �

�
� t� �

�

�

�
� �i �
i � �
� � �

�
� t� �

�

�

�
� � �
� �� �
� � �

�
�

t� �
�

�

�
� � �
� � �
� � �

�
� t �

�

�

�
� � �i
� � �
i � �

�
�

t� �
�

�

�
� � �
� � �
� � �

�
� t� �

�

�

�
� � �
� � �i
� i �

�
� t� �

�

�
p


�
� � �
� � �
� � ��

�
�

�a� Explain why there are exactly eight matrices in the basis�

�b� Evaluate all the commutators of these matrices� to determine the structure con�
stants of SU��� Show that� with the normalizations used here� fabc is totally
antisymmetric� �This exercise is tedious� you may wish to check only a represen�
tative sample of the commutators��

�c� Check the orthogonality condition �����
�� and evaluate the constant C�r� for
this representation�

�d� Compute the quadratic Casimir operator C��r� directly from its de�nition
����	��� and verify the relation ����	�� between C��r� and C�r��

���� Write down the basis matrices of the adjoint representation of SU���� Compute
C�G� and C��G� directly from their de�nitions �����
� and ����	���
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�

���� Coulomb potential�

�a� Using functional integration� compute the expectation value of the Wilson loop
in pure quantum electrodynamics without fermions� Show that

hUP �z� z�i � exp

�e�
I
P

dx�
I
P

dy�g��
�


���x� y��

�
�

with x and y integrated around the closed curve P �

�b� Consider the Wilson loop of a rectangular path of �spacelike� width R and
�timelike� length T � T � R� Compute the expectation value of the Wilson loop
in this limit and compare to the general expression for time evolution�

hUP i � exp��iE�R�T ��

where E�R� is the energy of the electromagnetic sources corresponding to the
Wilson loop� Show that the potential energy of these sources is just the Coulomb
potential� V �R� � �e�
��R�

�c� Assuming that the propagator of the non�Abelian gauge �eld is given by the
Feynman gauge expression

�
Aa��x�A

b
��y�
�
�

Z
d�p

�����
�ig���ab

p�
e�ip��x�y��

compute the expectation value of a non�Abelian Wilson loop to order g�� The
result will depend on the representation r of the gauge group in which one
chooses the matrices that appear in the exponential� Show that� to this order� the
Coulomb potential of the non�Abelian gauge theory is V �R� � �g�C��r�
��R�

���� Scalar propagator in a gauge theory� Consider the equation for the Green�s
function of the Klein�Gordon equation�

��� �m��DF �x� y� � �i�����x� y��

We can �nd an interesting representation for this Green�s function by writing

DF �x� y� �

�Z
�

dT D�x� y� T ��

where D�x� y� T � satis�es the Schr/odinger equationh
i
�

�T
� ��� �m��

i
D�x� y� T � � i��T ������x� y��

Now� represent D�x� y� T � using the functional integral solution of the Schr/odinger
equation presented in Section 	���

�a� Using the explicit formula of the propagator of the Schr/odinger equation� show
that this integral formula gives the standard expression for the Feynman prop�
agator�
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�b� Using the method just described� show that the expression

DF �x� y� �

�Z
�

dT

Z
Dx exp


i

Z
dt
�

�

��
dx�

dt

��
�m�

�
� ie

Z
dt

dx�

dt
A��x�

�
is a functional integral representation for the scalar �eld propagator in an arbi�
trary background electromagnetic �eld� Show� in particular� that the functional
integral satis�es the relevant Schr/odinger equation� Notice that this integral de�
pends on A� through the Wilson line�

�c� Generalize this expression to a non�Abelian gauge theory� Show that the func�
tional integral solves the relevant Schr/odinger equation only if the group matrices
in the exponential for the Wilson line are path�ordered�

���� Casimir operator computations� An alternative strategy for computing the
quadratic Casimir operator is to compute C�r� in the formula

tr�tar t
b
r� � C�r��ab

by choosing ta and tb to lie in an SU��� subgroup of the gauge group�

�a� Under an SU��� subgroup of a general group G� an irreducible representation r
of G will decompose into a sum of representations of SU����

r�
X

ji�

where the ji are the spins of SU��� representations� Show that

C�r� �
X
i

ji�ji � ����ji � ���

�b� Under an SU��� subgroup of SU�N�� the fundamental representation N trans�
forms as a ��component spinor �j � �

� � and �N ��� singlets� Use this relation to
check the formula C�N� � �

� � Show that the adjoint representation of SU�N�

decomposes into one spin �� ��N � �� spin� �� �s� plus singlets� and use this de�
composition to check that C�G� � N �

�c� Symmetric and antisymmetric ��index tensors form irreducible representations
of SU�N�� Compute C��r� for each of these representations� The direct sum
of these representations is the product representation N �N � Verify that your
results for C��r� satisfy the identity for product representations that follows
from Eqs� �������� and ���������
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Quantization of Non�Abelian Gauge Theories

The previous chapter showed how to construct Lagrangians with non�Abelian
gauge symmetry� However� this is only the �rst step in the process of relating
the idea of non�Abelian gauge invariance to the real interactions of particle
physics� We must next work out the rules for computing Feynman diagrams
containing the non�Abelian gauge vector particles� then use these rules to
compute scattering amplitudes and cross sections� This chapter will develop
the technology needed for such calculations�

Alongside this technical discussion� we will study how the gauge symmetry
a�ects the Feynman amplitudes� In any theory with a local symmetry� some
degrees of freedom of the �elds that appear in the Lagrangian are unphysical�
in the sense that they can be adjusted arbitrarily by gauge transformations�
In electrodynamics� the components of the �eld A��k� proportional to k

� lie
along the symmetry directions� We saw in Section ��� that this fact has two
important consequences� First� the propagator of the �eld A� is ambiguous�
there are multiple expressions for the propagator� which follow equally well
from the QED Lagrangian� Second� the vertices of electrodynamics are such
that this ambiguity makes no di�erence in the calculation of cross sections� For
example� Eq� ���
�� displays a continuous family of photon propagators� one
for each value of the continuous parameter �� but we saw immediately that all
dependence of S�matrix elements on � is eliminated by the Ward identity� Non�
Abelian gauge theories contain similar ambiguities and cancellations� but� as
we will see in this chapter� the structure of the cancellations is more intricate�

An additional goal of this chapter is to compute the Callan�Symanzik �
function� and hence determine the behavior of the running coupling constant�
for non�Abelian gauge theories� As discussed in Chapter �� these theories
are in fact asymptotically free� The coupling constant becomes weak at large
momenta� This result indicates the applicability of non�Abelian gauge theory
to model the strong interactions� We will be able to derive this result once we
have determined the correct Feynman rules for non�Abelian gauge theories�

�
�
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���� Interactions of Non�Abelian Gauge Bosons

Most of the Feynman rules for non�Abelian gauge theory can be read directly
from the Yang�Mills Lagrangian� following the method of Section ���� How�
ever� when we quantized the electromagnetic �eld in Section ���� we saw that
the functional integral over a gauge �eld must be de�ned carefully� and that
the subtle aspects of this construction can introduce new ingredients into the
quantum theory� In this section we will see how far we can go in the non�
Abelian theory by ignoring these subtleties� In Section ��� we will carry out
a more proper derivation of the Feynman rules� through a careful analysis of
the functional integral�

Feynman Rules for Fermions and Gauge Bosons

The Yang�Mills Lagrangian� as derived in the previous chapter� is

L � �

�
�F a

���
� � ��iD �m��� ����

where the index a is summed over the generators of the gauge group G� and
the fermion multiplet � belongs to an irreducible representation r of G� The
�eld strength is

F a
�� � ��A

a
� � ��A

a
� � gfabcAb

�A
c
� � �����

where fabc are the structure constants of G� The covariant derivative is de�ned
in terms of the representation matrices tar by

D� � �� � igAa
�t
a
r � �����

From now on we will drop the subscript r except where it is needed for clarity�
The Feynman rules for this Lagrangian can be derived from a functional

integral over the �elds �� �� and Aa
�� Imagine expanding the functional integral

in perturbation theory� starting with the free Lagrangian� at g � �� The free
theory contains of a number of free fermions equal to the dimension d�r� of
the representation r� and a number of free vector bosons equal to the number
d�G� of generators of G� Using the methods of Section ��
� it is straightforward
to derive the fermion propagator

�
�i��x��j	�y�

�
�

Z
d�k

�����

� i

k �m

�
�	

�ij e
�ik��x�y�� �����

where 	� � are Dirac indices and i� j are indices of the symmetry group�
i� j � � � � � � d�r�� In analogy with electrodynamics� we would guess that the
propagator of the vector �elds is

�
Aa
��x�A

b
��y�
�
�

Z
d�k

�����

��ig��
k�

�
�ab e�ik��x�y�� ���
�
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Figure ����� Feynman rules for fermion and gauge boson vertices of a non�
Abelian gauge theory�

with a� b � � � � � � d�G�� We will derive this formula in the next section�
To �nd the vertices� we write out the nonlinear terms in ����� If L� is

the free �eld Lagrangian� then

L � L� � gAa
���

�ta� � gfabc���A
a
��A

�bA�c

� �
�g

��feabAa
�A

b
���f

ecdA�cA�d��
�����

The �rst of the three nonlinear terms gives the fermion�gauge boson vertex

ig��ta� �����

this is a matrix that acts on the Dirac and gauge indices of the fermions� The
second nonlinear term leads to a three gauge boson vertex� To work out this
vertex� we �rst choose a de�nite convention for the external momenta and
Lorentz and gauge indices� A suitable convention is shown in Fig� ��� with
all momenta pointing inward� Consider �rst contracting the external gauge
particle with momentum k to the �rst factor of Aa

�� the gauge particle with
momentum p to the second� and the gauge particle of momentum q to the
third� The derivative contributes a factor ��ik�� if the momentum points into
the diagram� Then this contribution is

�igfabc��ik��g��� �����

In all� there are �- possible contractions� which alternate in sign according to
the total antisymmetry of fabc� The sum of these is exhibited in Fig� ���
Finally� the last term of ����� leads to a four gauge boson vertex� Following
the conventions of Fig� ��� one possible contraction gives the contribution

�ig�feabfecdg��g�� � �����
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There are �- possible contractions� of which sets of � are equal to one another�
The sum of these contributions is shown in Fig� ���

Notice that all of these vertices involve the same coupling constant g�
We derived the vertices� and thus the equality of the coupling constants� as a
part of our construction of the Lagrangian from the principle of non�Abelian
gauge invariance� However� it is also possible to see the need for this equality
a posteriori� from the properties of Feynman amplitudes�

Equality of Coupling Constants

One property that we expect from Feynman amplitudes in non�Abelian gauge
theories is that they should satisfy Ward identities similar to those of QED�
These Ward identities express the conservation of the symmetry currents�
which follows already from the global symmetry of the theory� In QED� the
simplest form of the Ward identity was obtained by putting external electrons
and positrons on shell� In non�Abelian gauge theories� the gauge bosons also
carry charge and so these must also be put on shell to remove contact terms�
With all external particles on shell� the amplitude for production of a gauge
boson should obey

�����

This identity is not only an indication of the local gauge symmetry� but is
physically important in its own right� Like the photon� the non�Abelian gauge
boson has only two physical polarization states� In QED� the on�shell Ward
identity expressed the fact that the orthogonal� unphysical polarization states
are not produced in scattering processes� The on�shell Ward identity will play
a similar role in the non�Abelian case�

Let us check the Ward identity in a simple case� the lowest�order diagrams
contributing to fermion�antifermion annihilation into a pair of gauge bosons�
In order g�� there are three diagrams� shown in Fig� ���� The �rst two dia�
grams are similar to the QED diagrams that we studied in Section 
�
� they
sum to

iM��
����

�
��k���

�
��k�� � �ig��v�p��

n
��ta

i

p� k� �m
��tb

� ��tb
i

k� � p� �m
��ta
o
u�p� ����k���

�
��k���

����
The vectors ��ki� are the gauge boson polarization vectors� for physical polar�
izations� these satisfy k�i ���ki� � �� To check the Ward identity ������ we
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Figure ����� Diagrams contributing to fermion�antifermion annihilation to
two gauge bosons�

replace ����k�� in ���� by k�� � This gives

iM��
����

�
��k�� � �ig��v�p��

n
��ta

i

p� k� �m
k�tb

� k�tb
i

k� � p� �m
��ta
o
u�p� �����

�����

Since

�p�m�u�p� � � and v�p����p� �m� � �� �����

we can add these quantities to k� in the �rst and second terms of ������ to
cancel the denominators� This gives

iM��
����

�
��k�� � �ig��v�p��

n
�i��$ta� tb%

o
u�p� ����� �����

In the Abelian case� this expression would vanish� In the non�Abelian case�
however� the residual term is nonzero and depends on the commutator of
gauge group generators�

iM��
����

�
��k�� � �g�v�p����u�p� ���� � fabctc� ���
�

We need to �nd another contribution to cancel this term� Notice� however�
that this term has the group index structure of a fermion�gauge boson vertex
�g��tc� multiplied by a three gauge boson vertex �gfabc�� This is just the
structure of the third diagram in Fig� ����

To check that the cancellation works� let us evaluate the third diagram�

iM��
� �����

�
�� � igv�p����t

cu�p�
�i
k��

����k���
�
��k��

	 gfabc
�
g���k� � k��

� � g���k� � k��
� � g���k� � k��

�
�
�

with k� � �k� � k�� If we replace ���k�� with k�� � then eliminate k� using
momentum conservation� the expression in brackets simpli�es as follows�

����k��
�
g���k� � k��

� � g���k� � k��
� � g���k� � k��

�
�

� k�� �k� � k��
� � k���k� � k��

� � g���k� � k�� � k�
� g��k�� � k��k

�
� � g��k�� � k��k

�
� �

�����
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Figure ����� Diagrams contributing to gauge boson�gauge boson scattering�

Let us assume that the other gauge boson� with momentum k�� is on shell
�k�� � ��� and that it has transverse polarization �k�� ���k�� � ��� Then the
third and fourth terms in the last line vanish� Furthermore� the term k��k

�
�

vanishes when it is contracted with the fermion current� In the remaining
term� the factor k�� cancels the gauge boson propagator� and we are left with

iM��
� ����k�� � �g�v�p���

�u�p� ���� � fabctc� �����

which precisely cancels ���
��
Notice that this cancellation takes place only if the value of the coupling

constant in the three�boson vertex is identical to that in the fermion�boson
vertex� In a similar way� the Ward identity cannot be satis�ed among the di�
agrams for boson�boson scattering� shown in Fig� ���� unless the coupling
constant g in the four�boson vertex is identical to that in the three�boson ver�
tex� Thus� the coupling constants of all three nonlinear terms in the Yang�Mills
Lagrangian must be equal in order to preserve the Ward identity and avoid
the production of bosons with unphysical polarization states� Conversely� the
non�Abelian gauge symmetry guarantees that these couplings are equal� The
symmetry thus accomplishes exactly what we hoped it would in our discus�
sion at the beginning of Chapter 
� giving us a consistent theory of physical
vector particle interactions�

A Flaw in the Argument

The preceding argument has one serious de�ciency� At the �nal stage� we
needed to assume that the second gauge boson was transverse� However� one
might have expected that this information would come out of the argument
rather than having to be put in� In QED� the Feynman diagrams predict
that� when an electron and a positron annihilate to form two photons� only
the physical transverse polarization states of the photons are produced� Am�
plitudes to produce other photon polarizations cancel each other to yield zero�
as we saw in Eq� �
����� This statement is not true for the non�Abelian gauge
theory Feynman rules that we have worked with so far�

To state the discrepancy more concretely� we introduce some notation�
Let k� � �k��k� be a lightlike vector� k� � �� Then there are two purely
spatial vectors orthogonal to k� If k is the momentum of a vector boson� these
are the two transverse polarizations� To construct an orthogonal basis� we
must include also the longitudinal polarization state� with polarization vector
parallel to k� and the timelike polarization state� It is most convenient to work
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with the two lightlike linear combinations of these states� with polarization
vectors parallel to the vectors k� and 'k� � �k���k�� These two unphysical
polarization states of a massless vector particle can be written as follows�

��� �k� �

�
k�p
�jkj �

kp
�jkj

�
� ��� �k� �

�
k�p
�jkj ��

kp
�jkj

�
� �����

We will refer to ���k� and ���k� as the forward and backward lightlike po�
larization vectors� Denote the two transverse polarization states �Ti��k�� for
i � � �� These four polarization vectors obey the orthogonality relations

�Ti � ��Tj � ��ij � �� � �Ti � �� � �Ti � ��

����� � ����� � �� �� � �� � �
�����

They also satisfy the completeness relation

g�� � ��� �
��
� � ��� �

��
� �

X
i

�Ti��
T�
i� � ������

Using this notation� we can express concretely the gap in the argument
for the Ward identity� The Feynman diagrams of Fig� ��� apparently pre�
dict that there is a nonzero amplitude to produce a forward�polarized gauge
boson together with a backward�polarized gauge boson� For this case� we sub�
stitute ���� �k�� and ���� �k�� for the two polarization vectors� Then the term
proportional to k��k

�
� in Eq� ����� no longer vanishes� it now yields

iM � igv�p����t
cu�p�

�i
k��

���� �k�� � p
�jk�j

� gfabc��k��k�� �
� igv�p����t

cu�p�
�i
k��
� ��g�fabck�� �

jk�j
jk�j �

�����

Can we simply ignore this totally unphysical process� We are free to
do so in calculations of leading�order amplitudes� but the process will come
back to haunt us in loop diagrams� Recall from Section ��� how the optical
theorem ������ links the imaginary part of a loop diagram to the square of a
corresponding scattering amplitude� obtained by cutting the diagram across
the loop� If we apply the optical theorem to the diagram shown in Fig� ����
we obtain a paradox� In the gauge boson loop on the left�hand side we can
replace the g�� factors in the propagators with sums over all four polarization
vectors ������� The theorem thus implies that all four polarizations� even
the unphysical ones� should be included for the �nal�state gauge bosons on
the right�hand side� We are faced with a choice of allowing the production of
unphysical states or violating the optical theorem� A third alternative� equally
unattractive� would be to discard our expression ���
� for the gauge boson
propagator� Clearly� we are missing some crucial element of the quantum�
mechanical structure of non�Abelian gauge theories�
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Figure ����� A paradox for the optical theorem in gauge theories�

���� The Faddeev�Popov Lagrangian

It is not surprising that we have found a problem with our Feynman rules for
non�Abelian gauge theories� since we were not very careful in deriving them�
In particular� we did not actually derive expression ���
� for the gauge �eld
propagator� In this section we will remedy this by going through a formal
derivation of this expression� We will �nd that� although expression ���
� is
indeed correct� it is incomplete� It must be supplemented by additional rules
of a completely new type�

To de�ne the functional integral for a theory with non�Abelian gauge
invariance� we will use the Faddeev�Popov method� as introduced in Section
��� to quantize the electromagnetic �eld� Our present discussion will follow
Section ��� closely� However� as we have by now come to expect� the case of
non�Abelian local symmetry brings with it new tricks and surprises�

First consider the quantization of the pure gauge theory� without fermions�
To derive the Feynman rules� we must de�ne the functional integralZ

DA exp


i

Z
d�x
�
� �

� �F
a
�� �

�
��
� ������

As in the Abelian case� the Lagrangian is unchanged along the in�nite number
of directions in the space of �eld con�gurations corresponding to local gauge
transformations� To compute the functional integral we must factor out the
integrations along these directions� constraining the remaining integral to a
much smaller space�

As in electrodynamics� we will constrain the gauge directions by apply�
ing a gauge��xing condition G�A� � � at each point x� Following Faddeev
and Popov� we can introduce this constraint by inserting into the functional
integral the identity ���
���

 �

Z
D	�x� ��G�A��

�
det
��G�A��

�	

�
� ������

HereA� is the gauge �eld A transformed through a �nite gauge transformation
as in �
�����

�A��a�t
a � ei�

ata
�
Ab
�t
b �

i

g
��
�
e�i�

ctc � ������
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In evaluating the determinant� the in�nitesimal form of this transformation
will be more useful�

�A��a� � Aa
� �



g
��	

a � fabcAb
�	

c � Aa
� �



g
D�	

a� ����
�

where D� is the covariant derivative �
���� acting on a �eld in the adjoint
representation� Note that� as long as the gauge��xing function G�A� is linear�
the functional derivative �G�A����	 is independent of 	�

Since the Lagrangian is gauge invariant� we can replace A by A� in the
exponential of ������� Then� as in the Abelian case� we can interchange the
order of the functional integrals over A and 	� and then change variables in
the inner integral from A to A� � A�� The transformation ������ looks more
complicated than in the Abelian case� but it is nothing more than a linear shift
of the Aa

�� followed by a unitary rotation of the various components of the
symmetry multiplet Aa

��x� at each point� Both of these operations preserve
the measure

DA �
Y
x

Y
a��

dAa
�� ������

Thus DA � DA�� under the integral over 	� Just as in the Abelian case� the
integral over gauge motions 	 can be factored out of the functional integral
into an overall normalization� leaving us withZ

DAeiS�A� �

�Z
D	
�Z

DAeiS�A� �
�
G�A�

�
det
��G�A��

�	

�
� ������

This normalization factor cancels in the computation of correlation functions
of gauge�invariant operators�

+From this point� the derivation of the gauge boson propagator proceeds
as for the photon propagator� We choose the generalized Lorentz gauge con�
dition

G�A� � ��Aa
��x� � a�x�� ������

with a Gaussian weight for a as in Eq� ���
��� The manipulations of Section
��� then lead to the class of gauge �eld propagators�

Aa
��x�A

b
� �y�
�
�

Z
d�k

�����
�i

k� � i�

�
g�� � ����k�k�

k�

�
�abe�ik��x�y�� ������

with a freely adjustable gauge parameter �� Our guess ���
� corresponds to
the choice � � � called the Feynman��t Hooft gauge�

So far� this whole derivation parallels the case of electrodynamics� Here�
however� there is one more nontrivial ingredient� In QED� the determinant in
Eq� ������ was independent of A� so this quantity could be treated as just
another contribution to the normalization factor� In the non�Abelian case this
is no longer true� Using the in�nitesimal form ����
� of the gauge transfor�
mation� we can evaluate

�G�A��

�	
�



g
��D�� ������
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acting on a �eld in the adjoint representation� this operator depends on A�
The functional determinant of ������ thus contributes new terms to the La�
grangian�

Faddeev and Popov chose to represent this determinant as a functional
integral over a new set of anticommuting �elds belonging to the adjoint rep�
resentation�

det
�
g
��D�

�
�

Z
DcDc exp

h
i

Z
d�x c

����D��c
�i
� �����

We derived this formal identity in Eq� ������� using our rules for fermionic
functional integrals� �The factor of �g is absorbed into the normalization of
the �elds c and c�� But to give the correct identity� c and c must be anticom�
muting �elds that are scalars under Lorentz transformations� The quantum
excitations of these �elds have the wrong relation between spin and statistics
to be physical particles� However� we can nevertheless treat these excitations
as additional particles in the computation of Feynman diagrams� These new
�elds and their particle excitations are called Faddeev�Popov ghosts�

If we temporarily suppress our curiosity about the physical interpretation
of the ghosts� we can work out their Feynman rules� We write the ghost
Lagrangian more explicitly as

Lghost � ca
�����ac � g��fabcAb

�

�
cc� ������

The �rst term gives a ghost propagator��
ca�x�cb�y�

�
�

Z
d�k

�����
i

k�
�abe�ik��x�y�� ������

In a diagram� this propagator carries an arrow that shows the �ow of ghost
number� as in Fig� ��
� In the interaction term of ������� the derivative
stands to the left of the gauge �eld� this implies that this derivative is evalu�
ated with the momentum coming out of the vertex along the ghost line� The
explicit Feynman rule is shown in Fig� ��
� As with the other vertices we
have encountered� the coupling constant g that appears in this vertex must
be equal to the coupling constant g in the three�boson vertex in order to avoid
upsetting the Ward identities�

There are no further subtleties in the construction of the perturbation
theory for non�Abelian gauge theories� In particular� it is straightforward to
include fermions� The �nal Lagrangian� including all of the e�ects of Faddeev�
Popov gauge �xing� is

L � �

�
�F a

�� �
� �



��
���Aa

��
� � ��iD �m�� � ca����Dac

� �cc� ������

This Lagrangian leads to the propagator ������� and to the set of Feynman
rules for vertices shown in Figs� �� and ��
�

The argument we have just completed su	ces to derive the Feynman
diagram expansion of any correlation function of gauge�invariant operators in
a non�Abelian gauge theory� At the end of Section ���� we explained that the
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Figure ����� Feynman rules for Faddeev�Popov ghosts�

Faddeev�Popov gauge��xing technique also gives the correct gauge�invariant
expressions for S�matrix elements� This remains true in the non�Abelian case�
However� the argument given in Section ��� relied upon the cancellation in
QED of the emission probabilities for timelike and longitudinal photons� and
we have already found that this cancellation does not go through in the non�
Abelian case� In Section ��� we will construct a more sophisticated argument�
in which the Faddeev�Popov ghosts play an essential role� that will correctly
generalize our previous argument to non�Abelian gauge theories�

���� Ghosts and Unitarity

We might now ask whether the new ingredients that we found in the previous
section� the Faddeev�Popov ghosts� can resolve the paradox that we encoun�
tered at the end of Section ��� There we saw that the �rst diagram in
Fig� ��� contains a nonzero contribution to its imaginary part that does not
correspond to a possible �nal state with physical gauge boson polarizations�
We will now compute this contribution more carefully� We must then add a
new potential contribution from the ghosts� shown as the second diagram in
Fig� ����

Let us call the amplitude for fermion�fermion annihilation into gauge
bosons� which we studied in Section ���

iM������k���
�
��k��� ����
�

the amplitude for two gauge bosons to convert to a fermion�antifermion pair
will be� correspondingly� M�� Then� following the Cutkosky rules of Sec�
tion ���� we �nd the imaginary part of the �rst diagram in Fig� ��� by
replacing the cut gauge boson propagator with momentum ki by

�ig�� � ����i���k�i �� ������

Replacing both propagators gives two delta functions� turning the four�
dimensional integrals over the gauge boson momenta into three�dimensional
phase space integrals� as in the example in Section ���� We are thus left with
the expression

�
� �iM���g��g���iM����� ������
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Figure ����� The diagram on the left� in which each circle represents the
sum of the three contributions of Fig� ����� gives a possible problem for the
optical theorem� The ghost diagram on the right cancels the anomalous terms�

integrated over the phase space of two massless particles� The factor �� is
a symmetry factor for the Feynman diagram or� equivalently� a correction to
the phase space integral for identical particles�

Now introduce the representation ������ for g�� and g�� � The pieces that
involve only transverse polarizations correspond to the expected imaginary
parts necessary to satisfy the optical theorem� We need not consider these
terms further� The cross terms between physical and unphysical polarizations
vanish� We showed in Section �� that

iM���T�� �k���
��
� �k�� � �� ������

The same identity holds if M is replaced by M�� and if �� is replaced by ���
Furthermore� the amplitude vanishes if both polarization vectors are forward
or both are backward� The only surviving terms are the cross terms between
forward and backward polarization� which yield the expression

�
�

�
�iM������ ���� ��iM������ �

�
� � � �iM������ ���� ��iM������ �

�
� �
�
� ������

integrated over phase space� We worked out the value of the �rst factor in
Eq� ������ and the contraction with M� is very similar� Substituting these
results� expression ������ becomes



�

�
igv�p����t

cu�p� � �i
�k� � k���

� ��gfabck�� �
�

	
�
igu�p����tdv�p��� �

�i
�k� � k���

� ��gfabd��k����
�
� �k� � k���

������
Using the identity

v�p�����k� � k��
�u�p� � v�p�����p� p��

�u�p� � �� �����

we see that the two terms added in ������ are equal�
Now add the contribution from the Faddeev�Popov ghosts� Using the

Feynman rules in Fig� ��
� we can assemble the amplitude for fermion�
antifermion annihilation into a pair of ghosts�

iMghost � igv�p����t
cu�p� � �i

�k� � k���
� ��gfabck�� �� ������
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This is precisely the �rst half of expression ������� Similarly� the amplitude
for the ghost�antighost pair to annihilate into fermions is equal to the second
half of ������� Finally� since Faddeev�Popov ghost �elds anticommute� we
must supply a factor of � for each ghost loop� Thus the ghost contribution
exactly cancels the contribution of unphysical gauge boson polarizations to
the Cutkosky cut of the diagrams in Fig� ����

This example illustrates a general physical interpretation of Faddeev�
Popov ghosts� These �particles� serve as negative degrees of freedom to cancel
the e�ects of the unphysical timelike and longitudinal polarization states of
the gauge bosons� The simplest e�ect of the ghosts can already be seen from
the determinants that appear when one integrates over the gauge and ghost
�elds in the Faddeev�Popov Lagrangian ������� In a general dimension d�
working in Feynman gauge and at zero coupling for simplicity� the functional
integral over the gauge and ghost �elds in ������ yields�

det$���%��d�� � �det$���%���� ������

The second determinant� which appears with a positive exponent because the
ghost �elds anticommute� cancels the contribution to the �rst determinant of
two components of the �eld A�� This physical e�ect was illustrated� using the
language of Section ���� in Problem ����

���� BRST Symmetry

To show how this cancellation extends to the complete interacting theory�
Becchi� Rouet� Stora� and Tyutin introduced as a beautiful formal tool a new
symmetry of the gauge��xed Lagrangian ������� which involves the ghost in
an essential way�! This BRST symmetry has a continuous parameter that is
an anticommuting number� To write the symmetry in its simplest form� let
us rewrite the Faddeev�Popov Lagrangian by introducing a new �commuting�
scalar �eld Ba�

L � �

�
�F a

�� �
����iD�m��� �

�
�Ba���Ba��Aa

�� ca����Dac
� �cc� ������

The new �eld Ba has a quadratic term without derivatives� so it is not a
normal propagating �eld� The functional integral over Ba can be done by
completing the square in ������� this procedure brings us back precisely to
Eq� ������� A �eld of this type� which appears in the functional integral but
has no independent dynamics� is called an auxilliary �eld�

�C� Becchi� A� Rouet� and R� Stora� Ann� Phys� 	�� �
� ��	���� I� V� Tyutin�
Lebedev Institute preprint ��	��� unpublished�� M� Z� Iofa and I� V� Tyutin� Theor�
Math� Phys� ��� �� ��	����
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Now let � be an in�nitesimal anticommuting parameter� and consider the
following in�nitesimal transformation of the �elds in �������

�Aa
� � �Dac

� cc

�� � ig�cata�

�ca � � �
�g�f

abccbcc

�ca � �Ba

�Ba � ��

����
�

The transformation of the �elds Aa
� and � is a local gauge transformation

whose parameter is proportional to the ghost �eld� 	a�x� � g�ca�x�� Thus�
the �rst two terms of ������ are invariant to ����
�� The third term is triv�
ially invariant� The transformation of Aa

� in the fourth term cancels the trans�
formation of ca in the last term� Finally� we must examine the transformation
of the last ingredient in �������

��Dac
� cc� � Dac

� �cc � gfabc�Ab
�c

c

� � �
�g����f

abccbcc�� �
�g

��fabcfcdeAb
�c

dce

� g�fabc���c
b�cc � g��fabcf bdeAd

�c
ecc�

������

The two terms of order g manifestly cancel� By using the anticommuting
nature of the ghost �elds and exchanging the names of indices� we can write
the remaining two terms as

� �
�g

�fabcfcde
�
Ab
�c

dce �Ad
�c

ecb �Ae
�c

bcd
�
� ������

which vanishes by the Jacobi identity �
����� Apparently� the BRST trans�
formation ����
� is a global symmetry of the gauge��xed Lagrangian �������
for any value of the gauge parameter ��

The BRST transformation has one more remarkable feature� which is
a natural consequence of its anticommuting nature� Let Q
 be the BRST
transformation of the �eld 
� �
 � �Q
� For example� QAa

� � Dac
� cc� Then�

for any �eld� the BRST variation of Q
 vanishes�

Q�
 � �� ������

The vanishing of ������ proves this identity for the second BRST variation
of the gauge �eld� For the ghost �eld�

Q�ca � �
�g

�fabcf bdecccdce� ������

which vanishes by the Jacobi identity� It is straightforward to check that the
second BRST variations of the other �elds in ������ also vanish�

To describe the implications of identity ������� we now consider studying
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the e�ective theory ������ in the Hamiltonian picture after canonical quan�
tization� Because the Lagrangian has the continuous symmetry ����
�� the
theory will have a conserved current� and the integral of the time component
of this current will be a conserved charge Q that commutes with H � The ac�
tion of Q on �eld con�gurations will be just that described in the previous
paragraph� The relation ������ is equivalent to the operator identity

Q� � �� ���
��

We say that the BRST operator Q is nilpotent�
A nilpotent operator that commutes with H divides the eigenstates of

H into three subspaces� Many eigenstates of H must be annihilated by Q so
that ���
�� can be satis�ed� Let H� be the subspace of states that are not
annihilated by Q� Let H� be the subspace of states of the form

j��i � Q j��i � ���
�

where j��i is in H�� According to ���
��� acting Q again on these states gives
zero� Finally� let H� be the subspace of states j��i that satisfy Q j��i � � but
that cannot be written in the form ���
�� The subspaceH� is quite peculiar�
because any two states in this subspace have zero inner product�

h��aj��bi � h��ajQ j��bi � � ���
��

by ���
��� By the same argument� the states of H� have zero inner product
with the states of H��

These considerations seem extremely abstract� but they have a direct
physical correspondence�y To see this� consider single�particle states of the
non�Abelian gauge theory in the limit of zero coupling� According to the
transformation ����
�� Q converts the forward component of Aa

� to a ghost
�eld� equivalently� Q converts a single forward�polarized gauge boson to a
ghost� At g � �� Q annihilates the one�ghost state� At the same time� Q
converts the antighost state to a quantum of Ba� To identify this state� note
that the Lagrangian ������ implies the classical �eld equation

�Ba � ��Aa
�� ���
��

Thus the quanta of the �eld Ba are those quanta of Aa
� with polarization

vectors such that k����k� � �� these are the backward�polarized gauge bosons�
We have now seen that� among the single�particle states of the gauge

theory� forward gauge bosons and antighosts belong to H�� ghosts and back�
ward gauge bosons belong to H�� and transverse gauge bosons belong to H��
More generally� it can be shown that asymptotic states containing ghosts�

yThe following argument is presented only at an intuitive level� For a rigorous
discussion� see T� Kugo and I� Ojima� Prog� Theor� Phys� ��� � ��	�	��
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antighosts� or gauge bosons of unphysical polarization always belong to H� or
H�� while the asymptotic states in H� are those with only transversely polar�
ized gauge bosons� The BRST operator thus gives a precise relation between
the unphysical gauge boson polarization states and the ghosts and antighosts
as positive and negative degrees of freedom�

In Section ���� we argued that the Faddeev�Popov prescription gave the
correct� gauge�invariant result for a certain subclass of S�matrix elements�
from which we could compute the physical scattering cross sections of trans�
versely polarized gauge bosons� These S�matrix elements were constructed
by putting operators in the far past to create transversely polarized gauge
bosons� adiabatically turning on the gauge coupling� adiabatically turning o�
the gauge coupling� and then placing operators in the far future to annihi�
late gauge bosons with transverse polarization� However� this argument had a
possible problem� If the states created as collections of transversely polarized
bosons in the far past could evolve into states that contained gauge bosons of
other polarizations in the far future� the S�matrix projected between trans�
verse gauge boson states would not be unitary� This problem would also lead
to the technical problem discussed in the previous section� The Cutkosky cuts
of diagrams contributing to S�matrix elements would have nonzero contri�
butions from unphysical polarizations� In Section ���� we used an argument
special to the Abelian case to show that these problems do not arise in QED�
In the non�Abelian case� the removal of unphysical gauge boson polarizations
is more subtle� and we have seen that it involves the ghosts in an essential way�
To resolve this subtle problem� we apply the principle of BRST symmetry�

Let jA� tri be an external state that contains no ghosts or antighosts and
only gauge bosons with transverse polarization� We wish to show that the
S�matrix projected onto such states is unitary�X

C

hA� trjSy jC� tri hC� trjS jB� tri � hA� trj� jB� tri � ���
��

As we explained above� the physical states jA� tri belong to�and� in fact�
span�the subspace H� de�ned by the BRST operator� In particular� all of
these states are annihilated by Q� Since Q commutes with the Hamiltonian�
the time evolution of any such state must also produce a state annihilated
by Q� Thus�

Q � S jA� tri � �� ���

�

This implies that the states S jA� tri must be linear combinations of states in
H� and H�� However� states in H� have zero inner product with one another
and with states in H�� Thus the inner product of any two states of the form
S jA� tri comes only from the overlap of the components in H�� so we can
write

hA� trjSy � S jB� tri �
X
C

hA� trjSy jC� tri hC� trjS jB� tri � ���
��
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Since the full S�matrix is unitary� this relation implies that the restricted S�
matrix is also unitary� Eq� ���
��� In addition� ���
�� implies that the sum of
the Cutkosky cuts of diagrams contributing to the S�matrix in a given order
is equal to the sum of the cuts involving transverse gauge bosons only� Thus�
the cancellation between diagrams that produce pairs of gauge bosons with
unphysical polarizations and those that produce ghosts is a general property
that persists to all orders in perturbation theory�

Since the BRST transformation generates a continuous symmetry� it gen�
erates a set of Ward identities� These identities are similar in structure to the
Ward identities of the non�Abelian gauge symmetry� since the BRST sym�
metry contains a gauge transformation whose parameter is the ghost �eld�
However� the identities that follow from BRST symmetry are simpler� We
will not study the Ward identities of non�Abelian gauge theory further in
this book� However� when one discusses the renormalization of gauge theo�
ries at a higher level� the central identities among renormalization constants
that follow from the Ward identities are most easily derived using the BRST
symmetry�z

���� One�Loop Divergences of Non�Abelian

Gauge Theory

Now that we have discussed the general properties of tree�level diagrams in
non�Abelian gauge theories� we turn our attention to diagrams with loops� As
always in quantum �eld theory� some of these loop diagrams will diverge� and
we must take care to treat the divergent integrals correctly�

The Lagrangian of a non�Abelian gauge theory �
���� contains no in�
teractions of dimension higher than �� Therefore� by the general arguments
of Chapter �� this Lagrangian is renormalizable� in the sense that the di�
vergences can be removed by a �nite number of counterterms� However� in
non�Abelian gauge theories� as in QED� the gauge symmetries of the theory
imply stronger restrictions on the structure of the divergences� In QED� pro�
vided that we use a gauge�invariant regulator� there are only four possible
divergent coe	cients� which are subtracted by the counterterms for the elec�
tromagnetic vertex ����� for the electron and photon �eld strength ��� and
���� and for the electron mass ��m�� In particular� the possibility of a pho�
ton mass renormalization is excluded by gauge invariance� Furthermore� the
two counterterms �� and �� are equal to one another� and cancel in the eval�
uation of the electron�photon vertex function� as a consequence of the Ward
identity� Non�Abelian gauge symmetries imply similar restrictions on the di�
vergences of Feynman diagrams� In this section� we will illustrate some of
these restrictions through examples of one�loop digrams�

zAn introduction to the Ward identities of the BRST symmetry is given by Taylor
��	����
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Figure ����� Contributions to the gauge boson self�energy in order g��

The Gauge Boson Self�Energy

In QED� the strongest constraints of gauge invariance come in the evaluation
of the photon self�energy� The Ward identity implies the relation

q�
� �

� �� ���
��

which in turn implies that the photon self�energy diagrams have the structure

� i�q�g�� � q�q��/�q��� ���
��

The only divergence possible is a logarithmically divergent contribution to
/�q��� In non�Abelian gauge theories� ���
�� still holds� so the self�energy
again has the Lorentz structure ���
��� However� the cancellations that lead
to this structure are more complex� Here we will exhibit these cancellations
by computing the gauge boson self�energy in detail at the one�loop level� In
order to preserve gauge invariance� we will use dimensional regularization�

The contributions of order g� to the gauge boson self�energy are shown
in Fig� ���� �In addition to these PI diagrams� there are three �tadpole�
diagrams� but these automatically vanish� as in QED� by the argument given
below Eq� ���
��� The fermion loop diagram can be considered separately
from the other diagrams� since in principle we could include any number of
fermions in the theory� We will see below that the contributions of the three
remaining diagrams interlock in an essential way�

Let us �rst calculate the fermion loop diagram� The Feynman rule for
the vertices in this diagram is identical to the QED Feynman rule� except
for the addition of a group matrix ta that acts on the fermion gauge group
indices� The value of this diagram is therefore the same as in QED� Eq� �������
multiplied by a trace over group matrices�

� tr$tatb% i�q�g�� � q�q��

	 �g�
����d��

�Z
�

dx �x��x� ,���d
� �

�m� � x��x�q����d�� �

The value of the trace is given by Eq� �
����� tr$tatb% � C�r��ab� In a theory
with several species of fermions� there would be a diagram of this type for each
species� We will be mainly interested in the divergent part of this diagram�
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which is independent of the fermion mass� If there are nf species of fermions�
all in the same representation r� then the total contribution of fermion loop
diagrams takes the form

X
fermions

� �
� i�q�g�� � q�q���ab

� �g�
�����

� �
�
nfC�r�,��� d

� � � � � �
�
�

���
��

Now consider the three diagrams from the pure gauge sector� The contri�
bution of these diagrams depends on the gauge� we will use Feynman��t Hooft
gauge� � � �

Using the three�gauge�boson vertex from Fig� ��� we can write the �rst
of the three diagrams as

�


�

Z
d�p

�����
�i
p�

�i
�p�q��

g�facdf bcdN�� � ������

where the numerator structure is

N�� �
�
g���q � p�� � g����p� q�� � g����p� �q��

�
	 �����p� q�� � g�����p� q�� � ����p� �q��

�
�

The overall factor of �� is a symmetry factor� The contraction of structure
constants can be evaluated using Eq� �
����� facdf bcd � C��G��ab�

To simplify the expression further� combine denominators in the standard
way�



p�


�p� q��
�

�Z
�

dx


���x�p� � x�p� q����
�

�Z
�

dx


�P � ����
� �����

where P � p� xq and � � �x��x�q�� Then ������ can be rewritten

� �g
�

�
C��G��ab

�Z
�

dx

Z
d�P

�����


�P � ����
N�� �

The numerator structure can be simpli�ed by eliminating p in favor of P �
discarding terms linear in P� �which integrate symmetrically to zero�� and
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replacing P�P � with g��P ��d �also by symmetry��

N�� � �g�����q � p�� � �q � p��
�� d�q � �p���q � �p��

�
�
��q � p���q � �p�� � �q � p����q � p�� � �q � �p���q � p��

� ��� ��
�

� �g��P � � ����
d�� g��q�

�
���x�� � ��x��

�
� q�q�

�
���d����x�� � ���x����x���

The �nal step in the evaluation is to Wick�rotate and apply the integration
formulae ����
� and ������� This brings the diagram into the following form�

�
ig�

����d��
C��G��ab

�Z
�

dx


���d��

	
�
,��d

� � g
��q� $ �� �d��x��x�% ������

� ,���d
� � g

��q� $ �� ���x�� � �
� ��x�

�%

� ,���d
� � q

�q� $��d
� ����x�� � ��x����x�%

�
�

Next consider the diagram with a four�gauge�boson vertex� Using the
vertex Feynman rule in Fig� ��� we �nd

�


�

Z
d�p

�����
�ig��
p�

�cd ��ig��

	 �fabefcde�g��g�� � g��g���

� facef bde�g��g�� � g��g���

� fadef bce�g��g�� � g��g���
�
�

������

The factor �� in the �rst line is a symmetry factor� The �rst combination of
structure constants in the vertex factor vanishes by antisymmetry� the second
and third can be reduced by the use of Eq� �
����� We then �nd simply

� �g�C��G��ab
Z

d�p

�����


p�
� g���d� �� ������

In dimensional regularization� the integral over p gives a pole at d � � but
yields zero as d� �� We could simply discard this diagram and trust that the
pole at d � � is canceled by the other two diagrams� It is instructive� however�
and no more di	cult� to demonstrate the cancellation explicitly� To do so� we
can force the integral to look like that of the previous diagram� multiplying the
integrand by  in the form �q � p����q � p��� We then combine denominators
as before� and eliminate p in favor of the shifted variable P � p � xq� After
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dropping the term linear in P � we obtain

� �g�C��G��ab
�Z

�

dx

Z
d�P

�����


�P �����
g���d��$P ����x��q�%�

We can now Wick�rotate and integrate over P to obtain

�
ig�

����d��
C��G��ab

�Z
�

dx


���d��

	
�
�,��d

� � g
��q� $ ��d�d��x��x�%

� ,���d
� � g

��q� $�d����x��%
�
�

����
�

Expressions ������ and ����
�� by themselves� do not add to any rea�
sonable value� The pole at d � � does not cancel� and the sum does not have
a transverse Lorentz structure� To bring the gauge boson self�energy into its
desired form� we must include the diagram with a ghost loop� According to
the rules shown in Fig� ��
� this diagram is

� ���
Z

d�p

�����
i

p�
i

�p�q��
g�fdac�p�q��fcbdp� � ������

There is no symmetry factor in this case� but there is a factor of � because
the ghost �elds anticommute� The ghost diagram can be simpli�ed using the
same set of tricks that we applied to the previous two� combine denominators�
shift the integral to P � Wick�rotate� and integrate over P using dimensional
regularization� The result is

�
ig�

����d��
C��G��ab

�Z
�

dx


���d��

	
�
�,��d

� � g
��q� $ ��x��x�%

� ,���d
� � q

�q� $x��x�%
�
�

������

Now we are ready to put these results together� In the sum of the three
diagrams� the coe	cient of ,��d

� �g
��q�x��x� is

�
� ��d� �� d� � d� � � �� d

� ��d � ��� ������

The �rst factor cancels the pole of the gamma function at d � �� Thus� the
sum of the three diagrams has no quadratic divergence and no gauge boson
mass renormalization� Notice that the ghost diagram plays an essential role
in this cancellation�
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After the pole at d � � is canceled� ,��d
� � becomes ,���d

� �� This term

therefore combines with the others that are proportional to ,���d
� �g

��q�� to
give a total coe	cient of

�d���x��x� � �
� ���x�� � �

� ��x�
� � �d����x��� ������

Since the best way to simplify this expression is not obvious� let us put it
aside and work �rst with the coe	cient of ,���d

� �q
�q� �

���d
� ����x�� � ��x����x� � x��x� � ���d

� ����x�� � ��

If the total self�energy is to be proportional to �g��q� � q�q��� it must be
possible to reduce expression ������ to this same form �times ��� To do so�
note that � is symmetric with respect to x � ��x�� and therefore we can
substitute ��x� for x in any term of the numerator� In particular� terms that
are linear in x can be transformed as follows�

x� �
�x� �

� ��x� � �
� �

In the end� the sum of the three pure�gauge diagrams simpli�es to

ig�

����d��
C��G��ab

�Z
�

dx
,��� d

� �

���d�� �g��q� � q�q��
�
��d

� ����x�� � �
�
� ������

This expression is manifestly transverse� as required by the Ward identity of
the non�Abelian gauge theory� For future reference� we record the ultraviolet
divergent part of �������

� i�q�g�� � q�q���ab
� �g�
�����

�
�
�


�

�
C��G�,���d

� � � � � �
�
�

�����

As we noted above� the result ������ depends on the gauge used in the cal�
culation� In any gauge� the boson self�energy is transverse and free of quadratic
divergences� However� the coe	cient of the transverse Lorentz structure may
depend on �� It turns out that� for a general value of �� the coe	cient of the
ultraviolet divergence in ����� is modi�ed according to

�


�
� �
��
�
� �

�

�
� ������

The fact that the boson self�energy depends on the gauge does not contradict
the general theorem that S�matrix elements are independent of �� The full set
of one�loop corrections to a gauge theory S�matrix element always involves
a number of di�erent radiative corrections to vertices and propagators� the
gauge dependence cancels in an intricate fashion among these various terms�
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The � Function

The simplest calculation that involves a gauge�invariant combination of radia�
tive corrections is the computation of the leading term of the Callan�Symanzik
� function of a non�Abelian gauge theory� The invariance of the leading term
of � could be argued intuitively� by saying that the coupling constant of the
gauge theory should not evolve to large values in one scheme of calculation
while it stays small in another scheme� In Section ��� we will demonstrate
this result more cleanly by showing that the leading coe	cient of the � func�
tion can be extracted from a physical cross section and so must be gauge
independent� �Surprisingly� this conclusion actually applies to the �rst two
coe	cients of the � function� written as a power series in g��

Recall from Section ��� that the � function gives the rate at which the
renormalized coupling constant changes as the renormalization scale M is
increased� Since Green�s functions depend on M through the counterterms
that subtract ultraviolet divergences� � can be computed from the counter�
terms that enter an appropriately chosen Green�s function� For example� in
Eq� ���
��� we saw that the � function of QED can be computed from the
counterterms for the electron�photon vertex� the electron self�energy� and the
photon self�energy� The same derivation goes through in the case of a non�
Abelian gauge theory� Thus� to lowest order�

��g� � gM
�

�M

���� � �� �
�
���
�
� ������

with the conventions for the counterterm vertices shown in Fig� ���� In QED�
the �rst two terms cancel by the Ward identity� so � depends only on ��� In the
non�Abelian case� all three terms contribute� The most di	cult to compute
is ��� but we have nearly done so already by computing the gauge�boson self�
energy diagrams� Let us now complete this calculation of the � function of
non�Abelian gauge theory�

In order for the counterterm �� to cancel the divergence of Eqs� ���
��
and ������ it must be of the form

�� �
g�

�����
,���d

� �

�M����d��

h

�
C��G�� �

�
nfC�r�

i
� ������

where M is the renormalization scale� Depending on the precise renormal�
ization conditions used� there may be additional �nite contributions to ���
but these do not contribute to the � function �to one�loop order�� Similarly�
the �nite parts of �� and �� will depend on the details of the renormaliza�
tion scheme� However� as we saw in Section ���� the one�loop contribution
to the � function is the same in any scheme in which amplitudes are renor�
malized at a point where all momentum invariants are of the same order M��
In dimensional regularization� a logarithmic divergence always takes the form
,���d

� ���
��d��� where � is some combination of momentum invariants� Thus�

to compute the � function� we can simply set � � M� in such expressions�
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Figure ����� Counterterms needed for computing fermion interactions in a
non�Abelian gauge theory�

Figure ���	� Diagrams whose divergences are subtracted by the counter�
terms �� and ���

To complete the computation of the � function� we must compute ��
and �� to the same level of approximation� The fermion self�energy coun�
terterm �� cancels the divergence proportional to k in the �rst diagram of
Fig� ���� In Feynman��t Hooft gauge� the value of this diagram is

�

Z
d�p

�����
�ig����ta

i�p� k�
�p� k��

��t
a�i
p�
� ����
�

Since the divergence in the �eld strength renormalization is independent of
the fermion mass� we have simpli�ed ����
� by setting the mass to zero� The
product of group matrices equals the quadratic Casimir operator� by de�ni�
tion �
����� The Dirac matrix structure can be reduced using a contraction
identity ������� The rest of the calculation follows the same steps as for the
boson self�energy diagrams�

� g�C��r��d���
Z

d�p

�����
�p� k�

�p� k��p�

� g�C��r��d���
�Z

�

dx

Z
d�P

�����
��x�k

�P � ����

�
ig�

����d��
C��r�k

�Z
�

dx ��x��d���,���
d
� �

���d��



���� One�Loop Divergences of Non�Abelian Gauge Theory ��	

�
ig�

�����
kC��r�,��� d

� � � � � � � ������

�Here P � p� xk and � � �x��x�k���
The divergent part of this expression must be canceled by the second

counterterm diagram of Fig� ���� Thus� if the renormalization scale is M � the
counterterm must be

�� � � g�

�����
,���d

� �

�M����d��
� C��r�� ������

plus �nite terms� We note that� like ��� �� depends on the gauge� for example�
�� has no one�loop divergence in Landau gauge �� � ���

To determine ��� we must compute the second and third diagrams of
Fig� ���� The second diagram� computed in Feynman��t Hooft gauge and for
massless fermions� is

�

Z
d�p

�����
g� tbtatb

���p� k�����p� k���
�p� k����p� k��p�

� ������

The gauge group matrices can be simpli�ed according to

tbtatb � tbtbta � tb$ta� tb%

� C��r�t
a � itbfabctc

� C��r�t
a � �

� if
abc � if bcdtd

� $C��r�� �
�C��G�%ta�

������

In the third line we have used the antisymmetry of fabc to rewrite the matrix
product as a commutator� in the last line we have used Eq� �
�����

The diagrams computed earlier in this section had positive super�cial
degrees of divergence� so we needed to extract their logarithmic divergences
carefully� The integral in ������� however� is super�cially logarithmically di�
vergent� and so the coe	cient of this divergence can be extracted easily by
considering the limit in which the integration variable p is much greater than
any external momentum� In this limit� the diagram is estimated as follows�

� g�$C��r� � �
�C��G�%ta

Z
d�p

�����
�� p �� p ��
p� � p� � p� � ������

If we replace p�p� by g��p��d in the numerator of ������� this expression
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simpli�es easily�

� g�$C��r� � �
�C��G�%ta���d�� 

d
��
Z

d�p

�����


�p���

� ig�

�����
$C��r� � �

�C��G�%ta��
�
,���d

� � � � � �
�
�

�����

This estimate gives the correct coe	cient of the divergent term� It drops
completely the �nite terms in the vertex function� but we do not need these
to compute the � function�

The third diagram of Fig� ��� can be analyzed in the same way� Its value�
in Feynman��t Hooft gauge and for massless fermions� is

�

Z
d�p

�����
�ig��t

b�
ip
p�

�ig��t
c�

�i
�k��p��

�i
�k�p��

	 gfabc
�
g����k��k�p�� � g����k��k��p��

� g����k�k��p���� ������

The gauge matrix product can be reduced as follows�

fabctbtc �


�
fabc � if bcdtd � i

�
C��G�ta�

Again we can determine the logarithmic divergence of this diagram by neglect�
ing all external momenta in comparison with p� A straightforward calculation
then yields

� g�

�
C��G�ta

Z
d�p

�����
�� p�� g

��p� � �g��p� � g��p�

�p���

� g�

�
C��G�ta



d

Z
d�p

�����


�p���
�
������ � ������� � �����

�
�

� ig�

�����
�

�
C��G� ta��

�
,���d

� � � � � �
�
� ������

In the second line we have again replaced p�p� with g��p��d�
The sum of the divergences in results ����� and ������ must be canceled

by the third counterterm diagram in Fig ���� With a renormalization scale
of M � we �nd

�� � � g�

�����
,���d

� �

�M����d��
�
C��r� � C��G�

�
� ������

Notice that �� is not equal to ��� as would have been true in the Abelian case�
here �� has an extra term� proportional to C��G��
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We are now ready to compute the � function� Plugging the three coun�
terterms ������� ������� and ������ into our formula ������� we �nd

��g� � ���� g�

�����

h�
C��r� � C��G�

�� C��r� �


�

�

�
C��G� � �

�
nfC�r�

�i
�

that is�

��g� � � g�

�����

h
�
C��G�� �

�
nfC�r�

i
� ����
�

Notice that� at least for small values of nf � the � function is negative and so
non�Abelian gauge theories are asymptotically free� This is a result of excep�
tional physical importance� �rst discovered by �t Hooft� Politzer� and Gross
and Wilczek�! We will discuss the physical interpretation of this result fur�
ther in Section ���� and in the next several chapters� However� for the rest
of this section� we will resist the temptation to pursue the physics and in�
stead complete our technical analysis of the divergences of non�Abelian gauge
theories�

Relations among Counterterms

In the analysis just completed� we computed the � function of a non�Abelian
gauge theory from the divergences of the fermion vertex and �eld strength
renormalizations� One might visualize that we were computing the running
of the coupling constant at the fermion�gauge boson vertex� Alternatively�
we could have studied the divergences of the three�gauge�boson vertex or the
four�gauge�boson vertex� and thus computed the running of these coupling
constants� However� we saw already in Section �� that non�Abelian gauge
invariance knits together these separate coupling constants and requires their
equality� Thus we might expect that these di�erent calculations should pro�
duce the same value of the � function�

To clarify this issue� let us carefully enumerate all the counterterms that
appear in a non�Abelian gauge theory� We start from the Lagrangian �������
regarded as a combination of bare �elds and a bare coupling constant� In the
following discussion� we denote bare quantities by the subscript �� Then�

L � �

�
���A

a
�� � ��A

a
���

� � ���i� �m���� � ca��
�ca�

� g�A
a
�����

�ta�� � g�f
abc���A

a
���A

b
��A

c
��

� 

�
g��feabAa

��A
b
����f

ecdAc
��A

d
���� gca�f

abc��A�
b�c

c
��

������

We choose � �� for simplicity� We now rescale the �elds to the renormalized
�eld strengths by extracting the factors Z�� Z�� Z

c
� for the fermions� gauge

�G� �t Hooft� unpublished� H� D� Politzer� Phys� Rev� Lett� �
� ��� ��	��� D� J�
Gross and F� Wilczek� Phys� Rev� Lett� �
� �� ��	���
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bosons� and ghosts� and shift the coupling to the renormalized coupling g�
The Lagrangian then takes the form

L � Lren � Lc�t��
where Lren is the Lagrangian ������ and Lc�t� takes the form

Lc�t� � �

�
�����A

a
� � ��A

a
��

� � ��i�� � � �m�� � �c�c
a��ca

� g��A
a
���

�� � g��g� fabc���A
a
��A

b
�A

c
�

� g���g� �feabAa
�A

b
���f

ecdAc
�A

d
��� g�c�c

afabc��Ab
�c

c�

������

with the counterterms de�ned by

�� � Z� � � �� � Z� � � �c� � Zc
� � � �m � Z�m� �m�

�� �
g�
g
Z��Z��

��� � � ��g� �
g�
g
�Z��

��� � �

��g� �
g��
g�

�Z��
� � � �c� �

g�
g
Zc
��Z��

��� � � ������

Notice that these eight counterterms depend on �ve underlying parameters�
thus� there are three relations among them� The situation is very similar to
that for the scalar theories with spontaneously broken symmetry that we stud�
ied in Chapter � The underlying symmetry of the theory�here� local gauge
invariance�implies relations among the divergent amplitudes of the theory
and among the counterterms required to cancel them� In the present case� a
set of �ve renormalization conditions uniquely speci�es all of the counterterms
in a way that removes all divergences from the theory�

This program is especially simple at one�loop order� In this case we can
expand g��g and the various Z factors about � keeping only the leading�
order contribution to each counterterm� Then the three relations among the
counterterms can be written

�� � �� � ��g� � �� �
�
� ��

�g
� � ��� � �c� � �c�� ������

It is instructive to check explicitly that the values of ��g� � ��g� � and �c� de�
termined from ������ indeed remove the divergences of the corresponding
vertex diagrams� this is the subject of Problem ���� Using relations �������
it is easy to show that the one�loop calculation of the � function will yield the
same value� whichever gauge boson vertex is used in the computation� More
generally� consider a non�Abelian gauge theory with many di�erent species
of particles� bosons and fermions� which couple to the gauge �eld� Then� to
one�loop order� the quantity

�i� � �i��
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where �i� is the vertex counterterm for species i and �i� is the corresponding
�eld strength counterterm� takes a universal value� This value is gauge de�
pendent� so that the gauge dependence of its divergent part cancels the gauge
dependence of �� in the computation of the � function�

In our discussion of the counterterms of QED at the end of Section ����
we remarked that the relation between �� and �� insured that all electrically
charged species see a common universal value of the coupling constant e� In
non�Abelian gauge theories� the relations ������ and their higher�loop gener�
alizations preserve the universality of the non�Abelian couplings� In QED� we
were able to obtain an even stronger relation� �� � �� or Z� � Z�� from the ab�
solute normalization of the matrix elements of the vector current� However� in
non�Abelian gauge theories� the corresponding vector current j�a � ���ta�
transforms under local gauge transformations in the adjoint representation�
Thus the Faddeev�Popov prescription cannot be used to compute matrix el�
ements of this current unambiguously� and thus the normalization of these
matrix elements is not preserved by the perturbation theory�

���� Asymptotic Freedom The Background

Field Method

In the previous section� we saw that the � function of a non�Abelian gauge
theory with a su	ciently small number of fermions is negative� This result
is important enough that it is worthwhile to derive it twice� The preceding
derivation was straightforward but not very illuminating� In this section we
give a second derivation of the same result� which is more abstract but much
cleaner and more transparent�

The method of this section re�ects the spirit of Wilson�s idea of inte�
grating out the high�momentum degrees of freedom� while taking proper care
to preserve gauge invariance� We will compute the e�ective action of a non�
Abelian gauge theory for a �xed� slowly varying� classical background gauge
�eld Aa

��x�� By adopting a canonical normalization of this �eld� we can in�
terpret the coe	cient of the e�ective action as a running coupling constant�
This method is analogous to Polyakov�s method for computing the � function
of the nonlinear sigma model� presented in Section ����

Background Field Perturbation Theory

To set up the computation� rescale the gauge �eld gAa
� � Aa

�� In this nor�
malization� the gauge coupling is removed from the covariant derivative and
moved to the coe	cient of the gauge �eld kinetic energy term� We thus start
from the Lagrangian

L �


�g�
�F a

���
� � ��iD��� ������
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with
D� � �� � iAa

�t
a�

F a
�� � ��A

a
� � ��A

a
� � fabcAb

�A
c
� �

�����

and the fermion mass set to zero for simplicity� The transformation laws of
Aa
� and � are also independent of the coupling constant�

�Aa
� � ��	

a � fabcAb
�	

c� �� � i	ata�� ������

On the other hand� the coupling constant g will appear in the gauge �eld
propagator�

Next� split the gauge �eld into a classical background �eld and a �uctu�
ating quantum �eld�

Aa
� � Aa

� �Aa
�� ������

We will treat the classical part Aa
� as a �xed �eld con�guration and the

�uctuating partAa
� as the integration variable of the functional integral� From

here on� we will use the symbol D� to denote the covariant derivative with
respect to the background �eld� D� � �� � iAa

�t
a� Then

��iD�� � ��iD�� �Aa
���

�ta�� ������

The Yang�Mills �eld strength decomposes as follows�

F a
�� � ��A

a
� � ��A

a
� � fabcAb

�A
c
�

� ��Aa
� � ��Aa

� � fabc�Ab
�Ac

� �Ab
�Ac

�� � fabcAb
�Ac

�

� F a
�� �D�Aa

� �D�Aa
� � fabcAb

�Ac
� �

����
�

where� in the last line� F a
�� is the �eld strength of the classical �eld� and D�

is the covariant derivative in the adjoint representation� Eq� �
����� Notice
that� both in ������ and in ����
�� the derivative �� appears only as a part
of the covariant derivative with respect to the background �eld�

If the background �eld Aa
� is regarded as �xed� the Lagrangian has a local

gauge symmetry implemented by transformations on Aa
��

Aa
� �Aa

� �D�	
a � fabcAb

�	
c� ������

To de�ne the functional integral� we must gauge��x using the Faddeev�Popov
procedure� We choose a gauge��xing condition that is covariant with respect
to the background gauge �eld�

G�A� � D�Aa
� � a� ������

instead of ������� The Faddeev�Popov determinant involves the variation of
this operator with respect to the gauge transformation ������� As in Section
���� we can promote the gauge��xing term to the exponent� to quantize the
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theory in the background �eld analogue of Feynman��t Hooft gauge� Then the
gauge��xed Lagrangian is

LFP � � 

�g�
�
F a
�� �D�Aa

� �D�Aa
� � fabcAb

�Ac
�

�� � 

�g�
�D�Aa

��
�

� ��iD �Aa
��

�ta�� � ca��D� �D�fabcAb
��c

c�

������

The Lagrangian ������ is gauge��xed� but it is invariant under a local
symmetry that transforms both Aa

� and the background �eld Aa
��

Aa
� � Aa

� �D��
a

Aa
� �Aa

� � fabc�bAc
�

� � � � i�ata�

ca � ca � fabc�bcc�

������

Under this transformation� Aa
� transforms as a matter �eld in the adjoint

representation� while Aa
� carries the part of the local gauge transformation

proportional to ���
a� To prove that ������ is a symmetry of ������� we need

only note that ������ is globally invariant� and that Aa
� appears in ������

only as a part of the covariant derivative and the �eld strength� The trans�
formation ������ is also a symmetry of the functional measure� Thus� if we
functionally integrate over Aa

�� �� and ca to compute the e�ective action� the
result must be invariant to local gauge transformations of Aa

�� This observa�
tion greatly simpli�es the analysis of the e�ective action�

One�Loop Correction to the E�ective Action

Let us now compute the e�ective action� using the method of Section ��� To
compute ,$Aa

�% to one�loop order� we drop terms linear in the �uctuating �eld
Aa
� and then integrate over the terms quadratic in Aa

� and the fermion and
ghost �elds� This produces functional determinants� which we can evaluate
into an appropriate form for an e�ective action�

To carry out this program� we must work out the terms in ������
quadratic in each of the various �elds� The terms quadratic in Aa

� are�

LA � � 

�g�
�
�
� �D�Aa

� �D�Aa
��

� � F a��fabcAb
�Ab

� � �D�Aa
��

�
�
� ������

After integrating by parts� we can rewrite this as

LA � � 

�g�
�Aa

�$��D��abg�� � �D�D��ab � �D�D��ab%Ab
� �Aa

�f
abcF b��Ac

�

�
�

�����
The term in brackets contains the commutator of covariant derivatives� This
can be simpli�ed using �
����� the result combines with the last term to give

LA � � 

�g�
�Aa

�$��D��acg�� � �fabcF b�� %Ac
�

�
� ������
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The �rst term is part of a covariant d�Alembertian operator� The second term
seems quite special� but we can put it into a form that will be convenient later
as follows� First� we recognize that F b

�� is contracted with a group generator
in the adjoint representation� Next� we introduce the matrix ����� that is the
generator of Lorentz transformations on ��vectors�

�J ����	 � i�����
�
	 � ����

�
	�� ������

With these replacements� we can write ������ in the form

LA � � 

�g�
�Aa

�$��D��acg�� � �� ��F
b
��J ������tbG�

ac%Ac
�

�
� ������

The object in brackets can be considered as a generalized d�Alembertian for
�uctuations on the background �eld�

Next� we reduce the quadratic terms in fermion �elds in a similar way�
The quadratic Lagrangian for the fermion �eld is

L� � ��iD��� ����
�

Integrating over the fermion �elds� we �nd the determinant of the operator
�i D�� This is conveniently expressed as the square root of the determinant of
the operator

�iD�� � �����D�D�

�
�� �

�f��� ��g � �
� $�

�� �� %
�
D�D�

� �D� � �i
� i
�
$��� �� %

�
D�D� �

������

In the last line� the commutator of Dirac matrices forms the generator of
Lorentz transformations in the spinor representation� S�� ������� Since this
object is antisymmetric in its indices� the product D�D� that is contracted
with it can be replaced by half of their commutator� Then ������ takes the
form

�iD�� � �D� � �� ��F
b
��S

���tb� ������

where ta is now given in the representation of the fermions� This is just the
d�Alembertian in ������� rewritten for the new set of spin and gauge quan�
tum numbers� If the theory contains nf species of fermions� the fermionic
functional integral gives the determinant of ������ raised to the power nf���

The quadratic term in ghosts is simply

Lc � ca$��D��ab%cb� ������

This contains the same d�Alembertian operator written for the case of spin
zero�

To summarize all of these results� we de�ne the general covariant back�
ground��eld d�Alembertian as

�r�j � �D� � �� ��F
b
��J ���� ������
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acting on a �eld of representation r and spin j� The square of the covariant
derivative gives the normal� convective� minimal coupling of the particle de�
scribed by �r�j to the gauge �eld� The additional term is a magnetic moment
interaction with the gauge �eld� whose strength corresponds to a g�factor
g � �� Using this general expression� we can write the e�ective action for the
classical �elds Aa

�� to one�loop order� as

ei��A� �

Z
DAD�Dc exp

h
i

Z
d�x �LFP � Lc�t��

i
� exp

h
i

Z
d�x
�� 

�g�
�F a

���
� � Lc�t�

�i
� �det�G��

������
det�r����

��nf�� �det�G��

���
�

�����

where Lc�t� is the counterterm Lagrangian and the three determinants are the
results of evaluating the gauge �eld� fermion� and ghost functional integrals�
Additional loop corrections to the e�ective action are suppressed by another
factor of g��

Since each integral contributing to ����� is invariant to ������� each
determinant will be a gauge�invariant functional of Aa

�� If we expand the
determinants in powers of the background �eld� we should then �nd a series
of terms that begins

log det�r�j � i

Z
d�x
�
�
Cr�j�F

a
�� �

� � � � �
�
� ����

where the succeeding terms contain higher�dimension gauge�invariant opera�
tors� The coe	cient Cr�j can depend on the representation r and the spin j�
This �rst term of the expansion modi�es the zeroth�order e�ective action ac�
cording to



�g�
�F a

���
� � 

�

� 

g�
�



�
CG�� �CG�� � nf

�
Cr����

�
�F a

���
�� �����

The factors Cr�j are dimensionless but� since they arise from a one�loop com�
putation� we should expect that they are logarithmically divergent�

Cr�j � cr�j log
&�

k�
� � � � � �����

where k is a momentum characterizing the variation of the background �eld�
The counterterm �� removes the divergence� if we impose a renormalization
condition at the scale M � then the addition of ����� and its counterterm
gives the result ����� with the replacement

Cr�j � cr�j log
M�

k�
� � � � � �����
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Then the original �xed coupling constant in the e�ective action is replaced by
a running coupling constant



g��k��
�



g�
�
�
�
cG�� � cG�� � nf

�
cr����

�
log

M�

k�
� ���
�

or

g��k�� �
g�

� � ��cG�� � cG�� � nf
� cr�����g

� log k��M�
� �����

By comparing this form to Eq� ������� we see that this running coupling con�
stant is the solution to the renormalization group equation for the � function

��g� �
�
�
cG�� � cG�� � nf

�
cr����

�
g�� �����

Thus� by calculating the cr�j � we can directly obtain the leading coe	cient of
the � function�

Computation of the Functional Determinants

To compute cr�j � we must work out the �rst term in the expansion of the
determinant in powers of the external �eld� To expand the determinant� we
proceed as in the example in Section ��
� Write

�r�j � ��� ����� ����� ���J �� �����

where

���� � i$��Aa
�t
a �Aa

�t
a��%

���� � Aa�taAb
�t
b

��J � � �� ��F
b
��J ����

�����

The pieces ���� and ��J � contain one power of the external �eld� ���� contains
two powers of Aa

�� Treating these terms as perturbations� we write

log det�r�j � log det$��� � ����� ����� ���J ��%

� log det$���% � log det$ � ������������ ����� ���J ��%

� log det$���% � tr log$ � ������������ ����� ���J ��%

� log det$���% � tr$������������ ����� ���J �� � � � �%�
������

The �rst term of the right in ������ is an irrelevant constant� The terms
in this expansion that are linear in Aa

� vanish by gauge invariance �or� more
explicitly� because tr$ta% � ��� The quadratic terms in Aa

� must organize them�
selves into the structure of ����� plus terms with higher derivatives�
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Figure ����
� Terms quadratic in the external �eld in the expansion of
log det�r�j � The special vertex arises from the F

��J�� coupling�

The terms in ���� quadratic in Aa
� can be written in Fourier space as

log det�r�j �
i

�

Z
d�k

�����
Aa
���k�Ab

��k��k
���� � k�k�� � �Cr�j �O�k��

�
�

�����
We will now compute these terms explicitly from ������ and bring them
into the form of ������ The terms with two powers of Aa

� in the expan�

sion ������ are those with one power of ���� or two powers of ���� or ��J ��
Further� terms linear in ��J � are proportional to tr$J �� % � �� so the cross
term between these two structures vanishes� The three remaining contribu�
tions correspond to the Feynman diagrams shown in Fig� ����

The term involving two powers of ���� is

� �
� tr
�
����������������������

�
�

� �
�

Z
d�k

�����
Aa
�A

b
�

Z
d�p

�����
tr



p�
��p� k��ta



�p� k��
��p� k�� tb�

������
where the trace is now simply a trace over gauge and spin indices� The factor
�� comes from the expansion of the logarithm� The term involving one power
of ���� is

tr
�
�����������

�
�

�

Z
d�k

�����
Aa
�A

b
�

Z
d�p

�����
tr



p�
g��tatb�

������

As Fig� ��� suggests� these two contributions are precisely proportional to
the contribution of a scalar particle to the QED vacuum polarization� times
the factor

tr$tatb% � C�r�d�j��ab � ������

where d�j� is the number of spin components� The values of the diagrams can
be worked out using the methods of the previous section �or simply recalled
from Problem ���� One �nds that the two diagrams together sum up to the
gauge�invariant form ������ to give

�
�

Z
d�k

�����
Aa
���k�Ab

��k��k
�g�� � k�k�� �

h
i
C�r�d�j�

������
,���d

� � � � � �
i
� ����
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The term involving two powers of ��J � is

� �
� tr
�
���������J ����������J �� �

� � �
�

Z
d�k

�����
Aa
�A

b
�

Z
d�p

�����
tr



p�
��ik�g��J ���ta



�p�k��
���ik�g�	J �	�tb�

������
To evaluate this� de�ne C�j� as the trace over spin indices

tr$J ��J �	 % � �g��g�	 � g�	g���C�j�� ������

It is straightforward to work out from the explicit expressions that

C�j� �

�
� scalars�
 Dirac spinors�
� ��vectors�

������

Then ������ can be evaluated as

�

�

Z
d�k

�����
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�A
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�

Z
d�p

�����


p�


�p� k��
�k�g�� � k�k���C�r�C�j�
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�����
Aa
���k�Ab

��k��k
�g�� � k�k��

�
�i�C�r�C�j�

�����
,���d

� � � � � �
�
�

������
Adding ����
� and ������� we �nd that the coe	cient Cr�j in ����

is given by

Cr�j �


�����
�
�
�d�j�� �C�j�

�
C�r�,��� d

� �� ������

Thus�

cr�j �


�����
�
�
�d�j�� �C�j�

�
C�r�� �����

or explicitly�

cr�j �
C�r�

�����
�
#$%��� scalars�
���� Dirac spinors�
����� ��vectors�

������

Notice that� whenever the magnetic moment term is nonzero� it dominates�
and that its coe	cient is opposite in sign from the convective term�

Inserting the values from ������ into ������ we �nd

��g� � � g�

�����

�
�
C��G�� �

�
nfC�r�

�
� ������

We thus con�rm the conclusion of the previous section� that non�Abelian
gauge theories with su	ciently few fermions are asymptotically free�
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���� Asymptotic Freedom A Qualitative Explanation

In the previous two sectionsy we twice calculated the � function in non�Abelian
gauge theory�

��g� � � g�

�����

�
�
C��G�� �

�
nfC�r�

�
� ������

Here nf is the number of fermion species in representation r� C�r� is the con�
stant appearing in the orthogonality relation �
���� for the representation
matrices� and C��G� is the quadratic Casimir operator of the adjoint repre�
sentation of the group� de�ned in Eq� �
����� In an SU�N� gauge theory with
fermions in the fundamental representation� this result becomes

��g� � � g�

�����

�
�
N � �

�
nf

�
� ����
�

The overall minus sign implies that� for su	ciently small nf � non�Abelian
gauge theories are asymptotically free� In this case the running coupling con�
stant tends to zero at large momenta� according to Eq� �������

g��k� �
g�

 � g�

����� �
��
� N � �

�nf � log�k
��M��

� ������

The asymptotic freedom of non�Abelian gauge theories is a surprising
conclusion� When we �rst encountered the running of the electromagnetic
coupling in Section ��
� we found it easy to understand the direction of the
coupling constant �ow� The vacuum acquires a dielectric property due to
virtual electron�positron pair creation� causing the e�ective electric charge
to decrease at large distances� In non�Abelian gauge theories� according to
Eq� ������� the fermions still produce such an e�ect� Furthermore� since the
non�Abelian gauge bosons are charged� they should produce an additional
screening e�ect� But according to Eq� ������� the net e�ect of the non�
Abelian gauge bosons is opposite in sign� Apparently there must be other�
competing� e�ects� which overcome the e�ect of screening and change the
sign of the � function�

The precise form of these e�ects depends on the gauge� They are simplest
to describe in the Coulomb gauge� for which the gauge �xing condition is

�iA
ai � �� ������

We will not work out the full quantization in this gauge� rather� we will just
describe its qualitative features� As in electrodynamics� the �eld quanta in
Coulomb gauge are described in a non�Lorentz�covariant manner as trans�
versely polarized photons� There are no timelike or longitudinal photons and

ySection ���� draws on the main result of ���� and ����� but does not depend
on these earlier sections� However� even if you have not read Section ����� you may
wish to skim pages ��� through �� to get an overview of how the  function can be
calculated�
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no propagating ghosts� However� there is a Coulomb potential� described by
the �eld Aa�� which obeys a constraint equation analogous to Gauss�s law� Not
surprisingly� in the non�Abelian case� Gauss�s law takes the gauge�covariant
form

DiE
ai � g�a� ������

where Eai � F a�i and �a is the charge density of the global symmetry current
of the fermions� Recall from Eq� �
���� that the covariant derivative acting
on a �eld in the adjoint representation is

�D�
�
a � ��


a � gfabcAb
�


c�

To analyze the consequences of Eq� ������� we will choose an example
as simple and explicit as possible� Let the gauge group be SU���� so that
a � � �� � and fabc � �abc� Let us compute the Coulomb potential of a point
charge of magnitude � with the orientation a � � We will solve for Eai using
an iteration process� putting the gauge��eld term of the covariant derivative
on the right�hand side of the equation�

�iE
ai � g�����x��a� � g�abcAbiEci� ������

The second term on the right shows that� in a non�Abelian gauge theory�
a region containing vector potentials and electric �elds that are parallel in
physical space and perpendicular in the group space is a source of electric
�eld�

The implication of Eq� ������ is worked out pictorially in Fig� ���
The leading term on the right�hand side of ������ implies a �r� electric
�eld of type a �  radiating from x � �� Somewhere in space� this electric
�eld will cross with a bit of vector potential Aai arising as a �uctuation of the
vacuum� For de�niteness� let us assume that this �uctuation has a � � and
points in some diagonal direction� as shown in Fig� ���a�� Then the second
term on the right�hand side of Eq� ������ is negative for a � �� There is a
sink of the �eld E�i at this location� as shown in Fig� ���b�� These new
�elds are� in two locations� parallel or antiparallel to the original Aai �eld
�uctuation� Looking again at the second term of Eq� ������� we see that
there is a source of electric �eld with a �  closer to the origin� and a sink of
electric �eld with a �  farther away� This is an induced electric dipole in the
vacuum� shown in Fig� ���c�� But look at the signs� This dipole is oriented
toward the original charge� and thus serves to amplify rather than screen it-
The e�ect of the original charge thus becomes stronger at larger distances�

The competition between this antiscreening e�ect and the screening due
to virtual pairs of gauge bosons must be worked out quantitatively� When this
is done�z one �nds that the antiscreening e�ect is � times larger�

In this argument� it is a set of dynamical features peculiar to the non�
Abelian gauge theory that enables the coupling constant to be ampli�ed rather

zT� Appelquist� M� Dine� and I� Muzinich� Phys� Lett� �	B� �� ��	����
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Figure ������ The e�ect of vacuum #uctuations on the Coulomb �eld of
an SU��� gauge theory� In �a�� a #uctuation A� occurs on top of the �
r�

�eld E�� These combined �elds generate a sink of the �eld E�� as shown
in �b�� The E� �eld� in turn� combines with A� to create an e�ective E�

dipole� shown in �c�� The dipole points toward the original charge� enhancing
its �eld at large distances�

than screened at large distances� This suggests that asymptotic freedom might
be a special property of non�Abelian gauge theories� Although the statement
can be proved only by exhausting other cases� it does actually turn out to
be true� Among renormalizable quantum �eld theories in four spacetime di�
mensions� only the non�Abelian gauge theories are asymptotically free�! We
have already seen in Chapter � that asymptotic freedom was suggested ex�
perimentally as a property of the strong interactions� In the following chapter
we will build a model of the strong interactions out of a non�Abelian gauge
theory and explore its properties in detail�

�S� Coleman and D� J� Gross� Phys� Rev� Lett� ��� 
�� ��	���
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Problems

���� Arnowitt�Fickler gauge� Perform the Faddeev�Popov quantization of Yang�
Mills theory in the gauge A�a � �� and write the Feynman rules� Show that there
are no propagating ghosts� and that the gauge �eld is reduced to two positive�metric
degrees of freedom� �Although the gauge condition violates Lorentz invariance� this
symmetry is restored in the calculation of gauge�invariant S�matrix elements��

���� Scalar eld with non�Abelian charge� Consider a non�Abelian gauge theory
with gauge groupG� Couple to this theory a complex scalar �eld in the representation r�

�a� Show that the Feynman rules for the scalar �eld are a simple modi�cation of
the Feynman rules displayed for scalar QED in Problem 	���a��

�b� Compute the contribution of this scalar �eld to the  function� and show that
the full  function for this theory is

�g� � � g�

�����

�
��


C��G�� �


C�r�
�
�

���� Counterterm relations� In Section ����� we computed the divergent parts of
��� ��� and ��� It is a good exercise to compute the divergent parts of the remaining
counterterms in Eq� ����

� to one�loop order in the Feynman��t Hooft gauge� and to
explicitly verify that the counterterm relations ����
	� are consistent with the removal
of ultraviolet divergences�

�a� The ghost counterterms are particularly easy to compute� Work out �c� and �
c
��

and show that the divergent part of their di�erence equals the divergent part
of �� � ��� This gives a derivation of asymptotic freedom that is slightly easier
than the one in Section �����

�b� Compute the counterterm for the �gauge�boson vertex and verify the �rst equal�
ity in ����
	��

�c� Compute the counterterm for the ��gauge�boson vertex and �nd� when the smoke
clears� the second relation in ����
	��
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Quantum Chromodynamics

The key to constructing a realistic model of the strong interactions is the
phenomenon of asymptotic freedom� Chapter � described the experimental
discovery of this phenomenon� while Chapter � presented the theoretical
proof that non�Abelian gauge theories are asymptotically free� We are now
ready to explore the consequences of these discoveries�

We will begin by arguing that the most natural candidate for a model
of the strong interactions is the non�Abelian gauge theory with gauge group
SU���� coupled to fermions �quarks� in the fundamental representation� This
theory is known as Quantum Chromodynamics� or QCD� After some general
discussion of QCD in Section ��� we will investigate a number of speci�c
QCD scattering processes in Sections ��� through ���� The most interesting
application of QCD� however� is of a somewhat more sophisticated nature� it
comes in the prediction of a pattern of slow violations of the Bjorken scaling
relation discussed in Chapter �� Section ��
 develops the additional theo�
retical tools that are needed to understand these violations�

Although this chapter includes many references to experiments� we re�
mind the reader that� for QCD as for QED or critical phenomena� this book
is primarily a textbook of theoretical methods rather than a review and in�
terpretation of experimental data� The details of experimental techniques and
results on strong interaction physics are reviewed in a number of excellent
texts �see the bibliography�� We hope that this chapter will give the theoret�
ical foundation necessary to illuminate and interpret these results�

���� From Quarks to QCD

Our current theoretical picture of the strong interactions began with the
identi�cation of the elementary fermions that make up the proton and other
hadrons� As the properties of these fermions became better understood� the
nature of their interactions became tightly constrained� in a way that led even�
tually to a unique candidate theory� In order to appreciate the uniqueness of
this theory� we begin this chapter with a simpli�ed history of how it arose�

In ���� Gell�Mann and Zweig proposed a model that explained the spec�
trum of strongly interacting particles in terms of elementary constituents

���



��� Chapter �� Quantum Chromodynamics

called quarks� Mesons were expected to be quark�antiquark bound states� In�
deed� the lightest mesons have just the correct quantum numbers to justify
this interpretation� they are spin�� and spin� states of odd parity� just as we
found for fermion�antifermion bound states of zero orbital angular momen�
tum in Chapter �� Baryons were interpreted as bound states of three quarks�
To explain the electric charges and other quantum numbers of hadrons� Gell�
Mann and Zweig needed to assume three species of quarks� up �u�� down �d��
and strange �s�� Additional hadrons discovered since that time require the
existence of three more species� charm �c�� bottom �b�� and top �t�� To make
baryons with integer charges� the quarks needed to be assigned fractional elec�
tric charge� ���� for u� c� t� and ��� for d� s� b� Then� for example� the proton
would be a bound state of uud� while the neutron would be a bound state of
udd� The six types of quarks are conventionally referred to as �avors�

The quark model had great success in predicting new hadronic states� and
in explaining the strengths of electromagnetic and weak�interaction transitions
among di�erent hadrons� In particular� the quark model naturally incorporates
the most important symmetry relations among strongly interacting particles�
If one assumes that the u and d quarks have identical masses and interactions�
the SU��� group that acts as a unitary rotation of u and d states��

u
d

�
� U

�
u
d

�
� ����

should be a symmetry of the strong interactions� Indeed� both in nuclear and in
elementary particle physics� the quantum states form multiplets of this SU���
symmetry� called isotopic spin or isospin� Similarly� since the strange quark
is only a little heavier than the u and d quarks� it makes sense to consider the
symmetry of unitary transformations of the triplet �u� d� s�� Gell�Mann and
Ne�eman showed that the elementary particles naturally �ll out irreducible
representations of this SU��� symmetry�

Despite the phenomenological success of the original quark model� it had
two serious problems� First� despite considerable e�ort� free particles with
fractional charge could not be found� Second� the spectrum of baryons re�
quired the assumption that the wavefunction of the three quarks be totally
symmetric under the interchange of the quark spin and �avor quantum num�
bers� contradicting the expectation that quarks� which must have spin ���
should obey Fermi�Dirac statistics� The need for this symmetry is most clearly
illustrated in the fact that one of the lightest excited states of the nucleon is
a spin���� particle with charge ��� the ���� This particle is readily inter�
preted as a uuu bound state with zero orbital angular momentum and all
three quark spins parallel�

To reconcile the baryon spectrum with the spin�statistics theorem� Han
and Nambu� Greenberg� and Gell�Mann proposed that quarks carry an addi�
tional� unobserved quantum number� called color� They introduced the ad hoc
assumption that baryon wavefunctions must be totally antisymmetric in color
quantum numbers� Then� if the quark wavefunctions are totally symmetric
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in spin and �avor� they are totally antisymmetric overall� in agreement with
Fermi�Dirac statistics� The simplest model of color would be to assign quarks
to the fundamental representation of a new� internal SU��� global symmetry�
Suppressing for a moment the spin and �avor quantum numbers� we can rep�
resent quarks by qi� where i � � �� � is the color index� Thus quarks transform
under the fundamental� or ���� representation of the color SU��� symmetry�
Antiquarks� qi� transform in the � representation� The inner product of a �
and a � is an invariant of SU���� One can also form an invariant by using the
totally antisymmetric combination of three ��s� �ijk� This object transforms
under a unitary transformation according to

�ijk � Uii�Ujj�Ukk��i�j�k� � �detU��ijk � �����

and so is invariant under SU��� transformations� which have detU � � Under
the postulate that all hadron wavefunctions must be invariant under SU���
symmetry transformations� these two types of combinations are the only sim�
ple ones allowed�

qiqi� �ijkqiqjqk� �ijkq
iqjqk� �����

That is� the assumption that physical hadrons are singlets under color implies
that the only possible light hadrons are the mesons� baryons� and antibaryons�

Like the original quark model� the color hypothesis was phenomenologi�
cally successful but raised additional questions� Why should quarks have this
seemingly super�uous property� and what mechanism insures that all hadron
wavefunctions are color singlets� The answers to these questions came not
from hadron spectroscopy� but from the deep�inelastic scattering experiments
described in Chapter � and the ensuing search for a theory of parton binding
with the property of asymptotic freedom� When it was discovered that non�
Abelian gauge theories have this property� all that remained was to identify
the correct gauge group and fermion representation� Since the color symmetry
had no other obvious physical role� it was natural to identify this symmetry
with the gauge group� with the colors being the gauge quantum numbers of
the quarks� This reasoning resulted in a model of the strong interactions as a
system of quarks� of the various �avors� each assigned to the fundamental rep�
resentation of the local gauge group SU���� The quanta of the SU��� gauge
�eld are called gluons� and the theory is known as Quantum Chromodynamics�
or QCD�

In this book� we will mainly investigate the properties of QCD in the
high�energy regime� where the coupling constant has become small� However�
we should point out that one can also study QCD in the regime of strong
coupling� using an approximation scheme introduced by Wilson in which the
continuum gauge theory is replaced by a discrete statistical mechanical system
on a four�dimensional Euclidean lattice� Using this approximation� Wilson
showed that� for su	ciently strong coupling� QCD exhibits con�nement of

color � The only �nite�energy asymptotic states of the theory are those that
are singlets of color SU���� Thus the ad hoc assumption that explains the
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Figure ����� Gauge electric �eld con�guration associated with the separa�
tion of color sources in a strong�coupling gauge theory�

spectrum of hadrons turns out to be a consequence of the non�Abelian gauge
theory coupling to color� If one attempts to separate a color�singlet state
into colored components�for example� to dissociate a meson into a quark
and an antiquark�a tube of gauge �eld forms between the two sources� as
shown in Fig� ��� In a non�Abelian gauge theory with su	ciently strong
coupling� this tube has �xed radius and energy density� so the energy cost of
separating color sources grows proportionally to the separation� A force law
of this type can consistently be weak at short distances and strong at long
distances� accounting for the fact that isolated quarks are not observed� We
will discuss the large�distance� strong�coupling limit of gauge theories further
in the Epilogue�

The short�distance limit of Quantum Chromodynamics can be readily
studied using the Feynman diagram technology that we have developed in
previous chapters� Here asymptotic freedom makes the coupling weak� and
there is a sensible diagrammatic perturbation theory that begins from the
model of free quarks and gluons� The following sections treat the elementary
interactions among quarks and gluons that can be observed in high�energy
experiments�

���� e�e� Annihilation into Hadrons

The simplest reaction involving quarks is the production of quark pairs in
e�e� annihilation� a process that we treated already in Section 
�� There we
analyzed this process only at the most elementary level� viewing it as a pure
QED reaction in which free quarks are created by a virtual photon� The dia�
gram for this lowest�order process is shown in Fig� ����a�� The computation
of the total cross section includes a sum over the various color states of the
quark �elds� and so provides a con�rmation that the number of allowed colors
is �� Combining the color factor with the square of the quark electric charges�
we found �Eq� �
����

��e�e� � hadrons� � �� � � �
X
f

Q�
f � �����
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Figure ����� Diagrams contributing to the process e�e� � hadrons in
QCD� �a� the leading�order diagram� �b� corrections of order �s�

where �� is the QED cross section for e�e� � �����

�� �
��	�

�s
� ���
�

and the sum in ����� is taken over quark �avors� This formula assumes that
the center of mass energy is high enough that we can ignore the quark masses�

When we couple the quarks to an SU��� gauge theory� we add many
important processes that a�ect both the value of this cross section and the
�nal states that it includes� Some of the most important e�ects cannot be
discussed within the context of perturbation theory� In particular� though
the leading diagram contains free quarks� the particles that emerge from the
reaction are color�singlet mesons and baryons� However� we will �nd that QCD
perturbation theory with quarks and gluons does make a number of important
predictions for e�e� annihilation to hadrons� The ideas that we develop in
working out these predictions will also apply to many other strong�interaction
processes�

Total Cross Section

The leading corrections to the rate of e�e� annihilation due to gluon exchange
and emission are shown in Fig� ����b�� These are precisely the diagrams
computed in the Final Project of Part I� The �rst two diagrams give a cross
section of order g�� where g is the SU��� gauge coupling� to produce a gluon
in addition to the quark and antiquark� The third diagram must be summed
in the amplitude with the leading diagram to produce a correction to the
rate of qq production without gluon emission� In Part I� we computed these
two contributions as if the strong interactions were an Abelian gauge theory�
To obtain the corresponding expressions in QCD� we need only multiply the
Abelian formulae by the group theory factor

tr$tata% � C��r� � tr$% � �

�
� �� �����

where we have used Eq� �
���� to evaluate C��r� for the fundamental rep�
resentation of SU���� The factor of � is the same color sum that appears in
Eq� ������ Thus we can obtain the correct formulae for QCD from those of
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the Final Project by making the replacement

g� � �

�
g�� or 	g � �

�
	s� �����

where

	s �
g�

��
�����

is the strong�interaction analogue of the �ne�structure constant�
The end result of the Final Project of Part I was a formula for the total

cross section to produce hadrons in e�e� annihilation� If we replace 	g with
�����	s� that result becomes

��e�e� � hadrons� � �� �
�
�
X
f

Q�
f

�
�
h
 �

	s
�

�O�	�s�
i
� �����

This is actually the sum of the rates for two elementary processes� e�e� � qq
�including the correction from the third diagram of Fig� ����b�� and e�e� �
qqg� Although the rate for each of these processes is divergent as the gluon
mass is taken to zero� that divergence cancels when they are combined� This
is another example of the phenomenon of infrared divergence cancellations
that we studied for the example of electron scattering in Sections ��� and ��
�
There we showed that the dressing of the �nal state by the emission of soft
and collinear photons does not a�ect the overall scattering rate� Here� we see
again that infrared divergences cancel in the total rate� although the sum over
real and virtual gluon corrections leaves over a simple numerical correction�

It is not di	cult to understand the cancellation of infrared logarithms
intuitively� The original process e�e� � qq is extremely rapid� Since the vir�
tual photon is o��shell by an amount q� � s� the quarks are created in a time
�
p
s� However� the emission of collinear gluons� and the virtual corrections

associated with the exchange of soft gluons� occur over a much longer time
scale� In the diagrams with gluon emission� the virtual quark or antiquark is
o��mass�shell by an amount p��g � where p�g is the transverse momentum of
the gluon relative to the qq system� Thus this virtual state survives for a time
�p�g before it decays� Such a slow process cannot a�ect the probability that
a qq pair was produced� it can only a�ect the properties of the �nal state into
which the qq system will evolve� By this logic� the only perturbative correc�
tions that can a�ect the total cross section are those for which p�g � p

s�
Another way to express this conclusion would be to argue that� after contri�
butions from the infrared�sensitive regions have canceled� the contributions
that remain come from the region of large real or virtual gluon momenta� By
either argument� formula ����� should be a meaningful prediction of QCD
perturbation theory� even though it involves an integral over the region of soft
gluon emission�
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The Running of �s

Formula ����� depends on the QCD coupling constant 	s� which must be
de�ned at some renormalization point M � This is in contrast to the QED
coupling constant� which we de�ned in a natural way by on�shell renormaliza�
tion� In QCD� we would like to avoid discussing on�shell quarks� since these
are strongly interacting particles that are signi�cantly a�ected by nonpertur�
bative forces� The use of an arbitrary renormalization point M allows us to
avoid this problem� We will de�ne 	s by renormalization conditions imposed
at a large momentum scale M where the coupling is small� this value of 	s
can then be used to predict the results of scattering processes with any large
momentum transfer�

However� the use of renormalization at a scaleM in a computation involv�
ing momentum invariants of order P � involves some subtlety when P � and
M� are very di�erent� In our discussion of Section ���� we saw that� in this
circumstance� Feynman diagrams with n loops typically contain correction
terms proportional to �	s log�P

��M���n� Fortunately� we can absorb these
corrections into the lowest�order terms by using the renormalization group to
replace the �xed renormalized coupling with a running coupling constant�

To illustrate how this analysis applies to QCD� let us examine the impli�
cations of the Callan�Symanzik equation for the e�e� annihilation total cross
section �� viewed as a function of s� a renormalization scale M � and the value
of 	s at the renormalization scale� Like the QED potential ������� the e�e�

total cross section is an observable quantity and so its normalization is inde�
pendent of any conventions� It therefore obeys a Callan�Symanzik equation
with � � �� h

M
�

�M
� ��g�

�

�g

i
��s�M� 	s� � �� �����

By dimensional analysis� we can write

� �
c

s
f�

s

M�
� 	s�� ����

were c is a dimensionless constant� Then the Callan�Symanzik equation implies
that f depends on its arguments only through the running coupling constant
	s�Q� � g����� evaluated at Q� � s� The coupling constant g is de�ned to
satisfy the renormalization group equation

d

d log�Q�M�
g � ��g�� �����

with initial condition 	s�M� � 	s� For QCD with three colors and nf ap�
proximately massless quarks� the � function is given by Eq� ����
��

��g� � � b�
�����

� with b� � � �

�
nf � �����
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Then the solution of the renormalization group equation is

	s�Q� �
	s

 � �b�	s���� log�Q�M�
� �����

The explicit dependence of � on 	s can be found by matching the succes�
sive terms in the expansion of f�	s�

p
s�� to the terms in the perturbative

expansion� To the order of the �rst corrections� we �nd simply
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Thus the Callan�Symanzik equation instructs us to replace the �xed renor�
malized coupling 	s with the running coupling constant 	s�Q�� evaluated at
Q� � s�

Because the �xed coupling 	s depends on the arbitrary renormalization
point M � it is sometimes useful to remove it from our formulae completely�
To do this� we de�ne a mass scale conventionally called & �not to be confused
with an ultraviolet cuto�-� satisfying

 � g��b����
�� log�M�&�� �����

Then Eq� ����� can be rearranged into the form

	s�Q
�� �

��

b� log�Q�&�
� �����

This formula is the clearest expression of the statement that 	s�Q� becomes
small as �log�Q���� for large Q� The momentum scale & is the scale at which
	s becomes strong as Q� is decreased�

Experimental measurements of the rate of this reaction and others yield
a value of & � ��� MeV� QCD perturbation theory is valid only when Q is
somewhat larger than this� say above Q �  GeV� where 	s�Q� � ���� The
strong interactions become strong at distances larger than ��&� which is
roughly the size of the light hadrons�

Although the example of the e�e� annihilation cross section is especially
simple� since it depends on only one momentum invariant� similar conclusions
carry over to other QCD predictions� In analyzing strong�interaction processes
that are sensitive to the quark and gluon substructure� we will �nd leading�
order formulae for the reaction cross sections that depend on the renormalized
coupling 	s� To make these expressions satisfy the Callan�Symanzik equation�
we must replace this �xed coupling with the running coupling constant 	s�Q��
evaluated with Q of the order of the momentum invariants of the reaction�
Since the running coupling constant depends only logarithmically on Q� we
need not worry about choosing Q precisely� If we guess the proper scale in�
correctly by a factor of �� this induces an error in 	s�Q� that is of order
�log�Q���� � 	�s�Q�� Conversely� this ambiguity would be resolved by com�
puting to the next order in 	s�
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Before concluding this formal treatment of the e�e� annihilation cross
section� we should add one quali�cation� At the beginning of Section ����
we remarked that renormalization group predictions can be complicated by
the appearance of physical thresholds and their associated singularities� and
so we stated these predictions only for when the relevant momentum invari�
ant P � was large and spacelike� In the present chapter� we will be concerned
with cross sections for quark and gluon reactions� evaluated on�shell� This in�
troduces additional complications of principle� For example� in order to apply
the Callan�Symanzik equation to ��s�� we needed to know that this quantity
contains no infrared divergences whose regulator might provide another di�
mensionful parameter� Throughout this chapter we will assume that similiar
cancellations of divergences associated with soft and collinear gluons occur
in the processes of interest to us� The complete proof of these cancellations
in QCD can be carried through� but it is rather technical�! In some cases�
an alternative point of view is possible� one can justify the use of the renor�
malization group to analyze an on�shell amplitude by relating it to Green�s
functions evaluated in the spacelike region� This method of analysis� which
brings its own insights� will be the main subject of Chapter ��

Gluon Emission and Jet Production

A second result of the Final Project of Part I was a formula for the di�erential
cross section for qq production with gluon emission� Transcribing this formula
to QCD using ����� gives the following result� Let x�� x�� x� be the ratios of
the quark� antiquark� and gluon energies to the electron beam energy� These
satisfy � � xi �  and x��x��x� � �� Then the cross section for e�e� � qqg
is given by

d�

dx�dx�
�e�e� � qqg� � �� �

�
�
X
f

Q�
f

�
� �	s
��

x�� � x��
�� x���� x��

� �����

This cross section is singular as x� or x� approaches � The limit x� � 
corresponds to con�gurations in which the quark has the maximum possible
energy� while the antiquark and the gluon go o� in the opposite direction�
sharing the remaining energy� Then the antiquark and gluon have almost
collinear lightlike momentum vectors and so form a system of very small
invariant mass� Similarly� the limit x� �  corresponds to con�gurations in
which the quark and gluon are collinear� These singularities are responsible for
the divergence of the integrated cross section in the limit of vanishing gluon
mass�

How should we interpret these singularities� In our general treatment
of bremsstrahlung in Section ��� we saw that the emission of a photon by

�For a review of the theorems justifying the formulae of perturbative QCD� see
J� C� Collins and D� E� Soper� Ann� Rev� Nucl� Sci� ��� 
 ��	
���
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a scattered electron is enhanced� for collinear radiation� by a factor of or�
der log�q��m��� where m is the mass of the electron� Thus the total rate for
emitting a collinear photon formally diverges in the limit of zero mass� The
same conclusion holds for the emission of gluons by quarks� A divergence that
appears for collinear emissions in the limit of zero mass is called a mass singu�
larity� In QED� we saw that the mass singularity signals a real physical e�ect
of strong collinear radiation when q� is large� In QCD� we might expect strong
gluon radiation in this limit� but we must think carefully about how this ra�
diation appears experimentally� Whether a collinear gluon is radiated or not�
the quark and antiquark emerging from the reaction will undergo further soft
interactions with the other products� These processes must continue� produc�
ing quark�antiquark pairs and emitting and absorbing gluons� until all colored
particles are collected into color�singlet hadrons� Thus the presence of one or
more collinear gluons will have no noticeable e�ect on the �nal state� which
consists of two back�to�back jets of hadrons� For this reason� formula �����
is of no use when the gluon transverse momentum is less than the typical scale
of soft gluon interactions� roughly  GeV�

When the gluon is emitted with substantial transverse momentum with
respect to the qq axis� however� it is not possible for subsequent soft exchanges
to recall or reverse this transverse momentum� In this case� the qqg system
evolves into a system of three distinct jets of hadrons� Thus� su	ciently far
from the collinear regions� we can interpret Eq� ����� as the cross section
for producing events with three hadronic jets having energies x�� x�� x� times
the electron beam energy�

By an analysis similar to that given above for the total cross section� we
can improve Eq� ����� by replacing the �xed coupling constant 	s with a
running 	s�Q�� A reasonable choice for Q is the transverse momentum of the
gluon� p�g� described below Eq� ������ If this transverse momentum is too
small� however� 	s�Q� will be large� and our leading�order formula will break
down� This is a second reason why we cannot use formula ����� when the
transverse momentum of the gluon is less than about  GeV�

On the other hand� when the gluon transverse momentum is much larger
than  GeV� there is no reason to distrust QCD perturbation theory� Soft pro�
cesses cannot disturb the three�jet nature of the hadronic state� and asymp�
totic freedom insures that the coupling constant is small� so that the leading
order of perturbation theory will be a good approximation�

The three�jet cross section ����� is a good example of the type of pre�
diction that one obtains from the use of perturbation theory in QCD� We
describe a strong�interaction process by the invariant momentum transfer Q
it gives to hadronic constituents� QCD perturbation theory makes predictions
about the �ow of energy and momentum in such a reaction into the �nal sys�
tem of jets of hadrons� If Q is small� perturbation theory is invalid� and we
obtain no useful prediction� However� if Q is large� the asymptotic freedom
of QCD implies that Feynman diagrams for quarks and gluons will correctly
predict the behavior of the �nal system of hadronic jets�
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Figure ����� Deep inelastic scattering in QCD� The diagram shows the #ow
of momentum when a high�energy electron scatters from a quark taken from
the wavefunction of the proton�

���� Deep Inelastic Scattering

After e�e� annihilation into hadrons� the next simplest reaction involving
strongly interacting particles is electron scattering from a proton� or from
some other hadron� At the most elementary level� this reaction can be viewed
as the electromagnetic scattering of an electron from a quark inside the pro�
ton�y A way to visualize the process is shown in Fig� ���� Call the proton
momentum P � and the initial quark momentum p� Call the initial and �nal
momenta of the electron k and k�� If the �nal electron momentum is measured�
one can deduce the momentum q � k�k� transferred by the virtual photon to
the hadronic system� The vector q is spacelike� and one conventionally writes
q� � �Q��

If the invariant momentum transfer Q� is large� the quark is ejected from
the proton in a manner that cannot be balanced by subsequent soft processes�
These soft processes will� however� create gluons and quark�antiquark pairs
that eventually neutralize the color and cause the struck quark to materialize
as a jet of hadrons in the direction of the momentum transfer from the elec�
tron� Typically the total invariant mass of the �nal hadronic system is large�
since the struck quark carries a large momentum with respect to the other
�spectator� quarks� In this case� the process is referred to as deep inelastic

scattering�
To derive a �rst approximation to the cross section for electron�proton

scattering� we consider this reaction from a frame in which the electron and
proton are moving rapidly toward each other� for example� the electron�
proton center�of�mass frame� We assume that the center�of�mass energy is
large enough that we can ignore the proton mass in working out the kine�
matics� Then the proton has an almost lightlike momentum along the colli�
sion axis� The constituents of the proton also have lightlike momenta� which

yThe electron could just as well be a muon� all the same formulae apply in this
case� Leptons can also scatter from quarks via the neutral�current weak interaction�
as we will see in Chapter ���
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are almost collinear with the momentum of the proton� This is because a
constituent cannot acquire a large transverse momentum except through ex�
change of a hard gluon� a process that is suppressed by the smallness of 	s at
large momentum scales� Thus� to leading order in QCD perturbation theory�
we can write

p � �P� �����

where � is a number between � and � called the longitudinal fraction of
the constituent� To leading order in 	s we can also ignore gluon emission or
exchanges during the collision process� The cross section for electron�proton
scattering is then given by the cross section for electron�quark scattering at
given longitudinal fraction �� multiplied by the probability that the proton
contains a quark at that value of �� integrated over ��

But the probability that the proton contains a certain constituent with
a certain momentum fraction cannot be computed using QCD perturbation
theory� since it depends on the soft processes that determine the structure of
the proton as a bound state of quarks and gluons� We will therefore consider
this probability to be an unknown function� to be determined from experi�
ment� Eventually� we will need to make use of such a probability function for
each species of quark� antiquark� and gluon that can be found in the wave�
function of the proton� Collectively� these constituents are called partons� For
each parton species f � we write the probability of �nding a constituent of the
proton of type f at longitudinal fraction � as�

probability of �nding constituent f

with longitudinal fraction �

�
� ff ���d�� ������

The functions ff ��� are called the parton distribution functions� Using this
notation� the cross section for electron�proton inelastic scattering is given to
leading order in 	s by the expression

�
�
e��k�p�P �� e��k�� �X

�
�

�Z
�

d�
X
f

ff ����
�
e��k�qf ��P �� e��k�� � qf �p

��
�
�

�����

where X stands for any hadronic �nal state� The sum in ����� contains
contributions from constituent antiquarks as well as constituent quarks�

Equation ����� is equivalent to the formula ����� that we constructed
for this reaction in Chapter �� Now we see that this formula is justi�ed by
the smallness of the QCD coupling constant at large momentum scales� It
is important to remember� however� that ����� is not the complete pre�
diction of QCD� but only the �rst term of an expansion in 	s� this level of
approximation is called the parton model� The higher�order QCD corrections
to Eq� ����� will involve modi�cations both to the electron�quark scattering
cross section and to the parton distribution functions� The most important of
these corrections are discussed in Section ��
�
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In the same way� all other reactions of the proton that involve large mo�
mentum transfer also have parton model descriptions� In QCD� all of these
reaction cross sections are computed from scattering amplitudes for quarks
and gluons� The initial motion of the partons for any process is described
by the same parton distribution functions ff ��� that appear in deep inelastic
scattering�

Let us now work out the explicit leading�order formula for the deep inelas�
tic scattering cross section� reviewing the analysis in Chapter �� In Eq� ������
we wrote the leading�order di�erential cross section for the parton�level pro�
cess�

d�

d)t
�e�q � e�q� �

��	�Q�
f

)s�


)s� � )u�

)t�

�
� ������

In general� we will use the symbols )s� )t� )u to denote the Mandelstam variables
for two�body scattering processes at the parton level� These variables must
be related to observable properties of the hadronic system or the scattered
electron� For massless initial and �nal particles�

)s� )t� )u � ��

In the case of deep inelastic scattering�

)t � �Q�

and
)s � �p � k � ��P � k � �s�

Thus the cross section for deep inelastic scattering at �xed Q� is given by

d�

dQ�
�

�Z
�

d�
X
f

ff ���Q
�
f

��	�

Q�


 �
�
� Q�

�s

���
���s�Q��� ������

The �nal factor expresses the kinematic constraint )s � j)tj� Expression ������
should be an accurate �rst approximation to the deep inelastic scattering cross
section when Q� is large� In that case� the corrections to this formula from
hard gluon emissions and exchanges will be of order 	s�Q

���
We also showed in Chapter � that the measurement of the scattered

electron momentum k� and thus the momentum transfer q uniquely determines
an allowed value of � for elastic electron�quark scattering� This value is given
by Eq� ������

� � x� where x � Q�

�P � q � ������

When ������ is expressed as a doubly di�erential cross section in x and Q��
it becomes the simple product of a parton�level cross section and a sum of
parton distribution functions evaluated at � � x� In the literature� the symbol
x is often used interchangably with �� and we will follow this practice from
here on�
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It is especially convenient to represent the cross section in terms of di�
mensionless combinations of kinematic variables� One of these should be x� a
good choice for the other is

y � �P � q
�P � k �

�P � q
s

� ����
�

In the frame in which the proton is at rest�

y �
q�

k�
� ������

that is� y is the fraction of the incident electron�s energy that is transferred
to the hadronic system� On the other hand� since p � �P � we can evaluate y
in terms of parton variables�

y �
�p � �k � k��

�p � k �
)s� )u

)s
� ������

so that
)u

)s
� ��� y�� ������

From Eq� ������ or ������� we see that y � � The kinematically allowed
region in the �x� y� plane is thus

� � x � � � � y � �

To express Eq� ������ in terms of x and y� we need the formula

Q� � xys� ������

which follows from Eqs� ������ and ����
�� and the change of variables

d� dQ� � dx dQ� �
dQ�

dy
dx dy � xs dx dy�

Then the di�erential cross section becomes
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The factor �Q� comes from the square of the virtual photon propagator�
Once this factor is removed� the dependence on x and y completely factor�
izes� Each half of this relation contains physical information� The fact that
the parton distributions ff �x� depend only on x and are independent of Q�

is the statement of Bjorken scaling� This tells us that the initial distribution
of partons is independent of the details of the hard scattering� The y depen�
dence of the cross section comes from the underlying parton cross section�
In Chapter 
� we saw that the elementary QED cross sections� viewed in the
high�energy limit� re�ect the helicities of the interacting particles� The behav�
ior $���y��% in ������ is known as the Callan�Gross relation� it is speci�c
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to the scattering of electrons from massless fermions� This relation gave evi�
dence that the partons involved in deep inelastic scattering were fermions� at
a time when the relation between partons and quarks was still unclear�

Deep Inelastic Neutrino Scattering

Because the sum over quark �avors factorizes in Eq� ������� one cannot de�
termine the individual parton distribution functions ff �x� from electron scat�
tering experiments alone� One can� however� obtain more detailed information
on the structure of the proton through deep inelastic neutrino scattering�

Neutrinos have zero electric charge and so do not interact by photon ex�
change� but they do interact with quarks through weak interactions� We will
discuss the weak interactions in detail in Chapter ��� for the moment� let
us adopt a simpli�ed description that concentrates on the elementary pro�
cess shown in Fig� ���� In this process� a neutrino converts to the associated
charged lepton�z exchanging a virtual massive vector boson� the W�� This
boson couples to a quark current that converts a d quark to a u quark� The
e�ect of this exchange process is to provide a di�erent� but completely char�
acterized� method for injecting a hard momentum transfer q� The amplitude
for this process is described by the e�ective Lagrangian

�L �
g�

�
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where �� �� d� u are the fermion �elds associated with the charged lepton�
the neutrino� and the d and u quarks� and g is the weak interaction coupling
constant� The factor �m�

W comes from the W boson propagator� considered
in the limit q� � m�

W � The �rst two factors are often written in terms of the
Fermi constant GF � de�ned as

GFp
�
�

g�

�m�
W

� ������

This constant gives the strength of the weak interactions at energies much less
than mW � The crucial property of the weak interactions� shown explicitly in
������ is that the W boson couples only to the left�handed helicity states of
relativistic fermions� The deeper signi�cance of this property will be discussed
in Chapter ���

For technical reasons� it is easiest to do neutrino deep inelastic scattering
using muon neutrinos� which convert to muons after emitting a W boson� It is
equally feasible to scatter muon antineutrinos from nuclear targets� and� as we
will see� it is interesting to compare the e�ects of neutrinos and antineutrinos�
Since the proton contains a small admixture of the heavier quarks s� c� these
also give small contributions to neutrino deep inelastic scattering� However�
we will ignore these contributions in our discussion�

zThere is also a neutral�current weak interaction in which the neutrino remains a
neutrino� see Problem �����
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Figure ����� The elementary neutrino scattering process mediated by the
weak interaction�

The cross section for neutrino deep inelastic scattering is given by a for�
mula analogous to ������ with the photon�exchange cross section replaced
by one resulting fromW exchange� It is straightforward to work out this cross
section directly� However� we can also obtain the result from Eq� ������� if
we look back to Chapter 
 and recall how the structure of this equation arises
from the various helicity contributions� In ������� the factor )t� in the denom�
inator came from the photon propagator� this factor is replaced by m�

W in the
weak interaction case� The factor $)s� � )u�% came from the Dirac matrix alge�
bra� We saw in Section 
�� that the �rst term is the contribution of left�handed
electrons scattering from left�handed fermions or right�handed electrons scat�
tering from right�handed fermions� and that the second term arises from the
other helicity combinations� For the case of neutrino�quark scattering� the
interaction ����� allows only the scattering of left�handed neutrinos from
left�handed quarks� so only the )s� term appears� To determine the overall
normalization of the cross section� we note that� since the neutrinos are pro�
duced in weak interactions� they always have left�handed polarization� so no
polarization average should be done� On the other hand� we must still average
over the polarization of the initial quark� In all� we �nd
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��d� ��u� �

�g�
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It is easy to check this formula by explicit computation starting from ������
The cross section for the scattering of antineutrinos from quarks can be

worked out in the same way� Note that this reaction involves the exchange
of a W�� and so converts u quarks to d quarks� However� the u quarks must
still be left�handed� The only modi�cation from the previous paragraph comes
in the fact that the antineutrinos that couple to the interaction ����� are
right�handed� so the cross section comes from the term in ������ proportional
to )u��

d�
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Again� it is easy to verify this formula directly� The cross section for neutrino�
antiquark scattering� converting a u into a d� is also given by Eq� �������
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Figure ����� The distribution in y of neutrino and anti�neutrino deep in�
elastic scattering from an iron target� as measured by the CDHS experiment�
J� G� H� de Groot� et� al�� Z� Phys� C�� �� ��	�	�� The solid curves are �ts
to the form A�B���y���

while the cross section for antineutrino�antiquark scattering� converting a d
into a u� is given by Eq� �������

To convert these parton�level cross sections to physical cross sections�
we combine them with the parton distribution functions� The kinematics is
exactly the same as in the case of electron scattering� Thus� following the
arguments that led to Eq� ������� we obtain the expressions
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According to these relations� deep inelastic neutrino scattering allows one
to map separately the parton distribution functions for u and d quarks and
antiquarks in the proton�

In addition� Eq� ����
� makes a dramatic qualitative prediction� To the
extent that a proton �or neutron� is made of quarks with very few addi�
tional quark�antiquark pairs� the deep inelastic neutrino scattering cross sec�
tion should be constant in y� while the antineutrino scattering cross section
should fall o� as � � y��� The measured y dependence of these deep inelas�
tic cross sections is shown in Fig� ��
� The qualitative behavior predicted by
the parton description is clearly evident� the discrepancy from the strict pre�
diction can be accounted for by a small antiquark component in the nucleon
wavefunction�



��� Chapter �� Quantum Chromodynamics

The Parton Distribution Functions

Given that the parton model predictions for electron and neutrino deep inelas�
tic scattering do �t the data� one can make use of these relations to extract
the parton distribution functions and so learn something about the structure
of the proton�! A set of distribution functions� chosen to �t all available data�
is shown in Fig� ���� Since all of these distributions� especially those for anti�
quarks� peak sharply at small x� we have plotted xff �x� for each species� As
we remarked in Chapter �� a small violation of Bjorken scaling is observed
experimentally� so that these distribution functions change slowly with Q��
The �gure shows these functions at Q� � � GeV�� We will see in Section ��

that this violation of Bjorken scaling is an e�ect of higher�order corrections
in QCD� we will also argue that the measurement of this scaling violation
allows one to determine the parton distribution function for gluons� fg�x��
Anticipating this result� we have also plotted this function in the �gure� Not
surprisingly� one �nds that the u and d quarks are most likely to carry a sub�
stantial fraction of the proton�s momentum� while antiquarks and gluons tend
to have small longitudinal fractions�

Since the parton distributions are the probabilities of �nding various pro�
ton constituents� they must be normalized in a way that re�ects the quantum
numbers of the proton� The proton is a bound state of uud� plus some ad�
mixture of quark�antiquark pairs� Thus it should contain an excess of two u
quarks and one d quark over the corresponding antiquarks� These considera�
tions imply the constraints

�Z
�

dx
�
fu�x� � f�u�x�

�
� ��

�Z
�

dx
�
fd�x� � f �d�x�

�
� � ������

So far we have discussed the parton distributions only for the proton�
Similar considerations� however� apply to any other hadron� Each hadron has
its own set of parton distribution functions� these obey sum rules analogous
to ������ but re�ecting the particular quantum numbers of the hadron� The
parton distribution functions should also re�ect the symmetries that link dif�
ferent hadrons� For example� since the neutron can be generated� to a few
percent accuracy� by interchanging the role of u and d quarks in the proton�
its distribution functions obey

fnu �x� � fd�x�� fnd �x� � fu�x�� fn�u �x� � f �d� etc� ������

In these equations� and henceforth� a distribution function without a special
label refers to the proton� The parton distribution functions of the antiproton
are given by the exact relations

f �pu�x� � f�u�x�� f �p�u�x� � fu�x�� etc� ������

�A detailed discussion of the extraction of parton distribution functions from data
can be found in G� Sterman� et� al�� Rev� Mod� Phys� ��� ��� ��		���
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Figure ����� Parton distribution functions xff �x� for quarks� antiquarks�
and gluons in the proton� at Q� � � GeV�� These distributions are obtained
from a �t to deep inelastic scattering data performed by the CTEQ collabora�
tion �CTEQ�L�� described in J� Botts� et� al�� Phys� Lett� B�
�� ��	 ��		��

In any case� the total amount of momentum carried by the partons must
sum to the total momentum of the hadron� This implies
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dx x
�
fu�x� � fd�x� � f�u�x� � f �d�x� � fg�x�

�
� � ������

The distribution functions of quarks and antiquarks in the proton� as extracted
from deep inelastic scattering data� contribute only about half of the total
value required for this integral� The remaining energy�momentum must be
carried by the gluons�

���� Hard�Scattering Processes in Hadron Collisions

If one collides hadrons with other hadrons at very high energy� most of the
collisions will involve only soft interactions of the consituent quarks and glu�
ons� Such interactions cannot be treated using perturbative QCD� because
	s is large when the momentum transfer is small� In some collisions� how�
ever� two quarks or gluons will exchange a large momentum p� perpendicular
to the collision axis� Then� as in deep inelastic scattering� the elementary in�
teraction takes place very rapidly compared to the internal time scale of the
hadron wavefunctions� so the lowest�order QCD prediction should accurately



��� Chapter �� Quantum Chromodynamics

describe the process� Again� we should �nd a parton�model formula that is
built from a leading�order subprocess cross section� integrated with parton
distribution functions� For the case of proton�proton scattering� these func�
tions will be the same ones that are measured in lepton�proton deep inelastic
scattering�

For example� if the hard parton�level process involves quark�antiquark
scattering into a �nal state Y � the leading�order QCD prediction takes the
form

��p�P�� � p�P��� Y �X�

�

�Z
�

dx�

�Z
�

dx�
X
f

ff �x��f �f �x�� � ��qf �x�P � � qf �x�P �� Y ��
������

where the sum runs over all species of quarks and antiquarks�u� d� u� d� � � � �
�Here again� X denotes any hadronic �nal state�� The same formula� with
appropriately modi�ed distribution functions� applies to any other hadron�
hadron collision� This formula will be a good �rst approximation if� by some
invariant measure� a large momentum is transfered in the qq reaction� In this
section we will discuss several examples of processes of this type�

Lepton Pair Production

The simplest example to analyze is the reaction in which a high�mass lepton
pair ���� emerges from qq annihilation in a proton�proton collision� This
reaction� called the Drell�Yan process� is illustrated in Fig� ���� In this case�
the underlying qq reaction is described by an elementary QED cross section�
To the leading order in QCD� the cross section that we require� ��qq � ������
is simply related to the cross section ��e�e� � qq� given in ������ The only
di�erence between the two calculations is that we must average rather than
sum over the color orientations of the quark and antiquark� This gives two
extra factors of ��� Thus�

��qf qf � ����� �


�
Q�
f �

��	�

�)s
� �����

If both �nal�state lepton momenta are observed� it is possible to recon�
struct the total ��momentum q of the virtual photon� It is also possible to
determine the longitudinal fractions of the initial quark and antiquark� as we
will now show� Let

M� � q� ������

be the square of the invariant mass of the Drell�Yan pair� �Do not confuse
this quantity M with the renormalization scale�� If the initial partons have
small transverse momentum� the transverse momentum of the virtual photon
will also be small� Its longitudinal momentum� however� will in general be
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Figure ����� The Drell�Yan process� pp� ����� anything�

substantial� We parametrize this using the rapidity� Y � of the virtual photon�
as de�ned in Eq� �������

q� � M coshY� ������

where q� is measured in the pp center of mass frame� We will express the
longitudinal fractions of the quarks� and hence the Drell�Yan cross section� in
terms of the observables M� and Y �

In the pp center of mass frame� the proton momenta take the explicit
forms

P� � �E� �� �� E�� P� � �E� �� ���E��

where E satis�es s � �E�� Ignoring their small transverse momenta� we can
write the constituent quark and antiquark momenta as x� and x� times these
vectors� so that

q � x�P� � x�P� �
�
�x��x��E� �� �� �x��x��E

�
� ������

By computing the invariant square of this vector we �nd

M� � x�x�s� ����
�

Similarly� comparing ������ with ������� we �nd

coshY �
x� � x�
�
p
x�x�

�


�

�r
x�
x�

�

r
x�
x�

�
�

which implies

expY �

r
x�
x�
� ������

These equations can be inverted to determine x� and x��

x� �
Mp
s
eY � x� �

Mp
s
e�Y � ������

Relations ����
� and ������ let us convert the integral in Eq� ������ into
an integral over the parametersM�� Y of the produced leptons� The Jacobian
of the change of variables is

��M�� Y �

��x�� x��
�

���� x�s x�s

��x� ���x�

���� � s �
M�

x�x�
�



��� Chapter �� Quantum Chromodynamics

The cross section for lepton pair production is therefore

d��

dM�dY
�pp� e�e� �X� �

X
f

x�ff �x��x�f �f �x�� �


�
Q�
f �

��	�

�M�
� ������

where x� and x� are given by Eq� ������� It is remarkable that the cross
section for the Drell�Yan process is determined point by point by information
derivable from deep inelastic scattering� Unfortunately� the relation between
the two processes implied by ������ receives a correction of order 	s�M� that
turns out to be numerically large� and which must be included to check this
prediction against experiment�

General Kinematics of Pair Production

In deriving Eq� ������� we used the total cross section ����� for the parton�
level process� integrated over the angular distribution of the outgoing leptons�
In principle� we could have retained the angular information and derived a
triply di�erential distribution� This would be the most complete prediction
possible for a two�body parton�level reaction� It will be useful to work out the
kinematics of such reactions� taking a more general viewpoint� In the generic
situation� a parton of type  from proton  scatters from a parton of type �
from proton �� yielding partons of types � and �� with a squared momentum
transfer )t� This generic process is shown in Fig� ���� In the Drell�Yan process�
partons � and � are leptons� But these partons could also be quarks or gluons�
which materialize as hadronic jets� We assume that all partons can be treated
as massless� In parton variables� the cross section for this process is

d��

dx�dx�d)t
�pp� � � � �X� � f��x��f��x��

d�

d)t
� � �� � � ��� ������

Let us now translate this formula to observable parameters of the �nal state�
In the leading order of QCD� the transverse momenta of partons � and �

must be equal and opposite� but their longitudinal momenta are not con�
strained� We will take the three parameters of the �nal state to be the com�
mon magnitude of the parton transverse momenta p� and the longitudinal

rapidities y�� y� of the �nal�state partons� de�ned by the formulae

Ei � p� cosh yi� pik � p� sinh yi� ���
��

The longitudinal rapidity yi gives the boost of the particle i from the frame
where it has zero longitudinal momentum�y Recall from Section ��� that ra�
pidities simply add under collinear boosts� The transverse momentum is in�
variant under longitudinal boosts� Thus� �y�� y�� p�� is a set of variables with
convenient Lorentz transformation properties with respect to boosts along the

yIn the literature on hadron collisions� yi is usually called simply the rapidity�
with the restriction to longitudinal boosts being understood�
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Figure ����� A generic two�body parton scattering process�

collision axis� We will now see that these three parameters are related in a
straightforward way to the underlying variables x�� x�� )t�

Consider the center of mass frame of the colliding partons� The total
energy in this frame is

p
)s� Let us use a subscript � to denote other quantities

measured in this frame� for instance� �� for the parton scattering angle� Then

p�k� � �
�

p
)s cos ��� p��� � �

�

p
)s sin ��� ���
�

and p�� is oriented just oppositely� This frame is also the center of mass frame
of partons � and �� so

y�� � �y�� � y�� ���
��

Since rapidities transform by shifts� we can solve for y� and for the rapidity
Y by which one must boost to reach this frame�

y� � �
� �y� � y��� Y � �

� �y� � y��� ���
��

The scattering angle �� is determined from y� by combining ���
� with the
relation E� � p� cosh y��



sin ��
� cosh y�� ���
��

Then the Mandelstam variables

)s �
�p��

sin� ��
� )t � � �

� )s�� cos ��� ���

�

can be expressed as

)s � �p�� cosh� y�� )t � ��p�� cosh y� e�y� � ���
��

We can combine the �rst of these expressions with ������ to determine x�
and x��

x� �
�p�p
s
cosh y� eY � x� �

�p�p
s
cosh y� e�Y � ���
��

To translate the cross section ������ to the �nal parton observables� we
need the Jacobian

��x�� x�� )t�

��y�� y�� p��
�

�p��
s

cosh� y� �
�p�)s
s

� ���
��
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Multiplying Eq� ������ by this factor gives

d��

dy�dy�dp�
� f��x��f��x��

�p�)s
s

d�

d)t
� � �� � � ��� ���
��

This can be simpli�ed a bit using the relations )s � x�x�s and p�dp� �
d�p����� yielding the �nal result�

d��

dy�dy�d�p�
� x�f��x��x�f��x��



�

d�

d)t
� � �� � � ��� ������

In this formula� x�� x�� and the Mandelstam variables of the parton subprocess
are given by Eqs� ���
�� and ���
���

This result gives us the complete distribution of �nal�state leptons or jets
in any two�body reaction of partons� For example� to �nd the distribution of
�nal�state leptons in the Drell�Yan process� we would insert into this formula
the di�erential cross section for quark annihilation into leptons�

d�

d)t
�qf qf � ����� �



�
Q�
f �

��	�

)s�

)t� � )u�

)s�
� �����

The formula can be applied equally well to other two�body parton reactions�
if we know the relevant parton�level di�erential cross sections�

Jet Pair Production

The most common two�body parton reactions are those of QCD� involv�
ing quarks� gluons� or both� Unfortunately� it is very di	cult to distinguish
hadronic jets initiated by gluons from those initiated by quarks� It is even more
di	cult to determine experimentally whether the initial partons in a hard�
scattering process were quarks or gluons� Thus� the predictions of QCD for
hard�scattering processes are most often quoted as cross sections for jet pro�
duction in hadronic collisions� summing over all possible reactions of quarks�
antiquarks� and gluons� In any event� to derive these predictions� we must
work out the basic parton�parton cross sections�

The simple two�body scattering processes of quarks� antiquarks� and glu�
ons are the elementary processes of QCD perturbation theory� in the same
sense that the reactions studied in Chapter 
 are the elementary processes of
QED perturbation theory� They are the basic hadronic hard�scattering reac�
tions that appear in QCD at the leading order in 	s� In the remainder of this
section� we will write down the cross section formulae for the various possible
quark and gluon subprocesses� All of these cross sections will be of order 	�s�
In practice� this 	s should be evaluated at a typical momentum transfer of
the reaction� for example� at Q� � )t�

The simplest subprocess is the scattering of di�erent species of quarks�
for example� u � d � u � d� At order 	�s � this process occurs via the Feyn�
man diagram shown in Fig� ���� This process is analogous to electron�muon
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Figure ���	� Feynman diagram contributing to ud� ud�

scattering in QED� for which we wrote the cross section in Eq� �������

d�

d)t
�e��� e��� �

��	�

)s�


)s� � )u�

)t�

�
� ������

To convert this to the cross section for quark scattering in QCD� we need only
replace the QED coupling e� by g� times an SU��� group theory factor� The
QCD diagram contains the factor

�ta�i�i�t
a�j�j �

where i� i� are the initial and �nal colors of the u quark and j� j� are the initial
and �nal colors of the d quark� To compute the cross section� we must square
this factor� sum over �nal colors� and average over initial colors� This gives
the factor



�
� 
�
� tr$tbta% � tr$tbta% � 

�

�
C�r�
��
�ab�ab �



�
� 
�
� � �

�

�
� ������

where we have used Eq� �
���� and C�r� � �� for the fundamental repre�
sentation of SU���� Thus for ud scattering�

d�

d)t
�ud� ud� �

��	�s
�)s�


)s� � )u�

)t�

�
� ������

The same formula applies for the scattering of any two di�erent quarks�
or� by crossing� to the scattering of a quark and an antiquark of a di�erent
species� Crossing from the t to the s channel gives the cross section for qq
annihilation into a di�erent species�

d�

d)t
�uu� dd� �

��	�s
�)s�


)t� � )u�

)s�

�
� ����
�

The scattering of a quark with an antiquark of the same species is more
complicated� since now there are two Feynman diagrams� shown in Fig� ����
which interfere with one another� The analogous QED process is Bhabha
scattering� e�e� � e�e�� for which we worked out the cross section in Prob�
lem 
���

d�

d)t
�e�e� � e�e�� �

��	�

)s�

�)s
)t

��
�
� )t
)s

��
� )u�
�
)s
�



)t

���
� ������
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Figure ����
� Feynman diagrams contributing to uu� uu�

However� it is not quite straightforward to transcribe this to QCD� because
di�erent terms receive di�erent color factors�

This process is most easily analyzed using initial and �nal states of def�
inite helicity� For massless fermions� helicity is conserved� so the reaction
e�Re

�
L � e�Le

�
R can receive a contribution only from the s�channel diagram�

while e�Re
�
R � e�Re

�
R can receive a contribution only from the t�channel dia�

gram� The corresponding cross sections are

d�

d)t
�e�Re

�
L � e�Le

�
R� �

��	�

)s�

� )t
)s

��
�

d�

d)t
�e�Re

�
R � e�Re

�
R� �

��	�

)s�

� )s
)t

��
�

������

The cross section for e�Re
�
L � e�Le

�
L must vanish� The fourth possible pro�

cess involving e�R receives contributions from both s� and t�channel diagrams�
Computing this contribution explicitly� one �nds

d�

d)t
�e�Re

�
L � e�Re

�
L � �

��	�

)s�
)u�
�
)t
�



)s

��
� ������

the cross term in the square is the interference term between the two diagrams�
The invariance of QED under parity implies that the values of all of these cross
sections remain identical when all helicities are reversed� It is easy to check
that the spin�averaged cross section is indeed given by �������

To convert Eq� ������ to a QCD cross section averaged over colors� we
can assign the color factor ������ to the square of any individual diagram�
However� the cross term between the two diagrams in Fig� ��� receives a
di�erent color factor��

�

��
� �ta�i�i�ta�jj� � �tb�j�i��tb�ij � 

�
tr$tatbtatb%� ������

To evaluate this factor� we can make use of Eq� �������

tatbtatb �
�
C��r� � 

�
C��G�

�
tata �

��
�
� �

�

��
�
� ��

�
�

So the color factor ������ equals ������
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Figure ������ Feynman diagrams contributing to qq � gg�

Assembling the color factors and the helicity cross sections� we �nd the
following result for the uu scattering cross section�

d�

d)t
�uu� uu� �

��	�s
�)s�


)s� � )u�

)t�
�

)t� � )u�

)s�
� �

�

)u�

)s)t

�
� ������

By crossing between the s and u channels� we �nd the corresponding cross
section for uu� uu�

d�

d)t
�uu� uu� �

��	�s
�)s�


)u� � )s�

)t�
�

)t� � )s�

)u�
� �

�

)s�

)u)t

�
� �����

The process uu� uu has the same cross section� This completes our catalogue
of cross sections for the scattering of quarks and antiquarks�

We turn next to processes that involve both quarks and gluons� We will
begin with the reaction qq � gg� This is the analogue of the QED annihilation
of e�e� to ��� discussed in Section 
�
� The QED cross section is

d�

d)t
�e�e� � ��� �

��	�

)s�


)u

)t
�

)t

)u

�
� ������

Since the photons are identical particles� this expression should be integrated
over only half of the �� solid angle�

The QCD reaction is considerably more complicated� As we saw in Sec�
tion ��� this process receives contributions from three Feynman diagrams�
shown in Fig� ��� These contributions must be summed over the transverse
polarization states of the gluons� If one chooses instead to evaluate the sum
over gluon polarizations by the replacementX

�

����� � �g�� � ������

we saw in Section ��� that one must also include the �negative� cross section
for qq annihilation to a ghost�antighost pair�

The leading behavior of the qq � gg cross section as )t or )u� � is not so
hard to evaluate� In either case� only the single diagramwith the corresponding
kinematic singularity contributes� The color factor associated with the square
of either of these diagrams is the square of

�ta�ij�t
b�jk �
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Figure ������ Feynman diagrams contributing to gg� gg�

summed over the gluon colors a� b and averaged over the q and q colors i� k�
This gives �

�

��
� tr$tatbtbta% � 

�
� ��C��r�

��
�

�

��
� ������

Thus the most singular terms are given by the QED result� with 	 replaced
by 	s� multiplied by ����� The complete evaluation of the cross section is
left for Problem ���� the result is

d�

d)t
�qq � gg� �

���	�s
��)s�


)u

)t
�

)t

)u
� �

�

�)t� � )u�

)s�

��
� ����
�

The cross sections for the remaining quark�gluon processes can be ob�
tained from this result by crossing� The result for the inverse reaction gg � qq
involves the same squared matrix element as ����
�� the only di�erence is
that we average over gluon rather than quark colors� giving a relative factor
of ������� Thus�

d�

d)t
�gg � qq� �

�	�s
�)s�


)u

)t
�

)t

)u
� �

�

�)t� � )u�

)s�

��
� ������

For the reaction qg � qg� cross the s and t channels in Eq� ����
� and
multiply by ��� since there is one gluon color average� This gives

d�

d)t
�qg � qg� �

��	�s
�)s�


� )u

)s
� )s

)u
�

�

�

� )s� � )u�

)t�

��
� ������

The cross section for qg � qg is identical�
The �nal elementary process of QCD is gluon�gluon scattering� This has

no QED analogue� and is rather tedious to evaluate� There are four leading�
order diagrams� shown in Fig� ���� We discuss this process also in Prob�
lem ���� The �nal result for the spin� and color�averaged cross section is

d�

d)t
�gg � gg� �

��	�s
�)s�


�� )t)u

)s�
� )s)u

)t�
� )s)t

)u�

�
� ������

The various parton cross sections listed in this section can be combined
with the parton distribution functions to predict the cross section for jet pro�
duction in hadron�hadron collisions� As an example� we show in Fig� ��� a
comparison of the invariant mass �)s� distribution predicted for parton�parton
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Figure ������ Two�jet invariant mass distribution in pp collisions at Ecm �
��
 TeV� as measured by the CDF collaboration� F� Abe� et� al�� Phys� Rev�
D��� 		
 ��		�� The measurement is compared to a leading�order QCD
calculation using the CTEQ structure functions described in Fig� ����� The
three lower curves show the invariant mass distributions for the three compo�
nents of the theoretical prediction� quark�quark �and antiquark� scattering�
quark�gluon scattering� and gluon�gluon scattering�

scattering with the invariant mass distribution of two�jet events observed in
high�energy pp collisions� The overall normalization of the theoretical predic�
tion is uncertain by about a factor of � due to the ambiguity of the choice
of Q� used to evaluate 	s�Q

�� in the parton cross sections� and due to simi�
lar ambiguities in deriving parton distributions from deep inelastic scattering
cross sections� This uncertainty is reduced to about ��� when corrections of
order 	s are included� Still� it is remarkable that the lowest�order QCD pre�
diction tracks the observed distribution as a function of the two�jet invariant
mass as it falls by six orders of magnitude� Thus� for the jet production cross
section� as for hard processes involving leptons� QCD indeed gives a reason�
able description of the behavior of the strong interactions at large momentum
transfer�
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���� Parton Evolution

Now that we have examined the predictions of QCD at the leading order for
several strong interaction processes� we should investigate the corrections to
these predictions at the next order in 	s� We saw in Section ��� that the
corrections from individual diagrams may contain mass singularities� singu�
larities associated with collinear emission processes which appear in the limit
of zero mass� For the process of e�e� annihilation to hadrons� we saw that
these mass singularities� and the infrared divergences from soft gluon emis�
sion� cancel in the expression for the total cross section� It can be shown that
this is a general feature of processes in which quarks and gluons are produced
in the collision of leptons or photons� However� when quarks or gluons ap�
pear in the initial state of a parton subprocess� the corrections to the process
will� in general� have mass singularities that do not cancel� In this section we
will demonstrate this e�ect and work out its physical interpretation� We will
�nd that these singular terms predict a violation of Bjorken scaling by terms
depending on the logarithm of the momentum scale� In fact� they lead to a
precise set of di�erential equations that govern the momentum dependence of
the parton distributions�

The basic phenomena associated with mass singularities in QCD are al�
ready present in the physics of collinear photon emission in QED at high
energies� and so it is most straightforward to begin by studying that case� In
this section� we will show that collinear photon emission leads to an analogue
of a parton distribution function for the electron� We will derive a di�eren�
tial equation describing this distribution function� �rst constructed by Gribov
and Lipatov� Finally� we will generalize this equation to QCD� following the
construction of Altarelli and Parisi�z

In Chapters 
 and �� we studied several examples of QED processes
that involved diagrams with t� or u�channel singularities� In these cases� we
found that the total cross section was generally enhanced by an extra factor
log�s�m�� in the high�energy limit� For example� in Eq� �
��
� we saw that
the u�channel exchange diagram in Compton scattering� Fig� ����a�� leads
to an integral that� in the high�energy limit� takes the formZ

d cos �

� � cos ��
�

The singularity as cos � � � is cut o� by the electron mass� leading to the
logarithmic enhancement factor� Thus the collinear photon emission costs a
factor that is not 	 but rather 	 log�s�m��� Emission of multiple collinear
photons� as in Fig� ����b�� gives contributions of order �	 log�s�m���n� To
improve the accuracy of perturbation theory� it would be useful to �nd a pro�
cedure for summing these terms to all orders in 	� In QCD� the corresponding

zV� N� Gribov and L� Lipatov� Sov� J� Nucl� Phys� ��� �
 ��	���� G� Altarelli
and G� Parisi� Nucl� Phys� B���� �	
 ��	���� We also strongly recommend reading
the papers of J� Kogut and L� Susskind� Phys� Rev� D	� �	�� 	� ��	����



���� Parton Evolution ���

Figure ������ Diagrams with mass singularities associated with collinear
photon emission� �a� leading order� �b� higher order�

Figure ������ General form of diagrams with mass singularities in QED�

factor for collinear gluon emission would be

	s�Q
�� log

Q�

��
�

where � is the momentum scale where nonperturbative QCD e�ects become
important� Comparing with Eq� ������ we see that this product is of order �
Thus� in this case� the resummation of large logarithms is essential if we are
to make any quantitative predictions�

In QED� diagrams with mass singularities associated with one collinear
emission are of one of the forms shown in Fig� ��
� In each case� the circle
represents a scattering process with large momentum tranfer� The mass singu�
larity appears when the denominator of the intermediate propagator vanishes�
that is� when the intermediate state is almost on�shell� Thus� it is natural to
consider the �rst diagram in Fig� ��
 to be a transition to a real photon
and an almost�real electron� followed by the interaction of the electron with
the remaining particles in the amplitude� The second diagram should have a
similar interpretation with an almost�real photon in the intermediate state�

The only subtlety comes in de�ning the polarization of the intermediate�
state particle� For the case of an intermediate�state electron� the numerator
of the propagator is

k �
X
s

us�k�us�k�� ������

Thus� when k� � �� the photon emission vertex and the remaining part of
the amplitude are contracted with on�shell polarization spinors for a massless
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electron� The analogous statement for the diagram with the photon in the in�
termediate state would be that the electron emission vertex and the remaining
photon amplitude should be contracted with physical transverse polarization
vectors for the intermediate�state photon� Since the numerator of the photon
propagator is g�� � it is not obvious that the photon propagator reduces in this
way� But it is true� To see this� use the expansion for g�� in terms of massless
polarization vectors given in Eq� �������

g�� � ����
��
� � ����

��
� �

X
i

��Ti�
��
Ti� ������

Here ��Ti are transverse polarization vectors� The forward polarization vector
��� is proportional to the photon momentum q�� When we contract ��� with
the QED scattering amplitude on the right� we will obtain zero by the Ward
identity� and the contraction of ���� with the electron emission vertex similarly
gives zero� Thus� for the purpose of computing the singular term as the photon
momentum q goes on�shell� we may replace

�ig��
q�

� �i

q�

X
i

��Ti�
��
Ti �����

and evaluate the photon emission and absorption amplitudes with transverse
polarization vectors�

Matrix Element for Electron Splitting

By replacing the numerator of the intermediate propagator with a sum over
polarization vectors� we decouple the photon or electron emission vertex from
the rest of the diagram� We will now evaluate this vertex explicitly between
physical polarization states of massless particles� The kinematics is shown in
Fig� ���� The two �nal particles should be almost collinear� with a small rel�
ative transverse momentum� We can choose the incident electron momentum
to lie along the )� axis and the outgoing momenta to lie in the )�)� plane� Let
z be the fraction of the energy of the initial electron that is carried o� by the
photon� Then the three ��momenta can be written as

p � �p� �� �� p��

q � �zp� p�� �� zp��

k � ���z�p��p�� �� ��z�p��
������

These three vectors satisfy p� � q� � k� � �� up to terms of order p���
In the process where a real photon is emitted� we should have p� and q�

exactly zero� and k� slightly o��shell by an amount of order p��� We will need
to know the value of k�� which appears in the virtual electron propagator� So
let us modify Eqs� ������ to satisfy the condition q� � � up to terms of order
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Figure ������ Kinematics of the vertex for emission of a collinear electron
or photon�

p��� rewriting q and k as

q � �zp� p�� �� zp� p��
�zp

��

k � ���z�p��p�� �� ��z�p� p��
�zp

��

������

With this modi�cation�

k� � �p�� � ���z�p
�
�
�z

�O�p����

Thus� if the photon is real and the electron is virtual� we have

q� � �� k� � �p
�
�
z
� ������

Reciprocally� in the process with a real electron and a virtual photon�

k� � �� q� � � p��
��z� � ����
�

These more accurate expressions will be needed only in the propagator of the
virtual particle� The matrix element of the electron�photon vertex begins in
order p�� so it is not signi�cantly a�ected by the modi�cation of ������ to
������� and is the same �to lowest order� no matter which particle is virtual�

We now calculate the matrix elements of the QED vertex between massless
states of de�nite helicity� If the initial electron is left�handed� the �nal electron
must also be left�handed� by helicity conservation� Then the photon emission
vertex is given by

iM � uL�k���ie���uL�p����T �q�� ������

where the photon polarization vector may be either left� or right�handed�
Recalling the helicity�basis expressions

�� �

�
� ��
�� �

�
� uL�p� �

p
�p�
�
��p�
�

�
�for m � ���

we can write more explicitly

iM � �ie
p
���z�p

p
�p �y�k��i��p� ��iT �q�� ������
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To order p�� the left�handed spinors are

��p� �

�
�


�
� ��k� �

�
p�����z�p



�
� ������

The polarization vectors for the photon are

��iL �q� �
p
�

�
� i��p�

zp

�
� ��iR �q� �

p
�

�
��i��p�

zp

�
� ������

Notice that� when these vectors are contracted with the Pauli matrix in
Eq� ������� the �rst two components of the right�handed polarization vec�
tor give ��� � i��� � ���� which annihilates ��p�� The only remaining term
comes from the i � � component� and we �nd

iM�e�L � e�L�R� � ie

p
���z�
z

p�� ������

For the left�handed photon polarization� there is an additional contribution
from the �rst two components of ��L� These add to

iM�e�L � e�L�L� � ie

p
���z�
z��z� p�� �����

Parity invariance implies that the values of the matrix elements are unchanged
if all helicities are �ipped� this immediately gives the required matrix elements
for the case of an initial e�R� The squared matrix element� averaged over initial
helicities� is therefore



�

X
pols�

jMj� � �e�p��
z��z�


 � ��z��

z

�
� ������

The �rst term in the brackets comes from a photon with spin parallel to the
electron spin� the second term comes from a photon with spin opposite to the
electron spin�

The Equivalent Photon Approximation

Now we have all the pieces needed to compute the cross sections for the
processes shown in Fig� ��
� We �rst consider the process with a virtual
photon� Call the initial state on the right�hand side of the diagram X and the
�nal state Y � and let M�X represent the matrix element for the scattering
of the photon from X � We will assume for simplicity that X is unpolarized�
so that the scattering cross section does not depend on the virtual photon
polarization� Then the complete diagram gives a cross section

� �


��vX��p�EX

Z
d�k

�����


�k�

Z
d/Y

h
�

X
jMj�

i� 

q�

��
jM�X j�� ������

where vX is the velocity of X and
R
d/Y is the phase space integral over Y �

The integral has a singularity when k is collinear with the incident electron
momentum p� To isolate the singularity� substitute for k� and q� from Eqs�
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������ and ����
� and rewrite the integral over k as

d�k � dk�d�k� � pdz � �dp��� ������

Then the cross section can be expressed as

� �

Z
pdzdp��

�����z�p
h
�

X
jMj�

i ��z��
p��

z

��vX��zp�EX

Z
d/Y jM�X j�

�

Z
dzdp��

�����z�
h
�

X
jMj�

iz��z��
p��

� ���X � Y �� ����
�

Finally� insert the spin�averaged electron emission vertex ������� to obtain

� �

Z
dzdp��
���

z��z�
p��

�e�p��
z��z�


 � ��z��

z

�
� ���X � Y �

�

�Z
�

dz

Z
dp��
p��

	

��


 � ��z��

z

�
� ���X � Y �� ������

The integral over p�� runs from momentum transfers of order s down to the
electron mass m�� which cuts o� the singularity� Thus� our �nal result is

��e�X � e�Y � �

�Z
�

dz
	

��
log

s

m�


 � ��z��

z

�
� ���X � Y �� ������

The cross section on the right�hand side is computed for a real� transversely
polarized photon of momentum zp� The factor log�s�m�� represents the mass
singularity� This formula is the Weizsacker�Williams equivalent photon approx�

imation� which we encountered earlier in Problems 
�
 and ����
Formula ������ takes on a new signi�cance when it is juxtaposed with

the QCD predictions of the previous two sections� This QED formula has just
the same form as a parton model expression� with the Weizsacker�Williams
distribution function

f��z� �
	

��
log

s

m�


 � ��z��

z

�
������

playing the role of the probability to �nd a photon of longitudinal fraction z
in the incident electron�

The Electron Distribution

The �rst diagram of Fig� ��
� with an emitted photon and a virtual electron�
can be treated in the same way� The analogue of ������ is

� �


��vX��p�EX

Z
d�q

�����


�q�

Z
d/Y

h
�

X
jMj�

i� 

k�

��
jMe�X j��
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Following the steps that led to ������� we �nd

��e�X � �Y � �

Z
dzdp��
���z

h
�

X
jMj�

i z�
p��

� ��z���e�X � Y �

�

Z
dzdp��
���

z��z�
p��

�e�p��
z��z�


 � ��z��

z

�
� ��e�X � Y �

�

�Z
�

dz

Z
dp��
p��

	

��


 � ��z��

z

�
� ��e�X � Y �� ������

where the intermediate electron carries a longitudinal fraction ��z��
It is tempting to substitute x � ��z� and interpret the factor multiplying

the cross section under the integral in ������ as the parton distribution for
�nding an electron parton in the electron� This would give

f ���e �x� �
	

��
log

s

m�


 � x�

�x
�
� ������

However� this expression is not adequate� Most obviously� it does not take
into account the processes without radiation� in which the electron remains
an electron at the full energy� This is easily remedied by considering ������
as the order�	 correction to the most naive expectation�

f ���e �x� � ��� x�� �����

in which we consider the electron to contain only an electron at the full energy�
Unfortunately� the sum of ����� and ������ still does not give an adequate
description of the electron distribution� for two reasons� First� Eq� ������
diverges near x � � and we need a prescription for treating this singularity�
Second� while Eq� ������ takes into account the virtual electrons moved to
longitudinal fraction x from x �  by radiation� it does not take into account
the concomitant loss of electrons from the delta function peak at x � �

The divergence of ������ at x �  corresponds to the emission of soft
photons� We saw in Section ��
 that the emission of soft photons does not af�
fect the rate of a QED reaction� Order by order in 	� one �nds that infrared�
divergent positive contributions to the total rate from the emission of soft
photons are balanced by negative contributions from diagrams with soft vir�
tual photons� In the present example� the negative contribution must decrease
the weight of the process in which no photon is emitted� Thus� to order 	� the
parton distribution for electrons in the electron should have the form

fe�x� � ��� x� �
	

��
log

s

m�

�
 � x�

��x� �A��� x�

�
� ������

The coe	cient A results from diagrams with virtual photons that we have
not computed� However� the e�ect of these diagrams is easy to understand�
they subtract from the delta function the probability that has been moved
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to lower x by radiation� so that the integral over the full term of order 	 is
zero� Another way of expressing this criterion is that A is determined by the
condition that the electron contain exactly one electron parton�

�Z
�

dx fe�x� � � ������

�This equation will be modi�ed below� when we include pair�creation pro�
cesses��

It is not so clear how to integrate over the singular denominator in ������
to determine A explicitly� It is conventional to de�ne a distribution that can
be integrated by subtracting a delta function from the singular term� De�ne
the distribution



��x�� ������

to agree with the function ���x� for all values of x less than � and to have
a singularity at x �  such that the integral of this distribution with any
smooth function f�x� gives

�Z
�

dx
f�x�

��x�� �

�Z
�

dx
f�x�� f��

��x� � ����
�

Less formally�



��x�� � lim
���




��x���� x� ��� ��� x�

���Z
�

dx�


��x��
�
� ������

The more formal de�nition ����
� is often easier to use in practice�
Using this de�nition� we can bring a piece of the delta function into the

singular term of ������ by changing the denominator ��x� to ��x���
Then� to normalize ������� we need the integral

�Z
�

dx
 � x�

��x�� �

�Z
�

dx
x� � 

��x� � ��

�
�

Our �nal form of the electron distribution� to order 	� is

fe�x� � ��� x� �
	

��
log

s

m�


 � x�

��x�� �
�

�
��� x�

�
� ������

This distribution is now properly normalized� but it is still highly singular
near x � � Thus� we should expect higher�order corrections to the electron
distribution function to be important in this region� We must� then� think
about how to treat the emission of many collinear photons�
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Figure ������ Higher�order diagrams with collinear photon emission�
�a� two collinear photons� �b� many collinear photons�

Multiple Splittings

In fact� it is not di	cult to extend the analysis we have just completed to
account for emission of many collinear photons� Consider the process shown in
Fig� ����a�� in which photon  is radiated with a transverse momentum p��
and photon � with a transverse momentum p��� The emission of photon � can
be computed just as we did above� If p�� � p��� the �rst virtual electron is
very close to mass shell compared to p��� and so we can ignore its virtuality
in computing the emission of the photon � The double photon emission gives
a contribution of order

� 	
��

�� sZ
m�

dp���
p���

p���Z
m�

dp���
p���

�


�

� 	
��

��
log�

s

m�
�

In the opposite limit� p�� 
 p��� there is no denominator of order p���� and
so we do not �nd a double logarithm� Only in the case p�� � p�� can the
contribution of order 	� compete with the contribution of order 	�

This argument extends to the emission of arbitrarily many collinear pho�
tons� Fig� ����b�� The region of integration over the photon phase space
corresponding to the ordering

p�� 
 p�� 
 p�� 
 � � � ������

gives a contribution that contains the factor



n-

� 	
��

�n
logn

s

m�
� ������

If the photon transverse momenta are ordered in any other way� the contribu�
tion from that region contains at least one less power of the large logarithm
at the same order in 	� If condition ������ holds� the virtual electron mo�
menta are increasingly o��mass�shell as one proceeds from the outside of the
diagram toward the hard collision� In this case� the electron momenta are said
to be strongly ordered�
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This set of conclusions has an interesting physical interpretation� Since
the intermediate electrons are increasingly virtual as we go into the diagram� it
is natural to interpret them as components of the physical electron when this
particle is analyzed at successively smaller distance scales� The intermediate
electron with k� � p�� may be thought of as a constituent of the electron
made visible when the wavefunction of the physical electron is probed with a
resolution �r � �p����� In this picture� the electron seen at one resolution
can be resolved at a �ner scale into a more virtual electron and a number of
photons�

+From either the perspective of computing Feynman diagrams or the
grander perspective of the electron structure� it is useful to imagine the split�
ting of the electron into a virtual electron plus photons to be a continuous
evolution process as a function of the transverse momentum of the electron
constituent� To describe this process mathematically� we introduce an explicit
p� dependence of the electron and photon distribution functions� We de�ne
the functions f��x�Q� and fe�x�Q� to give the probabilities of �nding a pho�
ton or an electron of longitudinal fraction x in the physical electron� taking
into account collinear photon emissions with transverse momenta p� � Q�
If Q is slightly increased to Q � �Q� we must take into account the pos�
sibility that an electron constituent in fe�x�Q� will radiate a photon with
Q � p� � Q��Q� The di�erential probability for an electron to split o� a
photon that carries away a fraction z of its energy is

	

��

dp��
p��

 � ��z��
z

� �����

The new photon distribution can therefore be computed as follows�

f��x�Q��Q�

� f��x�Q� �

�Z
�

dx�
�Z

�

dz


	

��

�Q�

Q�

 � ��z��
z

�
fe�x

�� p����x � zx��

� f��x�Q� �
�Q

Q

�Z
x

dz

z


	

�

 � ��z��
z

�
fe�

x

z
� p��� ����

Passing to a continuous evolution� we �nd that the function f��x�Q� is deter�
mined by the integral�di�erential equation

d

d logQ
f��x�Q� �

�Z
x

dz

z


	

�

 � ��z��
z

�
fe�

x

z
�Q�� �����

Similarly� the distribution of component electrons in the physical electron
will evolve with Q� re�ecting the appearance of electrons at lower values of x
due to photon radiation� and the disappearance of these electrons at higher x�
The term in brackets in Eq� ������ gives a correct accounting of both e�ects
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for the radiation of a single photon� Thus� the electron distribution evolves
according to

d

d logQ
fe�x�Q� �

�Z
x

dz

z


	

�

�
 � z�

��z�� �
�

�
��� z�

��
fe�

x

z
�Q�� �����

By integrating these integral�di�erential equations using appropriate ini�
tial conditions� we sum all of the logarithmically enhanced terms of the
form ������� The initial conditions should be �xed at a point that will repro�
duce the correct denominator of the logarithms in Eqs� ������ and �������
Thus� we should set

fe�x�Q� � ��� x�� f��x�Q� � �� �����

at Q� � m��
The resulting distribution functions can be used to compute the cross sec�

tions for electron hard scattering from an arbitrary target� Then Eqs� ������
and ������ should be replaced by

��e�X � e� � n� � Y � �

�Z
�

dx f��x�Q����X � Y ��

��e�X � n� � Y � �

�Z
�

dx fe�x�Q���e�X � Y ��

���
�

where the cross sections under the integrals are computed for a photon or
electron carrying a fraction x of the original electron momentum� the functions
f��x�Q�� fe�x�Q� are the solutions to Eqs� ����� and ������ and the
momentum Q is chosen as a characteristic momentum transfer of the �X or
e�X subprocess�

Photon Splitting to Pairs

The evolution equations for f��x� and fe�x� need one more modi�cation be�
fore they can be considered complete� As written� these equations account for
the radiation of photons by electrons to all orders� However� they omit an�
other process that is of the same order in 	� the splitting of a photon into an
electron�positron pair� We must include this process in our evolution equa�
tions� because the process shown in Fig� ���� for example� has the same
logarithmic enhancement as that shown in Fig� ����a��

We can compute the e�ects of photon splitting in the same way that we
computed with e�ects of photon radiation� The basic kinematics of the process
is very similar� as shown in Fig� ���� the only di�erence is that the photon
is now in the initial state� while the �nal state consists of an almost collinear
electron�positron pair� We need to work out the analogue of Eq� ������ for
this process�
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Figure ������ A process that involves e�e� pair creation enhanced by a
collinear mass singularity�

Figure ����	� Kinematics of the vertex for photon conversion to a collinear
electron�positron pair�

Consider the case in which the outgoing electron is left�handed� Then
the outgoing positron must be right�handed� by helicity conservation� its spin
wavefunction will contain a left�handed spinor� Let us take the electron mo�
mentum to be k� given by Eq� ������� and the positron momentum to be q�
Then the vertex gives a matrix element

iM � �ieuL�k���vL�q���T �p�� �����

where the photon polarization vector can be either left� or right�handed� When
we insert the explicit forms for the massless spinors� we obtain

iM � ie
p
���z�p

p
�zp �y�k��i��q� � �iT �p��

where the electron and positron spinors are given� to order p�� by

��q� �

��p���zp


�
� ��k� �

�
p�����z�p



�
�

The polarization vectors for the photon are

�iL�p� �
p
�
���i� ��� �iR�p� �

p
�
�� i� ���

Dotting these vectors into �i� we �nd for the polarized matrix elements

iM��L � e�Le
�
R� � �ie

p
�z��z�
z

p��



��� Chapter �� Quantum Chromodynamics

and

iM��R � e�Le
�
R� � �ie

p
�z��z�
��z� p��

Again� the matrix elements are unchanged if all helicities are �ipped� Thus
the squared matrix element� averaged over initial photon polarizations� is



�

X
pols�

jMj� � �e�p��
z��z�

�
z� � ��z���� �����

where z is the momentum fraction carried by the positron� The �rst term in
the brackets comes from processes in which the spin of the positron is parallel
to the spin of the photon� the second term comes from processes where the
electron spin is parallel to the photon spin�

The squared matrix element ����� generates an evolution of constituent
photons into electrons and positrons� The form of the evolution equation is
similar to ������ but with the photon distribution on the right�hand side�
and with the expression in parentheses replaced by�

z� � ��z���� �����

When we create an electron�positron pair� we must remove a photon� this
requires a negative term in the evolution equation for the photon distribu�
tion ����� that contains a delta function multiplying the normalization of
������

�Z
�

dz
�
z� � ��z��� � �

�
� �����

Evolution Equations for QED

Including the e�ects of pair creation� we �nd the complete evolution equations
for electron� positron� and photon distributions in QED� These equations�
originally derived by Gribov and Lipatov� sum the leading logarithms from
collinear singularities to all orders in 	� The evolution equations take the form

d

d logQ
f��x�Q� �

	

�

�Z
x

dz

z

	
P��e�z�

�
fe�

x

z
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z
�Q�
�

� P����z�f��
x

z
�Q�
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d

d logQ
fe�x�Q� �
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z
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d logQ
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The splitting functions Pi�j�z� are given by

Pe�e�z� �
 � z�

��z�� �
�

�
���z��

P��e�z� �
 � ��z��

z
�

Pe���z� � z� � ��z���

P����z� � ��

�
���z��

�����

To obtain the distribution functions for an electron relevant to a given momen�
tum transfer Q� we should integrate these equations with the initial conditions

fe�x�Q� � ��� x�� f�e�x�Q� � �� f��x�Q� � �� ������

at Q � m� With di�erent initial conditions� the same equations give the dis�
tribution functions for a physical positron or photon� The solutions to these
equations are used as in Eq� ���
� to compute cross sections involving
processes induced by electrons� positrons� or photons that involve large mo�
mentum transfer�

The evolution equations ������ are constructed in such a way as to con�
serve electron number and longitudinal momentum� Thus� the basic sum rules
������ and ������ satis�ed by the parton distributions of hadrons also ap�
ply to the QED distribution functions� Speci�cally� the distribution functions
of the electron contain one net electron constituent�

�Z
�

dx
�
fe�x�Q�� f�e�x�Q�

�
� � ������

and account for the total momentum of the physical electron�

�Z
�

dx x
�
fe�x�Q� � f�e�x�Q� � f��x�Q�

�
� � ������

It is an instructive exercise to verify explicitly� using Eq� ������� that the
values of these integrals do not depend on Q�

The Altarelli�Parisi Equations

If we encounter mass singularities in QED associated with collinear photon
emission� we must also encounter mass singularities in QCD associated with
collinear gluon and quark emission� If we compute the corrections of order 	s
to the leading�order parton cross sections discussed in Sections ��� and ����
using massless quarks and gluons� we will �nd that these correction terms
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diverge when we integrate over the collinear con�gurations� Thus the parton�
model expressions� at least in their simplest form� break down already at the
next�to�leading order in 	s�

However� assuming that the singularities of QCD are no worse than those
of QED� the considerations of the previous section tell us how to treat these
singular terms� In QED� we found it natural to include the large corrections
associated with the mass singularities in the parton distributions rather than
in the hard�scattering cross sections� Viewed in this way� the singular terms
supply the kernel of an evolution equation for the parton distributions as a
function of the logarithm of the momentum scale� Hard scattering with a mo�
mentum transfer Q probes the electron at a distance of order Q��� When
the electron wavefunction is resolved to very small scales� it appears as a con�
stituent electron� carrying only a fraction of the total longitudinal momentum�
plus a number of constituent photons and electron�positron pairs� Any one of
these constituents that carries a substantial fraction of the total electron mo�
mentum can initiate a hard�scattering process�

Precisely the same logic applies to the calculation of QCD cross sections�
The contributions from the region of collinear gluon or quark emission should
be associated with the parton distribution functions rather than with the
hard�scattering cross sections� If we make this association� we �nd that the
parton distributions are no longer independent of the momentum Q that char�
acterizes the hard�scattering process� rather� they now evolve logarithmically
with Q� For example� the basic equation ������ for deep�inelastic scattering
will become

d��

dxdy
�e�p� e�X� �

�X
f

ff �x�Q�Q�
f

�
� ��	

�s

Q�

�
 � ��y���� ����
�

and so Bjorken scaling will be violated� Since this violation takes place only on
a logarithmic scale in Q�� it will be a subtle e�ect� and approximate Bjorken
scaling will still be a prediction of QCD� But the violation of Bjorken scaling
is inevitable� since QCD is a quantum �eld theory with degrees of freedom at
all momentum scales� As we probe the proton wavefunction at increasingly
short distances� we excite the high�momentum degrees of freedom and resolve
the wavefunction into an increasing number of quarks� antiquarks� and gluons�

The evolution of the QED parton distributions� governed by Eq� �������
is characterized by the parameter 	��� so the parton distributions change by
�� as Q is changed by a factor of �� In QCD� the corresponding factor
governing the rate of evolution should be 	s�Q���� Thus� when Q is very
small� the evolution is rapid and contributions of higher order in perturbation
theory are important� Ultimately� the initial conditions for the evolution are
determined by the form of the proton wavefunction at large distance scales�
which cannot be calculated using Feynman diagrams� On the other hand�
when Q is large� well above  GeV in practice� the evolution becomes slow
and is dominated by the leading order in perturbation theory� In that case�
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Figure ����
� The three vertices that contribute to parton evolution in
QCD�

QCD perturbation theory makes precise predictions for the form of the evo�
lution of the parton distributions� and these predictions can be tested against
experiment�

To derive the evolution equations of parton distributions in QCD we can
use the same techniques and logic that we used above for QED� There is a
subtlety� that the reduction of the gluon propagator to transverse polarization
states in the limit q� � �� Eq� ������ cannot be proved so simply as in
QED� However� the result is correct also in the non�Abelian case�! Once this
technical point is resolved� the kinematics of collinear emission is exactly the
same as in QED� Thus we �nd evolution equations of the same form as in QED�
modi�ed only by the replacement of 	 by 	s� the insertion of appropriate color
factors� and the accounting of the e�ects of the three�gluon vertex�

Collinear emission processes in QCD involve the three vertices shown in
Fig� ����� Of these� the �rst two have the same Lorentz structure as those
shown in Figs� ��� and ���� The only di�erence� aside from the strength
of the coupling constant� comes in the color indices� We will treat color just
as we treated spin in the preceding analysis� We average over initial colors�
and sum over �nal colors� Then the �rst vertex of Fig� ����� representing the
splitting of a quark into a quark and a gluon� receives the color factor

�
� tr$t

ata% � C��r� �
�
� � ������

The second vertex� representing the splitting of a gluon into a quark�antiquark
pair� receives the factor

�
� tr$t

ata% � �
� � ������

The third vertex in Fig� ���� represents the splitting of a gluon to two
gluons� an e�ect that is new to the non�Abelian case� It is straightforward to
compute the contribution of this vertex to the evolution equations by taking
the matrix elements of the vertex between transverse gluon states of de�nite
helicity� This calculation is the subject of Problem ����

�See� for example� J� Collins and D� Soper� in A� Mueller� Quantum Chromody�
namics �World Scienti�c� Singapore� �		���
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By accounting for all of these e�ects� we can modify the QED evolution
equations ������ into the correct set of evolution equations for parton dis�
tributions in QCD� These are known as the Altarelli�Parisi equations� They
describe the coupled evolution of parton distributions ff �x�Q�� f �f �x�Q� for
each �avor of quark and antiquark that can be treated as massless at the
scale Q� together with the parton distribution of gluons� fg�x�Q�� Explicitly�

d
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The �rst three splitting functions can be taken from Eqs� ������ multiplied
by the color factors computed in Eqs� ������ and �������

Pq�q�z� �
�

�


 � z�

��z�� �
�

�
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�
�
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�
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z� � ��z����

������

The fourth splitting function requires also the computation of Problem ����
the result is

Pg�g�z� � �


��z�
z

�
z

��z�� � z��z� �
�
�
� nf

�

�
��� z�

�
� ������

The �nal term in this expression� which is proportional to nf � the number
of light quark �avors� is the subtraction term associated with gluon splitting
into qq pairs� The Altarelli�Parisi equations describe the evolution of parton
distributions for any hadron� or any hadronic constituent� up to corrections
of order 	s that are not enhanced by large logarithms�

Our derivation of the Altarelli�Parisi equations respects the conservation
laws of QCD for quark numbers and longitudinal momentum� Thus� the equa�
tions must respect the parton�model sum rules ������ and ������� As in the
QED case� it is instructive to verify explicitly that these integrals are inde�
pendent of Q�
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Figure ������ The u quark parton distribution function xfu�x�Q� at Q �
�� ��� and ��� GeV� showing the e�ects of parton evolution according the
Altarelli�Parisi equations� These curves are taken from the CTEQ �t to deep
inelastic scattering data described in Fig� �����

In QED� we could use the evolution equations to explicitly compute the
structure function of the electron� In QCD� this is no longer possible� because
the initial conditions required to integrate the equations are determined by the
strong�coupling region of QCD and so are not known a priori� However� one
can determine the initial conditions of the proton structure experimentally� by
measuring the cross section for deep inelastic scattering at a given value of Q��
One can then predict the structure functions� and thus the deep inelastic cross
sections� at higher values of Q�� There is one subtlety in this analysis� The
gluon distribution is not directly measured in deep inelastic scattering� but
it does enter the evolution equation for the quark distributions� Thus� some
of the information on the Q� dependence of deep inelastic scattering simply
goes into determining the gluon distribution� However� the gluon distribution
is absolutely normalized by the momentum sum rule ������� so the evolution
equations have predictive power even if this distribution must be �t from the
data�

The Altarelli�Parisi equations predict a characteristic form for the evolu�
tion of parton distribution functions� shown in Fig� ���� Partons at high x
tend to radiate and drop down to lower values of x� Meanwhile� new partons
are formed at low x as products of this radiation� Thus� the parton distribu�
tions decrease at large x and increase much more rapidly at small x as Q�

increases� We can picture the proton as having more and more constituents�
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Figure ������ Dependence on Q� of the combination of quark distribution
functions F� �

P
f xQ

�
fff �x�Q

�� measured in deep inelastic electron�proton
scattering� The various curves show the variation of F� for �xed values of x�
and the comparison of this variation to a model evolved with the Altarelli�
Parisi equations� The upper six data sets have been multiplied by the indi�
cated factors to separate them on the plot� The data were compiled by M�
Virchaux and R� Voss for the Particle Data Group� Phys� Rev� D�
� ���
��		��� Fig� ���� The complete references to the original experiments are
given there�

which share its total momentum� as its wavefunction is probed on �ner and
�ner distance scales�
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Figure ���� shows the evolution of the combination of distribution func�
tions that is measured in deep inelastic scattering� as a function of Q�� We
see the characteristic decrease of the distribution functions at large x and the
increase at small x� The data are compared to a model evolved according to
the Altarelli�Parisi equations� this model apparently describes the data quite
well�

���� Measurements of �s

Before concluding our introductory survey of QCD� we should summarize the
quantitative veri�cation of the theory� We discussed precision tests of QED
in Section ���� bringing together various measurements of the coupling 	� the
best determinations agree to eight signi�cant �gures� Since QCD perturbation
theory works only for hard�scattering processes� with uncertainties due to soft
processes that are di	cult to estimate� this theory has not been tested to such
extreme accuracy� Nevertheless� it is interesting to bring together the best
available determinations of 	s� to see how well they agree�

In order to compare values of 	s� it is necessary to express these using
a common set of conventions� First� one must set the renormalization scale�
a useful choice is the mass of the neutral weak boson Z�� mZ � ��� GeV�
Second� one must �x the renormalization scheme that de�nes the QCD cou�
pling constant at this scale� It has become conventional to use as a stan�
dard the bare coupling after regularization by modi�ed minimal subtraction�
Eq� ������ The resulting standard coupling constant is called 	sMS�m

�
Z��

Measurements of 	s from a number of types of experiments are summa�
rized in Table ��� In Section ��� we saw that one can obtain a value of
	s from the measurement of the total cross section for e�e� annihilation to
hadrons or� equivalently� the ratio R of the number of observed hadronic and
leptonic events� An independent measurement of 	s can be obtained from the
fraction of e�e� annihilation events with three�jet �nal states or� equivalently�
from the transverse momentum distribution of produced hadrons relative to
the jet axis� A number of measurements of this type are collected and averaged
under the heading 0Event shapes�� A similar measurement of 	s is obtained
from the measurement of the transverse momentum spectrum of W bosons
produced from quark�antiquark annihilation at high�energy pp colliders� The
gluon radiative correction to the vertex in deep inelastic neutrino scattering
can also be used to extract 	s� The rate of Bjorken scaling violation in deep
inelastic scattering is controlled by 	s� and so this e�ect provides another 	s
measurement� The decays of the lightest bb bound state 2 and the cc bound
state � are governed by QCD and yield a measurement of 	s� Finally� the
spectrum of cc and bb bound states can be computed numerically in terms
of the QCD coupling constant� and the comparison with experiment gives a
determination of 	s�
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Table ����� Values of 	s�mZ� Obtained from QCD Experiments

Process� 	s�mZ� Q �GeV�

Deep inelastic scattering ��� ��� ��
R in � lepton decay ���� ��� ��
�� 2 spectroscopy ��� ��� ���
Transverse momentum of W production ��� ���� ��
Deep inelastic scattering �evolution� ��� ��� 
�
Event shapes in e�e� annihilation ��� ��� 
�����
Rate for �� 2 decay ���� ��� ��

R in e�e� annihilation ���3�
 GeV� ���� ��� �
�
R in Z� decay ���� ��� ���

The values of �s�mZ � displayed in this table are obtained by �tting experi�
mental results to the theoretical expressions given by perturbative QCD using
minimal subtraction� The values of �s have been evolved to Q � mZ using
the renormalization group equation� R refers to the ratio of cross sections or
partial widths to hadrons versus leptons� The numbers in parentheses are the
standard errors in the last displayed digits� The column labelled .Q� gives an
idea of the value of Q at which the measurement was made� �Typically� these
measurements average over a range of Q� and that averaging is taken into ac�
count in the quoted values of �s�� This table is based on the results compiled
by I� Hinchli�e in his article for the Particle Data Group� Phys� Rev� D�
�
��	� ��		��� This article contains a full set of references and a discussion of
the sources of uncertainty in these determinations�

The table shows the values of 	s extracted from each of these measure�
ments� expressed in terms of the value in the reference conventions� 	sMS�m

�
Z��

We see that several of the experiments determine 	s to an accuracy of 
�� and
that the various determinations are consistent with one another at this level�
In Fig� ����� we have plotted the original values of 	s represented in Table
��� before conversion to a common scale� versus the momentum scale Q at
which each was obtained� This comparison gives a striking direct veri�cation
of the running of 	s�

At the beginning of this chapter� we wrote down a candidate for the
fundamental theory of strong interactions using only a few simple principles�
the existence of quarks and the identi�cation of their quantum numbers� and
the idea that the theory of the quark interactions should be an asymptotically
free gauge theory� It is remarkable that these simple considerations have led
us to a description of strong interactions that is quantitatively correct for a
broad range of phenomena in the hard�scattering regime where asymptotic
freedom can be used as a tool for calculation�
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Figure ������ Measurements of �s� plotted against the momentum scale Q
at which the measurement was made� This �gure was constructed by evolving
the values of �s�mZ� listed in Table ���� back to the values of Q indicated
in the table� The value for e�e� event shapes has been split into two points
corresponding to experiments at the TRISTAN and LEP accelerators� These
values are compared to the theoretical expectation from the renormalization
group evolution with the initial condition �s�mZ� � ������

Problems

���� Two�loop renormalization group relations�

�a� In higher orders of perturbation theory� the expression for the QCD  function
will be a series

�g� � � b�
�����

g� � b�
�����

g � b�
�����

g� � � � � �

Integrate the renormalization group equation and show that the running cou�
pling constant is now given by

�s�Q
�� �

��

b�


�

log�Q�
+��
� b�

b��

log log�Q�
+��

�log�Q�
+����
� � � �
�
�

where the omitted terms decrease as �log�Q�
+������
�b� Combine this formula with the perturbation series for the e�e� annihilation

cross section�

	�e�e� � hadrons� � 	� �
�

X
f

Q�
f

�
�
h
� �
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�
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�
�s
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�O���s�
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The coe�cient a� depends on the details of the renormalization conditions de�n�
ing �s� Show that the leading two terms in the asymptotic behavior of 	�s� for
large s depend only on b� and b� and are independent of a� and b�� Thus the �rst
two coe�cients of the QCD  function are independent of the renormalization
prescription�

���� A direct test of the spin of the gluon� In this problem� we compare the
predictions of QCD with those of a model in which the interaction of quarks is mediated
by a scalar boson� Let the coupling of the scalar gluon to quarks be given by

�L � gSqq�

and de�ne �g � g�
���

�a� Using the technique described in parts �b� and �c� of the Final Project of Part I�
compute the cross section for e�e� � qqS to the leading order of perturbation
theory� This cross section depends on the energies of the q� q� and S� which we
represent as fractions x�� x�� x� of the electron beam energy� as in Eq� �����
��
Show that

d�	

dx�dx�
�e�e� � qqS� �

����Q�
q

s
� �g
��

x��
��� xq��� � x�q�

�

�b� In practice� it is very di�cult to tell quarks from gluons experimentally� since
both particles appear as jets of hadrons� Therefore� let xa be the largest of
x�� x�� x�� let xb be the second largest� and let xc be the smallest� Sum over
the various possibilities to derive an expression for d�	
dxadxb� both in QCD�
using Eq� �����
�� and in the scalar gluon model� Show that these models can
be distinguished by their distributions in the xa� xb plane�

���� Quark�gluon and gluon�gluon scattering�

�a� Compute the di�erential cross section

d	

d*t
�qq � gg�

for quark�antiquark annihilation in QCD to the leading order in �s� This is most
easily done by computing the amplitudes between states of de�nite quark and
gluon helicity� Ignore all masses� Use explicit polarization vectors and spinors�
for example�

�� �
�p
�
��� �� i� ��

for a right�handed gluon moving in the �* direction� You need only consider
transversely polarized gluons� By helicity conservation� only the initial states
qLqR and qRqL can contribute� by parity� these two states give identical cross
sections� Thus it is necessary only to compute the amplitudes for the three
processes

qLqR � gRgR�

qLqR � gRgL�

qLqR � gLgL�

In fact� by CP invariance� the �rst and third processes have equal cross sections�
After computing the amplitudes� square them and combine them properly with
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color factors to construct the various helicity cross sections� Finally� combine
these to form the total cross section averaged over initial spins and colors�

�b� Compute the di�erential cross section

d	

d*t
�gg� gg�

for gluon�gluon scattering� There are �� possible combinations of helicities� but
many of them are related to each other by parity and crossing symmetry� All ��
can be built up from the three amplitudes for

gRgR � gRgR�

gRgR � gRgL�

gRgR � gLgL�

Show that the last two of these amplitudes vanish� The �rst can be dramatically
simpli�ed using the Jacobi identity� When the smoke clears� only three of the ��
polarized gluon scattering cross sections are nonzero� Combine these to compute
the spin� and color�averaged di�erential cross section�

���� The gluon splitting function� Compute the gluon splitting function �������
for the Altarelli�Parisi equations� To carry out this computation� �rst compute the
matrix elements of the three�gluon vertex shown in Fig� ����� between gluon states of
de�nite helicity� Combine these to derive the splitting function in the region x � ��
Then �x the singularity of the splitting function at x � � to give this function the
correct overall normalization�

���� Photoproduction of heavy quarks� Consider the process of heavy quark
pair photoproduction� � � p � QQ � X� for a heavy quark of mass M and electric
charge Q� If M is large enough� any diagram contributing to this process must involve
a large momentum transfer� thus a perturbative QCD analysis should apply� This idea
applies in practice already for the production of c quark pairs� Work out the cross
section to the leading order in QCD� Choose the parton subprocess that gives the
leading contribution to this reaction� and write the parton�model expression for the
cross section� You will need to compute the relevant subprocess cross section� but this
can be taken directly from one of the QED calculations in Chapter �� Then use this
result to write an expression for the cross section for ��proton scattering�

���� Behavior of parton distribution functions at small x� It is possible to
solve the Altarelli�Parisi equations analytically for very small x� using some physically
motivated approximations� This discussion is based on a paper of Ralston�y

�a� Show that the Q� dependence of the right�hand side of the A�P equations can
be expressed by rewriting the equations as di�erential equations in

� � log log�
Q�

+�
��

where + is the value of Q� at which �s�Q
��� evolved with the leading�order 

function� formally goes to in�nity�

yJ� P� Ralston� Phys� Lett� ���B� �� ��	
���
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�b� Since the branching functions to gluons are singular as z�� as z � �� it is rea�
sonable to guess that the gluon distribution function will blow up approximately
as x�� as x� �� The resulting distribution

dx fg�x� � dx

x

is approximately scale invariant� and so its form should be roughly preserved by
the A�P equations� Let us� then� make the following two approximations� ��� the
terms involving the gluon distribution completely dominate the right�hand sides
of the A�P equations� and ��� the function

!g�x�Q�� � xfg�x�Q
��

is a slowly varying function of x� Using these approximations� and the limit
x� �� show that the A�P equation for fg�x� can be converted to the following
di�erential equation�

��

�w��
!g�x� �� �

��

b�
!g�x� ���

where w � log��
x� and b � ��� � �
�nf �� Show that if w� � �� this equation

has the approximate solution

!g � K�Q�� � exp
�h
�


b�
w�� � ���

i����
�

where K�Q�� is an initial condition�

�c� The quark distribution at very small x is mainly created by branching of gluons�
Using the approximations of part �b�� show that� for any #avor of quark� the
right�hand side of the A�P equation for fq�x� can be approximately integrated
to yield an equation for !q�x� � xfq�x��

�

��
!q�x� �� �

�

b�
!g�x� ���

Show� again using w� � �� that this equation has as its integral

!q �
�
� � ��
��b�w

����
K�Q�� � exp

�h
�


b�
w�� � ���

i����
�

�d� Ralston suggested that the initial condition

K�Q�� � �����exp�� � ���� ��	��� � exp
h
����	��� � ���

���
i
�

with Q�
� � � GeV

�� + � ��� GeV� and nf � �� gave a reasonable �t to the
known properties of parton distributions� extrapolated into the small x region�
Use this function and the results above to sketch the behavior of the quark and
gluon distributions at small x and large Q��
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Operator Products and E�ective Vertices

Our analysis of QCD in Chapter � was founded on the principle of asymptotic
freedom� which told us that strong interaction processes with large momentum
transfer might reliably be treated in weak�coupling perturbation theory� So
far� however� we have made little use in QCD of the more powerful tools of the
renormalization group� In this chapter� we will work out some implications of
the Callan�Symanzik equation in QCD� We will see that asymptotically free
theories have their own characteristic scaling behavior� with corrections in
the form of anomalous powers of logarithms of the momentum scale� Though
these corrections are generally weaker than those in the scalar �eld theories
studied in Chapter �� they nevertheless have important qualitative e�ects on
the strong interactions�

We begin by considering the scaling law for mass terms in QCD� taking
over directly the formalism that we used to describe the mass term of 
� theory
in Sections ��� and ��
� Other applications� however� require a more power�
ful theoretical tool� the operator product expansion� Section ��� introduces a
general description of products of operators in quantum �eld theory and ex�
plains how such operator products are constrained by the Callan�Symanzik
equation� The last two sections use this tool to develop a new viewpoint to�
ward deep inelastic scattering and other hard processes in QCD�

���� Renormalization of the Quark Mass Parameter

Up to this point� we have always assumed that quark masses are small enough
that they can be ignored in high�energy processes� This is not always an
adequate assumption even for the light quarks u� d� s� for the heavier quarks c�
b� t� the masses can have very important e�ects� However� since isolated quarks
do not exist� it is not possible to de�ne the mass of a quark unambiguously� In
the discussion to follow� we will consider the quark mass to be a parameter of
QCD perturbation theory� de�ned by a renormalization prescription at some
renormalization scale M �

Because we de�ne the quark mass as we would a coupling constant� by
a renormalization convention� we should expect that this parameter will run
according to a renormalization group evolution� so that di�erent values of the

�		
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mass parameter apply to di�erent processes� We say that our original pre�
scription leads to an e�ective quark mass� which depends on the momentum
scale at which it is evaluated� In this section� we will work out the leading
dependence of this e�ective mass on the momentum scale�

The basic formalism for e�ective mass terms was set out in Section ��
�
To add a mass term to the QCD Lagrangian� we must �rst de�ne the mass
operator �qq� by a renormalization prescription at a scale M � Then we can
de�ne the quark mass by adding to the Lagrangian the term

�Lm � �m�qq�M � ����

In this discussion� we will assume that the quark mass m is small enough
that we need only keep terms of leading order in m� We will also assume� for
simplicity� that we have such a mass term for only one quark �avor�

In the zero�mass limit� Green�s functions of the operator �qq� with quark
�elds�

G�n�k��x�� � � � � xn�y�� � � � � yn� z�� � � � � zk�

� hq�x�� � � � q�xn�q�y�� � � � q�yn�qq�z�� � � � qq�zk�i �
�����

obey the Callan�Symanzik equationh
M

�

�M
� �

�

�g
� �n� � k��qq

i
G�n�k��fxig� fyig� fzjg� g�M� � �� �����

where � is the anomalous dimension of the quark �eld and ��qq is the anomalous
dimension of the operator qq� If we include the mass terms in the Lagrangian
according to ����� the Green�s function of n quark �elds and n antiquark
�elds satis�esh

M
�

�M
� �

�

�g
� �n� � ��qqm

�

�m

i
G�n��fxig� fyig� g�m�M� � �� �����

The derivative with respect tom counts the number of times the mass operator
is used� In Section ��
� we traded the variable m� with the dimensions of
mass� for a dimensionless variable� However� in QCD� it is just as convenient
to consider the dimensionful parameterm as a coupling constant� The solution
of the Callan�Symanzik equation will then contain a running mass parameter
m�Q�� which depends on a typical momentum Q of the Green�s function�
This parameter is de�ned as the solution to a renormalization group equation
analogous to Eq� ������� For this case� the equation is

d

d log�Q�M�
m � ��qq�g� �m� ���
�

with the initial condition
m�M� � m� �����

The quantitym�Q� is the e�ective mass� which should be used to compute the
mass e�ects on quark production or scattering processes with the momentum
transfer Q�



�
�� Renormalization of the Quark Mass Parameter �
�

To compute m�Q� explicitly� we need to work out the anomalous dimen�
sion of the mass operator ��qq � This can be done as explained in Section ����
We de�ne the normalization of the operator explicitly by the prescription that
the vertex function of �qq� between renormalized quark �elds should satisfy

�����

for p� � q� � �p � q�� � �M�� To preserve ������ we will need a counter�
term vertex ��qq with the structure of the operator insertion� Then� as in Eq�
������ the anomalous dimension is given to one�loop order by

��qq � M
�

�M

����qq � ��
�
� �����

where �� is the counterterm for the quark �eld strength renormalization� de�
�ned in Fig� ���� Correlation functions of the gauge�invariant operator �qq�
are gauge invariant� and so the various terms in the Callan�Symanzik equation
for this function must sum to a gauge�invariant result� Since the leading coef�
�cient of ��g� is independent of the gauge and of other conventions� it follows
from ����� that the leading coe	cient of ��qq is also convention independent�
The counterterms �� and ��qq both depend on the gauge� This argument shows
that the gauge dependence must cancel in ������ In the calculation to follow�
and in the other anomalous dimension calculations in this chapter� we will
work consistently in Feynman��t Hooft gauge�

We have already computed the divergent part of the counterterm �� in
Feynman��t Hooft gauge in Section ���� Evaluating the group�theory factor
in the result ������ for QCD� we �nd

�� � ��

�

g�

�����
,���d

� �

�M����d��
� �����

To compute ��qq� we must work out the one�loop correction to the vertex
������ This is given by the diagram

�

Z
d�k

�����
�ig��ta��

i�k � q�
�k � q��

�  � ik
k�
ta��

�i
�k � p��

� �����

In the expression for this diagram� the factor  represents the qq operator
insertion� In the corresponding diagram for the renormalization of the quark
number current j� � q��q� this factor would be replaced by �� � Since we
need only the divergent part of the vertex renormalization ������ we can
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approximate the integrand by its value for large k� Then this diagram becomes

�
Z

d�k

�����
�ig��ta��

ik
k�
�  � ik

k�
ta��

�i
k�

� �i�
�
g�
Z

d�k

�����
d � k�
�k���

� �

�
g� � � � 

�����
,���d

� ��

����

To preserve the normalization condition ������ we must add the counterterm

��qq � �� � �
�

g�

�����
,���d

� �

�M����d��
� �����

Assembling ������ ������ and ������ we �nd

��qq � �� g�

�����
� �����

As we have noted in the previous paragraph� the anomalous dimension
�j of the quark number current can be found by a very similar calculation�
This will give a good check on our formalism� since� as we have argued above
Eq� ������ a conserved current is unambiguously normalized by its integral�
the conserved charge� and so must have zero anomalous dimension� If we
substitute �� for  in ����� and use the same set of approximations to
reduce the integral� we �nd in the numerator the Dirac matrix structure

�� k�� k�� �


d
k�����������

�


�
�����k��� �

�����

Then� instead of ������ we need the counterterm

�j � ��

�

g�

�����
,���d

� �

�M����d��
� ���
�

Combining this result with ������ we �nd

�j � �� �����

in accord with our general arguments�
If we replace the gamma function in ���� by an explicit factor of

log�&��Q��� and then subtract the divergence using the counterterm ������
we �nd that the vertex diagram behaves as

�
�

�
� � g�

�����
log

M�

Q�
� �����

This diagram gives an enhancement at small external momenta� Some of this
enhancement is associated with the �gauge�dependent� rescaling of the ex�
ternal quark �elds� relation ����� tells us how to extract the piece of this
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Figure ����� Diagrams giving the leading logarithmic contributions to the
momentum dependence of the quark e�ective mass�

logarithm associated with the gauge�invariant enhancement of the e�ective
mass� Thus� to order 	s�

m�Q� � m �
�
 � �

g�

�����
log

M�

Q�

�
� �����

To compute the momentum dependence of the e�ective mass more ac�
curately� we must take two more features of the calculation into account�
First� the quantity �	s log�M

��Q��� may become of order � and� in this
case� we must take into account all leading logarithmic terms of the form
�	s log�M

��Q���n� Contributions of this type come from all the diagrams
shown in Fig� ��� Second� the coupling constant 	s is itself a function of the
momentum scale� giving a further enhancement to contributions from small Q�
Both of these e�ects are properly accounted by solving the renormalization
group equation ���
�� To the leading order in g�� this equation takes the
explicit form

d

d log�Q�M�
m � �� g�

�����
m � ��	s�Q

��

�
m� �����

Inserting the solution of the renormalization group equation for g in the form
������ we �nd

d

d log�Q�M�
m � � �

b� log�Q��&��
m� ������

where b� is the �rst coe	cient of the QCD � function and & is now the QCD
scale parameter de�ned in ������ The integral of this equation� satisfying
the initial condition ������ is

m�Q�� �

�
log�M��&��

log�Q��&��

���b�
m� �����

Recall that b� �  � �
�nf in QCD� Another way to express ����� is by

writing

m�Q�� �

�
	s�Q

��

	s�M��

���b�
m� ������

Just as an illustration� take nf � � and & � 
� MeV� then the e�ective
masses of the light quarks increase by about a factor � from Q � �� GeV to
Q �  GeV�
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The method we have just used for computing the QCD enhancement of
the quark mass operator applies equally well to the matrix elements of any
other gauge�invariant operator� We conclude this section by recapitulating the
conclusions of the argument in their more general form�

Let O�x� be any gauge�invariant operator in QCD� As we saw for the mass
term� the one�loop corrections to the matrix elements of this operator may
contain enhancement or suppression terms proportional to 	s log�M

��Q���
where Q is the momentum scale of a QCD process mediated by O�x� and
M is the renormalization scale used to de�ne the operator normalization�
The part of these one�loop corrections speci�cally associated with the opera�
tor normalization is given by the anomalous dimension �O� For an operator
containing n quark or antiquark �elds and k gluon �elds�

�O �M
�

�M

�
��O �

n

�
�� �

k

�
��

�
� ������

where �O is the counterterm needed to preserve the operator normalization
condition and �� and �� are the counterterms for the quark and gluon �eld
strength renormalization de�ned in Fig� ���� From ������� we can derive the
explicit one�loop expression for �O in the form

�O � �aO g�

�����
� ������

Using this result� we can solve the renormalization group equation for the
coe	cient of O�x� and �nd the QCD renormalization factor�

log�M��&��

log�Q��&��

�aO��b�
� ����
�

where b� is the �rst coe	cient of the QCD � function�

b� � � �

�
nf � ������

The QCD renormalization ����
� is an enhancement at small momenta if
aO � ��

In the remainder of this chapter� we will present further examples of this
enhancement or suppression by QCD logarithms� In many cases� we will see
that these factors lead to striking and nontrivial physical e�ects�
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���� QCD Renormalization of the Weak Interaction

Our next example of the appearance of QCD enhancement factors occurs in
the theory of the weak interactions of hadrons� In Section ���� we introduced
the weak interaction coupling of quarks and leptons� which we described by
an e�ective Lagrangian� For our analysis here� we will need to know a few
more details of the structure of the weak interactions� so we begin this section
by presenting these facts� The complete structure of the weak interactions of
quarks and leptons will be discussed systematically in Chapter ���

As we discussed in Section ���� the weak interactions among quarks and
leptons are described by an e�ective Lagrangian resulting from the exchange
of a virtual W vector boson� In ������ we wrote the e�ective vertex that
couples quarks to leptons�

�L �
g�

�m�
W

���
����

�
�u��

����
�

d� h�c� ������

In this chapter� we will mainly be concerned with the e�ects of this interaction
for momentum scales much larger than  GeV� Thus� we will ignore quark
masses� All fermion �elds that appear in the weak�interaction vertices are
multiplied by the left�handed projector �

� �� ��� In the rest of this section�
we will not write this projector explicitly� rather� we will denote the projection
by a subscript L� We will also introduce the Fermi constant� given by �������
Then ������ can be rewritten as

�L �
�GFp

�

�
�L�

��L
��
uL��dL

�
� h�c� ������

There is an analogous vertex that represents W exchange between pairs of
quarks� this has the form

�L �
�GFp

�

�
dL�

�uL
��
uL��dL

�
� h�c� ������

However� for the discussion of this chapter� we will need to write a mod�
i�ed� and less approximate� expression� When we discuss the theory of weak
interactions in detail in Chapter ��� we will learn that the charge ���� quarks
�u� c� t� couple to the charge ��� quarks �d� s� b� through the weak interac�
tions via a unitary rotation� Thus� for example� u couples to the combination

cos �c d� sin �c s� ������

plus a small admixture of b� which we will ignore in this section� The mixing
angle �c is called the Cabibbo angle� Because of this rotation� the weak in�
teraction e�ective Lagrangian coupling quarks to quarks actually contains a
number of terms� of which a particularly important one is

�L �
�GFp

�
cos �c sin �c�dL�

�uL��uL��sL�� �����
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This term allows the s quarks to decay through the process s� uud� Similarly�
the rotation of ������ produces the e�ective interaction

�L �
�GFp

�
sin �c��L�

��L��uL��sL�� ������

which leads to the decay s � u��� These weak interaction processes are re�
ferred to as nonleptonic and semileptonic decay processes� respectively� Sim�
ilar expressions apply to the other heavy quarks�

Given that ����� and ������ describe the weak interaction coupling of
the s quark at a fundamental level� we now discuss the modi�cation of these
couplings by QCD logarithms� We have seen in the previous section that QCD
corrections have a profound e�ect in enhancing the strength of the quark
mass term of the underlying Lagrangian� We will now investigate whether the
strength of the weak interactions can receive a similar enhancement�

We �rst consider the semileptonic weak interaction operator ������� The
leptonic fermion bilinear is not a�ected by QCD� so the QCD enhancement
of this operator is just the same as that of its quark component

uL��sL� ������

However� this operator is a current and so has � � �� In terms of diagrams�
the logarithmic enhancement resulting from the diagram shown in Fig� ���
is canceled by the quark �eld�strength renormalization� as we saw already in
our discussion of the current vertex is Section ��� The left�handed projector
�
� ���� commutes through the diagram and has no e�ect on the �nal result�
The same remark applies to the semileptonic weak interaction that links u
and d quarks� It implies� for that case� that the normalization of the cross
sections for deep inelastic neutrino scattering given in ����
� is not a�ected
by QCD logarithms�

In the case of nonleptonic weak interactions� however� the e�ect of QCD is
not so simple� Let us �rst compute the Feynman diagrams that give the leading
corrections to the renormalization of the weak interaction vertex ����� and
then� at a later stage� build up the renormalization group interpretation of
these results�

At order 	s� the nonleptonic weak interaction vertex receives corrections
from the diagrams shown in Fig� ���� Notice that the �rst diagram is pre�
cisely the current renormalization found in the semileptonic case� The second
diagram gives the analogous renormalization of the second quark current� In
the computation of �� these two contributions cancel the contributions from
the �eld�strength renormalization of the four quark �elds� The remaining four
diagrams of Fig� ��� are new contributions which contribute potentially large
rescaling factors�

We now compute these diagrams� beginning with the third diagram in Fig�
���� As in the computation of Section ��� we are interested in the logarith�
mically divergent contribution associated with values of the loop momentum
k much larger than the external momenta� The simplest way to extract this
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Figure ����� QCD correction to the strength of the semileptonic weak in�
teraction vertex�

Figure ����� QCD corrections to the strength of the nonleptonic weak in�
teraction vertex�

contribution is to compute each diagram in the approximation of zero exter�
nal momentum� In writing the expression for these diagrams� we will omit the
prefactor

�GFp
�

cos �c sin �c� ������

We will retain the quark �elds to represent the external states� so that our
�nal expressions will have the form of rescaled operators�

Using this notation� the third diagram in Fig� ��� has the value

�

Z
d�k

�����
�ig��

�i
k�

�
dL�

�ta
ik
k�
��uL

��
uL��t

a�ik
k�

��sL

�
� ����
�

Using the symmetry of the k integral� we extract the divergent piece�

� ig�
Z

d�k

�����
k��d

�k���
�
dL�

�ta����uL
��
uL��t

a����sL
�

� �g
�

�

,���d
� �

�����
�
dL�

�ta����uL
��
uL��t

a����sL
�
�

������

To put the product of quark �elds into a more familiar form� we apply the
Fierz transformation discussed at the end of Section ���� If the color matrices
ta were not present� the product of fermion �elds would be exactly the one
appearing in ������� and we would �nd�

dL�
�����uL

��
uL������sL

�
� �dL�

�uLuL��sL� ������

The matrices ta redirect the color quantum numbers of the quark �elds�
To clarify this� we need the analogue of identity ������ for color� To �nd this
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identity� consider the color invariant

�ta�ij�t
a�k�� ������

The indices i� k transform according to the � representation of color� the
indices j� � transform according to the �� Thus� ������ must be a linear
combination of the two possible ways to contract these indices�

A�i��kj �B�ij�k�� ������

The constants A and B can be determined by contracting ������ and ������
with �ij and with �jk and adjusting A and B so that the contractions of
������ obey the identities

tr$ta%�ta�k� � �� �tata�i� �
�
��i�� ������

This gives the identity

�ta�ij�t
a�k� �

�
�

�
�i��kj � �

��ij�k�
�
� �����

A similar relation holds for the generators of SU�N� in the fundamental rep�
resentation� with ���� replaced by ��N� in that case�

Inserting ����� into ������� we �nd that the �rst term of the identity
generates a new four�fermion operator��

dLi�
�����uLj

��
uLj������sLi

�
� ������

where i� j are color indices� Applying the Fierz rearrangement in �������
and then applying the additional rearrangement ������� we can convert this
operator to the form

��dLi�
�uLj��uLj��sLi� � ��uLj�

�uLj��dLi��sLi�� ������

The minus sign in ������ is compensated by a minus sign from interchanging
the order of fermion �elds� The �nal result is a product of color�singlet quark
currents� however� the �elds in these currents are associated di�erently from
the original operator�

The �nal result of our evaluation of this diagram is

� ��g�,���
d
� �

�����
�
�
�uL�

�uLdL��sL � �
�dL�

�uLuL��sL
�
� ������

The fourth diagram of Fig� ��� gives precisely the same contribution�
The evaluation of the last two diagrams in Fig� ��� is quite similar� The

�fth diagram gives

�

Z
d�k

�����
�ig��

�i
k�

�
dL�

�ta
ik
k�
��uL

��
uL��t

a ik
k�
��t

asL

�
� �ig�

Z
d�k

�����
k��d

�k���
�
dL�

�ta����uL
��
uL��t

a����sL
�

� �
g�

�

,���d
� �

�����
�
dL�

�ta����uL
��
uL��t

a����sL
�
� ����
�
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The four�fermion operator can be simpli�ed as follows� by the use of the Fierz
identity ��������

dL�
�����uL

��
uL������sL

�
� �
�
dL�

���������sL
��
uL��uL

�
� �������dL��sL��uL��uL�
� ��dL�

�uL��uL��sL��

������

Again� we must reduce the product of color matrices using identity ������
and� again� the �rst term of this identity will require an additional Fierz
transformation� The �nal result is

� �g�
,���d

� �

�����
�
�
�uL�

�uLdL��sL � �
�dL�

�uLuL��sL
�
� ������

The last diagram in Fig� ��� gives an identical contribution� The sum of the
contributions from these four diagrams is

��g�,���
d
� �

�����
�
uL�

�uLdL��sL � �
�dL�

�uLuL��sL
�
� ������

The extraction of the ultraviolet�divergent pieces of the diagrams of Fig�
��� is part of our formal prescription for computing the Callan�Symanzik �
function of the weak interaction vertex� However� it is useful to pause at this
point and ask about the physical signi�cance of this divergence� The diagrams
of Fig� ��� would not be divergent if we computed them in the underlying
theory with W bosons� In writing the weak interaction as an e�ective local
vertex� we approximated the W boson propagator by a constant� assuming
that the momentum k that it carried was much less than mW �



k� �m�
W

� �
m�
W

� ������

The approximation we used to compute the QCD corrections to the e�ective
vertex is valid only in the region of integration where k� � m�

W � Outside this
region we must use the full W propagator� this introduces an extra factor
of k� in the denominator and makes the integral converge� Thus� in a direct
calculation of the QCD correction� the ultraviolet�divergent terms in the eval�
uation of Fig� ��� would be replaced by logarithms cut o� at mW � The lower
limit of the logarithm is set by the external momenta� In the decay of a K
meson�the lightest hadron containing the s quark�these are of order mK �
Thus the correction given in ������ should be evaluated by replacing

g�
,���d

� �

�����
� 	s

��
log

m�
W

m�
K

� ���
��

With this interpretation� we can rewrite ������ as the order�	s correction
to the leading�order weak interaction vertex� The e�ect of this correction is
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the rescaling and modi�cation of the weak interaction operator�

dL�
�uLuL��sL ��

 �
	s
��

log
m�
W

m�
K

�
dL�

�uLuL��sL � �
�	s
��

log
m�
W

m�
K

�
uL�

�uLdL��sL�

���
�
Notice that the QCD corrections not only rescale the normalization of the
original operator but also introduce a new operator with a di�erent struc�
ture� This calculation makes concrete the idea introduced in Section ��� that
the diagrams that change the normalization of local operators may also mix
together di�erent operators with the same dimension and quantum numbers�

Since the value of the logarithm in ���
�� is about �� the size of the lead�
ing QCD correction is of order  and so higher�order corrections are important�
To sum the leading logarithmic corrections� we return to the renormalization
group analysis� For clarity� de�ne

O� � dL�
�uLuL��sL� O� � uL�

�uLdL��sL� ���
��

We will use the subscript � to denote bare operators and the subscript M to
denote operators obeying renormalization conditions at the scaleM � From the
diagrams of Fig� ���� we have found that the operator whose matrix elements
have the quark structure of O�� properly normalized at the scale M � is given
by

O�
M � O�

� � ���O�
� � ���O�

� � ���
��

where the �ij are counterterms�

��� � � g�

�����
,���d

� �

�M����d��
� ��� � ��

g�

�����
,���d

� �

�M����d��
� ���
��

A reciprocal calculation gives O�
M in terms of bare operators�

O�
M � O�

� � ���O�
� � ���O�

� � ���

�

with

��� � ���� ��� � ����

Then� in the manner than we discussed in Eq� ������� the operator rescaling
of O� and O� is described in the Callan�Symanzik equation by a matrix �ij

linking the two operators� Expanding this equation to �rst order in g�� we see
that this matrix is given to one�loop order by

�ij � M
�

�M

���ij�� ���
��

Thus we �nd

� �
g�

�����

��� �
� ��

�
� ���
��

acting on the space of operators O�� O��



�
�� QCD Renormalization of the Weak Interaction ���

The simplest way to deduce the physical e�ects of the rescaling described
by ���
�� is to diagonalize this matrix and thus �nd a new basis of operators
that are rescaled without mixing� For the matrix ���
��� the eigenoperators
are easily seen to be

O��� � �
�

�
dL�

�uLuL��sL � uL�
�uLdL��sL

�
�

O��� � �
�

�
dL�

�uLuL��sL � uL�
�uLdL��sL

�
�

���
��

The superscripts on these operators are their isospin quantum numbers� The
operator O��� is antisymmetric under the interchange of the labels d and u�
thus� these two isospin��� �elds are combined to total isospin zero� and so
the whole operator is isospin���� This operator can mediate decays of the K
meson that change the isospin by �� unit� such as K� � ����� but not pro�
cesses that change the isospin by ���� such as K� � ����� Experimentally�
processes of the former type occur almost a thousand times faster �an obser�
vation called the �I � �� rule�� Thus� it is interesting that the hard QCD
corrections already make a distinction between these operators�

From the eigenvalues of ���
��� we obtain the Callan�Symanzik � func�
tions of the eigenoperators ���
���

���� � �� g�

�����
� ���� � ��

g�

�����
� ���
��

According to Eqs� ������ and ����
�� this implies that the operator O���

receives an enhancement from hard QCD logarithms� while the operator O���

receives a suppression� More explicitly� we can write the operator that appears
in the original nonleptonic weak interaction vertex ����� as�

dL�
�uLuL��sL

���
mW

�
�O���

���
mW

�
�O���

���
mW

� ������

As above� the subscript refers to the mass scale at which the operator is
normalized� We now account for the QCD logarithms associated with evalu�
ating the matrix element of this operator at a lower momentum scale� mK �
by replacing the operators on the right�hand side of ������ with operators
renormalized at mK � with the rescaling factor ����
�� This gives

�
dL�

�uLuL��sL
����
mW

�

�
log�m�

W �&��

log�m�
K�&

��

���b��O���
����
mK

�

�
log�m�

W �&��

log�m�
K�&

��

����b��O���
����
mK

�

�����

where� again� b� �  � �
�nf � This equation shows that� unlike the case of

semileptonic weak interactions� the overall normalization of the e�ective La�
grangian for nonleptonic weak interactions is changed by QCD logarithms� In
addition� the quark structure of the e�ective Lagrangian is altered�
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Quantitatively� taking nf � � and & � 
� MeV as an illustration� we
�nd �

dL�
�uLuL��sL

����
mW

� ��
�O���

����
mK

� ���
�O���

����
mK

� ������

Thus� the QCD logarithmic corrections from mW to mK give the �I � ��
part of the e�ective vertex an enhancement of about a factor of ��! The
observed �I � �� rule in K decays requires a factor of �� enhancement�
However� part of this is expected to arise from the ratio of the matrix elements

of the operators O���
mK and O���

mK between physical hadron states� which are
determined by the soft� nonperturbative part of QCD dynamics�

���� The Operator Product Expansion

One way to describe the development of the previous section is to say that
we studied an interaction that was fundamentally a product of currents by
replacing this product of operators with a single local operator� We then
derived the physical consequences of the original� composite� interaction by
working out the QCD rescaling of this operator� The procedure of replacing a
product of operators with a single e�ective vertex is useful in many contexts
in quantum �eld theory� Thus� in this section� we will pause from our study
of QCD to write out the general formalism governing this procedure�

Let us abstract the situation described in the previous section as follows�
Consider a quantum �eld theory process that includes two operators O�� O�

separated by a small distance x� together with other �elds 
�yi� located much
farther away� or together with external physical states� In the example above�
the two operators are the quark currents that appear in the weak interaction
vertex� and their separation x is a distance of order m��

W � the range of the
W propagator� The external states� which contain K and � mesons� can be
described by operators that create and destroy these particles� The amplitude
for K decay by the weak interactions� or any more general process of this
class� can then be extracted from the Green�s function

G���x� y�� � � � � ym� � hO��x�O����
�y�� � � �
�ym�i � ������

considered in the limit x � �� with the yi �xed away from the origin� Here
and in the following discussion� products of operators will be considered to be
time�ordered� just as we would �nd by writing the product of �elds under the
functional integral�

The product of operators O��x�O���� can potentially create the most
general local disturbance in the vicinity of the point �� However� any such dis�
turbance can be described as the e�ect of a local operator placed at �� This

�M� K� Gaillard and B� W� Lee� Phys� Rev� Lett� ��� ��
 ��	���� G� Altarelli and
L� Maiani� Phys� Lett� ��B� �� ��	����
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local operator must have the global symmetry quantum numbers of the prod�
uct of O�O�� but it is otherwise unrestricted� It is useful to write this operator
as a linear combination of operators from a standard basis� The coe	cients in
this linear combination can depend on the separation x� Typically� products
of operators in quantum �eld theory are singular� so it is likely that some of
the coe	cients will have singularities as x� �� Combining these observations�
Wilson proposed that the e�ects of the operator product could be computed
by replacing the product of operators in ������ with a linear combination of
local operators�

O��x�O�����
X
n

C��
n�x�On���� ������

where the coe	cients C��
n�x� are c�number functions� This operator product

expansion �OPE� will depend only on the operators O�� O�� and their sepa�
ration and will be independent of the identity and location of the other �elds
appearing in the Green�s function�

The expansion ������ implies that the Green�s function ������ can be
expanded for small x as follows�

G���x� y�� � � � � ym� �
X
n

C��
n�x�Gn�y�� � � � ym�� ����
�

where

Gn�y�� � � � � ym� � hOn���
�y�� � � �
�ym�i � ������

and all of the dependence on x is now carried by the OPE coe	cient functions�
In the example of the previous section� the �nal amplitudes depended in a
rather involved way on the small separation of the two operators� through
the dependence of the coe	cients in ����� on mW � From the viewpoint of
the operator product expansion� this dependence is carried by the coe	cient
functions and is determined for all matrix elements when these are computed�

In Sections �� and ���� we used the renormalization group to compute
the enhancement or suppression factors for operator matrix elements� Thus it
is natural to expect that the form of the operator product coe	cients is also
determined by the renormalization group� We will now work out this relation�
To begin� we rewrite the expansion ������ more precisely� The operators that
appear in this relation must be de�ned at some renormalization scaleM � Then
the operator product expansion reads��O��x�

�
M

�O����
�
M

�
X
n

C��
n�x�M�

�On���
�
M
� ������

Note that the coe	cient functions can depend on M � since they must absorb
the M �dependent operator rescalings� If we use the left�hand side of ������
to compute ������� this function obeys the Callan�Symanzik equationh

M
�

�M
� �

�

�g
�m� � �� � ��

i
G���x� y�� � � � � ym�M� � �� ������
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Similarly� with the operatorOn normalized atM � the Green�s function ������
obeys h

M
�

�M
� �

�

�g
�m� � �n

i
Gn�y�� � � � � ym�M� � �� ������

By applying ������ to the right�hand side of ����
�� we see that these re�
lations are consistent only if the OPE coe	cient functions obey the Callan�
Symanzik equationh

M
�

�M
� �

�

�g
� �� � �� � �n

i
C��

n�x�M� � �� ������

We now solve this equation by our standard methods� First� let us apply
dimensional analysis� If the operators O�� O�� On have dimensions d�� d�� dn�
the coe	cient function C��

n�x� must have the dimensions of �mass�d��d��dn �
Thus�

C��
n�x� �

� 

jxj
�d��d��dn eC�xM�� �����

where eC�xM� is a dimensionless function� This function is determined from
������ according to the method of Section ���� Thus�

C��
n�x� �

� 

jxj
�d��d��dn

c�g��x�� exp

 MZ
��x

d logM ���n � �� � ��
��
� ������

with c�g� a dimensionless function of the running coupling constant at the
separation scale �x�

At a �xed point of the renormalization group� the � functions would take
de�nite values �j� � �j�g��� Then� the solution ������ can be evaluated as

C��
n�x� �

� 

jxj
�d��d��dn

c�g�� exp
h
log�xM�

�
�n� � ��� � ���

�i
� ������

Thus� in this case�

C��
n�x� �

� 

jxj
�d���d���d�n

� ������

where

d�j � dj � �j�g�� ����
�

is the true scaling dimension of the operator Oj at the �xed point�
For the case of an asymptotically free theory� the scaling relation is com�

plicated in the way that we worked out in Section ��� In the leading order
of perturbation theory� the three � functions take the form ������� Then the
solution of ������ takes the form

C��
n�x� �

� 

jxj
�d��d��dn� log��jxj�&��

log�M��&��

��an�a��a����b�
� ������
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In the example of Section ���� the original operators were currents with
dimension � and � � �� at separation m��

W � and the �nal local operators had
dimension �� Thus� ������ does properly reproduce the dependence of �����
on mW � Notice that the renormalization group dependence is less complicated
for a product of currents� which have a �xed normalization independent of
scale� This special case occurs often in applications of the operator product
expansion�

We have written Eq� ������ without taking account of operator mixing�
However� as we have already seen� operator mixing is often an essential part
of the applications of the OPE� It is straightforward to include this e�ect by
rewriting the analysis that leads to ������ using matrix�valued � functions�
For example� with operator mixing� the Callan�Symanzik equation for Gn will
be modi�ed toh

�np

�
M

�

�M
� �

�

�g
�m�

�
� �np

i
Gp�y�� � � � � ym�M� � �� ������

With these changes� ������ becomesh
M

�

�M
� �

�

�g

i
C��

n�x�M� � ��kCk�
n�x�M�

� ��kC�k
n�x�M�� �knC��

k�x�M� � ��

������

Notice that the �rst two � matrices act on the OPE coe	cient from the left�
while the third acts from the right� In the case of a product of currents� the
�rst two � matrices vanish and ������ simpli�es toh

M
�

�M
� �

�

�g

i
C��

n�x�M�� C��
k�x�M��kn � �� ������

This equation will play an important role in the analysis of Section ��
�

���� Operator Analysis of e�e� Annihilation

It is not di	cult to imagine that there is a connection between matrix elements
in which currents are placed at short distances from one another and matrix
elements in which currents deliver a hard momentum transfer� Thus we might
expect that the idea of the operator product expansion will give us a new
viewpoint from which to understand the theory of hard�scattering processes
in QCD� In this section and the next� we will work out the relation of the
operator product expansion to the perturbative QCD analysis of Chapter ��

We begin by discussing the total cross section for e�e� annihilation to
hadrons� Below Eq� ������ we argued that this total cross section could be
computed in QCD perturbation theory� using a value of 	s corresponding to
the scale of the total center of mass energy� However� this argument was a
purely intuitive one� with many logical jumps� In this section� we will give a
more rigorous argument to the same conclusion�
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Figure ����� Diagrams whose imaginary part yields the total cross section
for e�e� � hadrons�
In order to invoke the operator product expansion� we must write the

total cross section for e�e� annihilation to hadrons as the matrix element of
a product of currents� To do this� we use the optical theorem to relate the
total e�e� scattering cross section to the forward scattering amplitude for
e�e� � e�e�� Ignoring the mass of the electron� we see from Eq� ������ that

��e�e�� �


�s
ImM�e�e� � e�e��� ������

To compute the cross section for e�e� � hadrons� we consider in the compu�
tation of the imaginary part only the contributions from hadronic intermediate
states� To leading order in 	� but to all orders in the strong interactions� these
contributions come from considering only diagrams of the form of Fig� ����
and taking the imaginary part of the hadronic contributions to the vacuum
polarization�

The value of the diagrams shown in Fig� ��� is

iM � ��ie��u�k���v�k���i
s

�
i/��

h �q�
��i
s
v�k����u�k�� �����

where s � q� and /��
h �q� is the hadronic part of the vacuum polarization� By

the Ward identity� this can be written

/��
h �q� � �q�g�� � q�q��/h�q

��� ������

The q�q� terms give zero when contracted with the external electron currents�
so only the g�� term survives� To evaluate the electron spinor part of ������
we use the fact that� in this forward scattering amplitude� the initial and �nal
momenta and spins are set equal� Then� averaging over the initial spin gives



�
� 
�

X
spins

u�k���v�k��v�k����u�k� �


�
tr
�k�� k����

�


�
� ���� � ��k � k��

� �s�

������

Thus� we �nd

��e�e� � hadrons� � ���	

s
Im/h�s�� ������
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To check this result� we can look back to the one�loop value of / in QED
������ or to the imaginary part of this expression given in Eq� �������

Im/�s� i�� � �	
�

r
� �m�

s

�
 �

�m�

s

�
� ����
�

Combining ����
� with ������� we obtain the correct leading�order cross
section for production of a new heavy lepton in e�e� annihilation�

��e�e� � L�L�� �
��	�

�s

r
� �m�

s

�
 �

�m�

s

�
� ������

If we multiply ������ by a factor of � for color and sum over quark �avors
with the squares of the quark charges� we obtain the leading�order prediction
of QCD�

Now that we have relation ������� we complete the connection we wished
to prove by noting that the hadronic vacuum polarization is simply a matrix
element of a product of currents� Let J� be the electromagnetic current of
quarks�

J� �
X
f

Qfqf�
�qf � ������

Then

i/��
h �q� � �e�

Z
d�x eiq�x h�jT�J��x�J� ���� j�i � ������

In the limit in which the point x approaches �� we can reduce the product
of currents by applying the operator product expansion� Since we will be
taking the vacuum expectation value of the product� we need only list the
contribution from operators that are gauge�invariant Lorentz scalars� Thus�

J��x�J���� � C��
��x� � �C��

�qq�x�qq����C��
F �

�x��F a
�	�

����� � � � � ������

Note that we have included the operator  on the right�hand side� and the
next possible operators in QCD have dimension � and �� respectively� Since
the operator qq violates chiral symmetry� its coe	cient function must have an
explicit factor of the quark mass� Thus� by dimensional analysis�

C��
� � x��� C��

�qq � mx��� C��
F � � x��� ������

and the higher terms in the series are less singular as x� ��
To compute /��

h �q�� we need the Fourier transform of the product of cur�
rents� Assuming that this Fourier transform is indeed dominated by the limit
of short distances� we can compute it by Fourier�transforming the individual
OPE coe	cients� Since the currents are conserved� the individual terms in the
OPE must give zero when dotted with q�� Thus the transformed OPE takes
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the form

�e�
Z
d�x eiq�xJ��x�J� ���

� �ie��q�g�� � q�q��
�
c��q�� �  � c�qq�q�� �mqq � cF

�

�q�� � �F a
�	�

� � � � ���
�����

where the ci are Lorentz�invariant c�number functions of q�� and the factor of
i at the beginning of the second line is inserted as a convenient convention�
By dimensional analysis� we �nd

c� � �q���� c�qq � �q����� cF
� � �q����� ������

and the higher terms are more irrelevant for large q�
The OPE coe	cients ci�q�� can be computed from Feynman diagrams�

As shown in Fig� ��
� the coe	cient of the operator  is the sum of diagrams
with no external legs other than the current insertions� The leading QCD
diagram is just the simple vacuum polarization diagram� multiplied by the
color factor � and the sum of the squares of the quark charges� Combining
these factors with Eq� ������ we have

c��q�� � �
�
�
X
f

Q�
f

�
� 	
��

log��q��� ������

The corrections to this result are of order 	s�q
��� The higher coe	cient func�

tions are extracted from diagrams with more external legs� For example� the
coe	cient function of �F a

�	�
� is determined by diagrams with two external

gluon legs�
Still assuming that the Fourier transform of the product of currents can be

computed from the OPE for the region of large timelike q�� we can complete
our evaluation of the cross section for e�e� � hadrons by taking the vacuum
expectation value of ������ extracting the imaginary parts of the coe	cient
functions� and substituting the result into ������� We �nd

��e�e� � hadrons� �
��	�

s

�
Im c��q�� � Im c�qq�q�� h�jmqq j�i

� Im cF
�

�q�� h�j �F a
�	�

� j�i� � � ��� ������

The �rst term of this series is just the result of summing perturbative QCD
diagrams for the e�e� total cross section� The additional terms give correc�
tions to this result which depend on soft hadronic matrix elements� but these
corrections are explicitly suppressed at high energy by factors �q����� �Inci�
dentally� this expansion� which applies equally well in the absence of QCD
interactions� explains why ������ contains no term of order s�� when ex�
panded for large s�� If we insert the leading�order expression ������ into
������� we obtain the familiar result

��e�e� � hadrons� �
��	�

s

X
f

Q�
f � ����
�
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Figure ����� Feynman diagrams contributing the operator product coe��
cient� in the expansion of the product of currents� for the operator �a� �� �b�
qq� �c� �Fa�	�

��

Our result ������ is pleasing� but the logic that led us to it was not
correct� To compute the e�e� total cross section� we must compute /h�q

��
in the region of large timelike momentum q� where the expectation value of
the product of currents is dominated by intermediate states of high energy�
involving large numbers of physical hadrons� Thus we need /h�q

�� in precisely
the region where it is not dominated by short�distance perturbations of the
quark and gluon �elds� To compute the product of currents from the short�
distance expansion� we choose kinematic conditions such that the intermediate
states that enter the computation of the product of currents are far o��shell�
so that they cannot propagate far from the converging points x and �� This
condition is satis�ed at large spacelike momentum� or� equivalently� at small
spacelike separation� However� it seems at �rst sight that a computation in
this region is useless for determination of the e�e� cross section�

Fortunately� there is a wonderful trick for relating the values of a quantum
�eld theory amplitude in two well�separated kinematic regions� This trick�
called the method of dispersion relations� makes use of the general analytic
properties of the amplitude� Since ������ is the Fourier transform of a two�
point correlation function� we know from the analysis of Section �� that
/h�q

�� possesses a K#all4en�Lehmann spectral representation� Thus� /h�q
�� is

an analytic function of q� with a branch cut on the positive q� axis and no
other singularities in the complex q� plane� This analytic structure is shown in
Fig� ���� The discontinuity of /h�q

�� across the branch cut is ��i� times the
imaginary part of /h and so is directly related to the total e�e� annihilation
cross section�

With this additional knowledge about /h�q
��� we can argue as follows�

Let q� � �Q�
� be a value su	ciently far into the spacelike region of q that

the Fourier transform of the product of currents can be computed from the
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Figure ����� Analytic singularities of $h�q
�� in the complex q� plane�

operator product expansion� Now consider the integral

In � ���	
I

dq�

��i



�q� �Q�
��
n��

/h�q
��� ������

for n � � evaluated on a contour encircling q� � �Q�
�� If we contract the

contour onto the pole� we �nd

In �


n-

dn

d�q��n
/h

����
q�
�Q�

�

� ������

which can be computed by evaluating /h from the the operator product re�
lation ������

/h�q
�� � �e��c��q�� � c�qq�q�� h�jmqq j�i� cF

�

�q�� h�j �F a
�	�

� j�i� � � ���
������

On the other hand� we can evaluate the integral by distorting the contour to
the form of Fig� ���� Since none of the coe	cient functions grow faster than
�q��� times logarithms as q� � �� the contour at in�nity can be neglected
for n � � The piece of the contour that wraps around the branch cut gives

In � ���	
Z

dq�

��i



�q� �Q�
��
n
Disc/h�q

��

� ���	
Z

dq�

��



�q� �Q�
��
n��



i
�i Im/h�q

��

�


�

�Z
�

ds
s

�s�Q�
��
n��

��s��

������

This is an integral over the total cross section for e�e� � hadrons� By equat�
ing ������ and ������� we obtain a series of integral relations between the
OPE coe	cients� evaluated in QCD perturbation theory� and the observable
cross section� These relations� which were �rst constructed by Novikov� Shif�
man� Voloshin� Vainshtein� and Zakharov� are known as the ITEP sum rules�y

yThe theory of these sum rules is reviewed in V� A� Novikov� L� B� Okun� M� A�
Shifman� A� I� Vainshtein� M� B� Voloshin� and V� I� Zakharov� Phys� Repts� ��� �
��	�
��
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Figure ����� Contour of integration involved in the derivation of the ITEP
sum rules for 	�e�e� � hadrons��

Evaluating the sum rules with only the leading QCD expression for c��q��� we
�nd

�Z
�

ds
s

�s�Q�
��
n��

��s� �
��	�

n�Q�
��
n

X
f

Q�
f �O�	s�Q

�
����O��Q�

��
���� ������

The leading�order relation is consistent with the lowest�order cross section
given in Eq� ����
�� The corrections come from higher orders of QCD per�
turbation theory� with 	s taken at the scale Q�

�� and from the higher operator
terms in the OPE�

If the correction terms in ������ converged to zero uniformly in n� we
could invert the sum rules and derive from them our result ������� However�
the true situation is more subtle� Because the derivatives in ������ empha�
size terms with stronger q� variation� the correction terms in the ITEP sum
rules are more and more important as n increases� Thus the most important
deviations of the cross section from the prediction of QCD perturbation the�
ory are oscillations about this prediction� which average out in the sum rules
for low n� The comparison of theory and experiment is shown in Fig� ���� At
large s� ������ is quite accurate� As s becomes smaller� however� the oscilla�
tions grow in size� Eventually� they come to dominate the total cross section
as the resonances associated with quark�antiquark bound states�

���� Operator Analysis of Deep Inelastic Scattering

We now apply the operator product expansion to another example of a QCD
hard�scattering process� deep inelastic electron scattering� In Chapter � we
found that the predictions of QCD for deep inelastic scattering are precise
but also intricate in structure� At a �rst level� QCD implies that deep inelas�
tic scattering is described by the parton model� in which the incident electron
scatters from quarks and antiquarks that carry fractions of the total momen�
tum of the proton� These fractions are determined by parton distribution
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Figure ����� Experimental measurements of the total cross section for the
reaction e�e� � hadrons at energies below  GeV� compared to the predic�
tion of perturbative QCD for  quark #avors� The data are taken from the
compilation of M� Swartz� Phys� Rev� D�� ���
 ��		��� Complete references
to the various results are given there�

functions� which re�ect the form of the proton wavefunction and are deter�
mined by soft QCD dynamics� However� we saw in Section ��
 that e�ects of
QCD perturbation theory cause the parton distributions to change their form
as a function of the momentum transfer Q�� We will now show that much of
this picture can be reconstructed from our new viewpoint� using the operator
product expansion�

In the previous section� we derived the OPE relations for the e�e� an�
nihilation cross section in three steps� First� we used the optical theorem to
relate this cross section to a matrix element of a product of currents� Second�
we applied the operator product expansion to the product of currents� Unfor�
tunately� this expansion could be used only in an unphysical kinematic region�
However� in the third step� we used the method of dispersion relations to con�
nect this unphysical result to an integral over the cross section we wished to
predict� In our discussion of deep inelastic scattering� we will go through these
same three steps� To obtain our �nal result� we will need to add a fourth step�
involving QCD operator rescaling�
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Figure ���	� Computation of the cross section for deep inelastic electron
scattering� �a� general structure of the amplitudes� �b� application of the
optical theorem�

Kinematics of Deep Inelastic Scattering

We begin by writing a general expression for the deep inelastic scattering cross
section� The matrix element for deep inelastic electron scattering to a �nal
state f is computed as shown in Fig� ����a��

iM�ep� ef� � ��ie�u�k����u�k��i
q�

�ie�

Z
d�x eiq�x hf j J��x� jP i � �����

where J��x� is the quark electromagnetic current ������� The core of this
expression is the hadronic matrix element of the current between the proton
and some high�energy hadronic state� This matrix element must be squared
and summed over possible �nal states� That sum can be computed� using the
optical theorem� by relating it to the forward matrix element of two currents
in the proton state� as shown in Fig� ����b�� De�ne

W�� � i

Z
d�x eiq�x hP jT�J��x�J����� jP i � ������

averaged over the spin of the proton� This object is known as the forward

Compton amplitude� since if it is evaluated at q� � � and contracted with
physical polarization vectors� it gives the forward amplitude for photon�proton
scattering�

iM��p� �p� � �ie������q����q�
��iW���P� q�

�
� ������

However� in the following discussion we will need to analyze ������ for gen�
eral spacelike q and for general polarization states�

The optical theorem for Compton scattering from a proton is

� ImM��p� �p� �
X
f

Z
d/f

��M��p� f�
���� ������
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In the generalization given in ������� this result extends to the more general
situation in which the initial and �nal photon polarizations can di�er arbi�
trarily� Transcribing ������ to W�� � we �nd

� ImW���P� q� �
X
f

Z
d/f hP j J���q� jfi hf j J��q� jP i � ����
�

where J��q� is the Fourier transform of the current�
We can now compute the deep inelastic cross section in terms of W�� �

using ����
� to represent the square of the last factor� The cross section
should be averaged over initial and summed over �nal electron spins� Thus�

��ep� eX� �


�s

Z
d�k�

�����


�k�
e�



�

X
spins

�
u�k���u�k

��u�k����u�k�
�

� � 

Q�

�� � � ImW���P� q��

������

The electron spinor product can be evaluated as

�
�

X
spins

�
u�k���u�k

��u�k����u�k�
�
� �

� tr
�k�� k����

� �
�
k�k

�
� � k�k

�
� � g��k � k�

�
�

������

It is useful to convert the integral over the �nal electron momentum k� and
scattering angle � to an integral over the dimensionless variables x and y that
we introduced in Section ���� These variables are given in terms of the initial
and �nal electron energies k and k� by

x �
Q�

�P � q �
�kk��� cos ��

�m�k � k��
� y �

�P � q
�P � k �

k � k�

k
� ������

Then ���� ��x� y�

��k�� cos ��

���� � �k�

�m�k � k��
�

�k�

ys
� ������

and so Z
d�k�

�����


�k�
�

Z
��dk�k�d cos �

����� � � �

Z
dxdy

ys

�����
� �����

Using ������ and ����� to simplify ������� we �nd

d��

dxdy
�ep� eX� �

�	�y

�Q���
�
k�k

�
� � k�k

�
� � g��k � k�

�
ImW���P� q�� ����

To go further� we need to know something about the structure of W�� � In
the previous section� we used current conservation to write the matrix element
of currents in terms of a single scalar function /h�q

��� as in Eq� ������� In
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the case of the forward Compton amplitude� the Ward identity again requires

q�W
�� � q�W

�� � �� �����

but now there are two possible tensors built from P and q that satisfy these
constraints� Thus the forward Compton amplitude is written as an expression
involving two scalar form factors�

W�� �
�
�g�� � q�q�

q�

�
W� �

�
P� � q�

P � q
q�

��
P � � q�

P � q
q�

�
W�� �����

The scalar functions W�� W� depend on the two invariants of the problem�
�P � q� and q�� or� alternatively� x and Q�� If we insert ����� into ����
and use the fact that dotting q� with the lepton tensor gives zero� we �nd

d��

dxdy
�ep� eX� �

�	�y

�Q���
�
�k � Pk� � P ImW� � �k � k� ImW�

�
�

	�y

Q�

�
s��� y� ImW� � �xys ImW�

�
�

�����

Expression ����� is completely general and makes no assumptions
about the nature of the strong interactions� It is also rather formal� How�
ever� we can easily get an idea of the relation of this formula to our earlier
analysis by evaluating W�� in the parton model and working out the parton
expressions for W� and W�� In the parton model� we replace the proton ma�
trix element in ������ by a sum of quark matrix elements� weighted with
the parton distribution functions� Thus�

W�� � i

Z
d�x eiq�x

�Z
�

d�
X
f

ff ��� � 
�
hqf �p�jT

�
J��x�J� ���

� jqf �p�i����
p
�P

�

���
�
The factor ���� in front of the matrix element gives the proper normalization
of the proton state in terms of the quark states� The simplest way to under�
stand this factor is to note that the kinematic prefactor ���s� in ������ and
in other expressions involving an initial�state proton becomes ����s�� under
the � integral� in the parton model�

We now evaluate the matrix element in ���
� using noninteracting
fermions� There are two Feynman diagrams� shown in Fig� ���� The �rst
diagram on the right in Fig� ��� has the value

i

�Z
�

d�
X
f

ff ���


�
Q�
fu�p��

� i� p� q�
�p� q�� � i�

��u�p�� �����

the second diagram gives a contribution identical to this one after the inter�
change of q� � with ��q�� �� To evaluate ������ we average over the quark
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Figure ����
� Evaluation of W�� in the parton model�

spin to �nd

�Z
�

d�
X
f

ff ���


�
� 
�
tr
�p���p� q���� �

�p � q � q� � i�

�

�Z
�

d�
X
f

ff ���


�
� ��p��p� q�� � p��p� q�� � g��p � �p� q�

�
� �
��P � q �Q� � i�

� �����

The imaginary part of this expression� which we need to evaluate ������
comes from the last factor in ������

Im
� �
��P � q �Q� � i�

�
� �����P � q �Q�� �

�

ys
��� � x�� �����

In the second diagram of Fig� ���� the two factors in the denominator have
a relative � sign� so this diagram has no imaginary part in the physical region
for deep inelastic scattering� Thus� we �nd that in the parton model�

ImW�� �
X

Q�
fff �x�



x

�

ys

�
�x�P�P � � �x�P�q� � P �q��� g��xys

�
�

�����
By adding and subtracting terms proportional to q�q� � we can see that this
expression is of the form ������ with

ImW� � �
X
f

Q�
fff �x�� ImW� �

��

ys

X
f

Q�
fxff �x�� ������

The parton model expressions for W� and W� obey the relation

ImW� �
ys

�x
ImW�� �����

This is another form of the Callan�Gross relation� since the substitution of
����� into ����� gives

d��

dxdy
�ep� eX� �

	�ys�

�Q�

�
 � �� y��

�
ImW�� ������
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with the y dependence characteristic of free fermions� as in Eq� ����
��
Finally� substituting from ������ for the imaginary part of W�� we recover
this parton model expression precisely�

d��

dxdy
�ep� eX� �

��	�s

Q�

�X
f

Q�
fxff �x�

��
 � �� y��

�
� ������

This equation will give us a reference point for comparison with more general
expressions that we will derive as we continue our analysis�

Expansion of the Operator Product

Since the forward Compton amplitude is a matrix element of a product of
currents� an alternative strategy for calculatingW�� is to expand this product
as a series of local operators� Like the parton model evaluation� this method
makes use of asymptotic freedom� However� in this case� the assumption is
applied more directly� The computation of the operator product coe	cients
will take place explicitly at a small distance of order �Q� and so we can
calculate these coe	cients in a perturbation theory whose coupling constant
is 	s�Q

���
In the previous section� we computed the coe	cients of operators that

contribute to the vacuum expectation value of the product of currents by
considering the various ways of contracting the quark �elds in the product�
Here� we should note that the operator  does not contribute to the Compton
scattering amplitude� The leading contributions come from operators that can
create and annihilate quarks in the proton wavefunction�

The most important terms in the operator product of two currents J�

come from products of two quark currents qf�
�qf with quarks of the same

�avor� Therefore we will begin by studying the OPE of the individual quark
currents� To zeroth order in 	s� the leading terms of the operator product of
quark currents are given by

q��q�x� q��q���

� q�x���q�x�q�����q��� � q�x���q�x�q�����q��� � � � � �
������

where the contractions should be evaluated as Feynman propagators for the
quark �elds� The terms with explicit contractions are singular as x � ��
the remaining terms are nonsingular and thus less important in the short�
distance limit� In the OPE of currents with quarks of di�erent �avor� there
are no corresponding singular terms� we will argue below that this conclusion
is valid even beyond the leading order in 	s�

To evaluate W�� � we must take the Fourier transform of the terms in
������� as indicated in ������� When we do this� we should remember that
the propagators carry not only the Fourier transform momentum q but also
whatever momentum is carried in through the quark �elds� To take account
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of this� it is convenient to representZ
d�x eiq�x q�x���q�x�q�����q��� � q��

i�i� � q�
�i� � q��

��q���� ����
�

where the derivatives � act to the right on the quark �eld� Notice that this
contribution has the structure of the �rst diagram on the right in Fig� ����
Similarly� the second contraction indicated in ������ has the form of the
second diagram in Fig� ����

In the short�distance limit� the momentum q will be larger than any ex�
ternal momentum entering the quark �elds� Thus we should expand



�i� � q��
�

�
Q� � �iq � � � ��

� � 

Q�

�X
n
�

��iq � � � ��

Q�

�n
� ������

We will argue below that the terms with �� in the numerator are unimpor�
tant and may be dropped� However� we should retain all powers of the ratio
��iq � ��Q��� This ratio has Q� in the denominator and so is formally sup�
pressed in the short�distance limit� However� in the parton model

�iq � �
Q�

� �q � �P
Q�

� � ������

so� eventually� all of these terms must be equally important� We will see how
this works in a moment�

The last step required to reduce the operator product ������ to a useful
form is to reduce the product of Dirac matrices� We know from �����
that� after we average over the proton spin� W�� will be symmetric under
the interchange of � and �� Thus� it does no harm to symmetrize the OPE�
We can then reduce the product of three Dirac matrices to one by using the
identity

�
�

�
������ � ������

�
� g���� � ��g�� � g����� ������

which is easily proved from the anticommutation relations� By the use of
������ and ������� we can rewrite ����
� as

�iq
�
���i��� � ���i���� ig�� � � ��q� � ��q� � g�� q

� 

Q�

�X
n
�

��iq � �
Q�

�n
q�

������
We can remove the term �i��q� which vanishes to leading order in 	s� since
the quark �eld obeys the Dirac equation� To compute W� and W�� we can
also drop the terms with explicit factors of q�� since these will eventually be
organized into the general form ������ Then� �nally� ����
� takes the formZ

d�x eiq�xq�x���q�x�q�����q���

� �iq�����i���� g�� q� 

Q�

�X
n
�

��iq � �
Q�

�n
q�

������
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symmetrized under �� ��
The second term in ������ di�ers from the �rst by the interchange of the

points x and � and the interchange of indices � and �� Its Fourier transform is
thus given by ������ with the replacement q � �q� The complete operator
product therefore contains only terms even in q� All remaining contributions
from the singular terms of the operator product contain the operator

q����i���� � � � �i��k�q� �����

with an even number of indices� with these indices either identi�ed with � or
� or contracted with powers of q� To write the relevant terms of the operator
product expansion� we will modify this operator in two ways� First� since the
operator in ����� has n vector indices� it contains components that trans�
form under many di�erent irrreducible representations of the Lorentz group�
Each component has a di�erent rescaling law under renormalization� However�
we will see below that only the component of ����� with the highest spin
is relevant to our analysis� This component is obtained by totally symmetriz�
ing the indices ��� � � � � �n and then subtracting terms proportional to g�i�j

so that the operator is traceless on all pairs of indices� We will retain only
this component when we write out the operator product of currents� Second�
the operator ����� does not transform simply under gauge transformations�
Since the original currents J� were invariant to color gauge transformations�
the operator product of two currents must be a sum of gauge�invariant oper�
ators� We can make ����� gauge�invariant by replacing each factor of �i���
with a covariant derivative �iD��� This modi�cation adds only terms propor�
tional to the strong coupling constant g� so it has no e�ect on our derivation
of the operator product coe	cients�

Incorporating these changes� let us de�ne a spin�n operator with quarks
of �avor f as follows�

O�n�
f

������n � qf�
f���iD��� � � � �iD�ng�qf � traces� ������

with indices symmetrized and with appropriate subtractions� We can use these
operators to write a �nal expression for the most singular part of the OPE
of two currents J�� The leading terms in this operator product come from
������ and the corresponding contraction with q � �q� Extracting the
pieces of these expressions that contain the highest spin operators �������
we �nd

i

Z
d�x eiq�xJ��x�J����

�
X
f

Q�
f


�
�X
n
�

��q��� � � � ��q�n���
�Q��n��

O�n�
f

��������n��

� g��
�X
n
�

��q��� � � � ��q�n�
�Q��n

O�n�
f

������n
�
� � � � �

������
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where the sums over n run over even integers only�
Expression ������ has been derived in the leading order in 	s� Higher�

order Feynman diagrams will contribute corrections to the coe	cient functions
of order 	s�Q

��� These corrections will be important only if they are multiplied

by large logarithms� If we consider the operators O�n�
f appearing on the right�

hand side to be normalized at the renormalization scale Q� there is no large
ratio of momenta available to enhance the QCD corrections to the coe	cient
functions� Large logarithmic corrections may still arise at a later stage of the

calculation� when we compute the matrix elements of the operators O�n�
f �

From the expansion ������� it is straightforward to compute an expan�
sion for W�� by taking its expectation value in the proton state� To carry out
this computation� we need to know the proton matrix elements of the opera�

tors O�n�
f � Notice that these matrix elements cannot depend on the direction

of the momentum q�� since that dependence has been isolated in the coe	�
cient functions� This means that only the proton momentum P � is available
to carry the vector indices of the matrix element� We can therefore write the

spin�averaged matrix element of O�n�
f as

hP j O�n�
f

������n jP i � An
f � �P�� � � �P �n � traces� ������

The coe	cients An
f are dimensionless� They are not quite pure numbers� be�

cause they depend on the renormalization scale of the operators� but we will
treat them as constants in the next few paragraphs�

For the case n � � the operators O���
f reduce simply to the quark �avor

currents q��q� in this case the operators are normalized independently of any
scale and the coe	cients A�

f are truly constants� From our general discussion
of form factors in Section ���� we know that the proton matrix element of a
conserved �avor current at zero momentum transfer is given by

hP j qf��qf jP i � u�P ���u�P �Ff����� ����
�

where Ff���� is equal to the value of the corresponding conserved charge in
the proton state� For the quark currents� this charge is just the number of
quarks �minus antiquarks� of �avor f in the state jP i� which we will call Nf �
Averaging ����
� over the proton spin� we �nd

hP j qf��qf jP i � �P� �Nf � ������

Thus� for n � �

A�
f � Nf �

	
� f � u�
 f � d�

� ������

Similarly� O���
f is the contribution of the quark �avor f to the energy�

momentum tensor of QCD��
T��
�
f
� qf�

f��iD�g�qf � ������
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Thus� A�
f is the fraction of the total energy�momentum of the proton that is

carried by the quark �avor f �
When we evaluate the series for W �� using ������ and the expression

������ for the operator matrix elements� we �nd

W �� �
X
f

Q�
f


�
X
n

P�P � ��q � P �n��

�Q��n��
An
f � �g��

X
n

��q � P �n

�Q��n
An
f

�
� � � � �

������
where the sums over n run over even integers from � to in�nity� In addition
to the corrections to the OPE omitted in ������� we have also dropped
contributions from the trace terms in ������� This is quite appropriate� In
each of these terms� two factors of the proton momentum P�P 	 are replaced
by g�	m�

p� were m
�
p � P � is the proton mass� When the indices are contracted

with powers of q� we obtain a term of order

m�
pQ

� � ��q � P ��� ������

Since �Q���P � q� � x� which is held �xed in deep inelastic scattering as Q�

becomes large� the contribution from the trace terms is suppressed by a factor
m�
p�Q

�� times powers of x�
In general� an operator of dimension d has a coe	cient function in the

operator product expansion of currents that has dimension �mass���d� in the
Fourier transform of the OPE� this coe	cient function will carry a suppression
factor � 

Q

�d��
� �����

However� if the operator has spin s� the operator matrix element will con�
tribute s factors of the vector P �� so that� in the kinematic region of deep
inelastic scattering� the contribution will be of order��P � q

Q�

�s� 
Q

�d�s��
� ������

Thus� the relative size of contributions from the OPE to deep inelastic scat�
tering is controlled� not exactly by the dimension of the operator� but rather
by the twist� de�ned as

t � d� s� ������

In our selection of the leading terms in the operator product expansion of
currents� we have consistently kept the contribution of leading spin for each

dimension or for each power of Q�� in the coe	cient� The operators O�n�
f all

have twist t � �� which is the smallest possible value for QCD operators other
than the operator �

In the operator product of two di�erent �avor currents�for example�
u��u and d��d�the leading terms in the OPE have the quark structure
�u,ud,d� and thus have twist t � �� Thus� to all orders in 	s� the cross terms
in the operator product of currents J� are suppressed by at least a factor
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��Q�� relative to the leading�twist terms presented in ������� If we neglect
these suppressed terms� the expression for W �� separates� to all orders� into
a sum of contributions

W �� �
X
f

Q�
fW

��
f � ������

where W��
f is the matrix element of two quark �avor currents qf�

�qf �
We can read from ������ the following expressions for W� and W��

W� �
X
f

Q�
f

X
n

�
��q � P �n

�Q��n
An
f �

W� �
X
f

Q�
f

X
n

�

Q�

��q � P �n��

�Q��n��
An
f �

����
�

where the sum over n in each line runs over even integers from � to in�nity�
Like ������� these expressions explicitly separate according to ������� It
is noteworthy that the series ����
� satisfy the Callan�Gross relation in the
form ������ without further parton model input� However� this relation
is corrected in order 	s due to the next�order contributions to the operator
product coe	cients�

Because the leading contributions to the deep inelastic form factors can
be written as sums over quark �avors� it is tempting to reverse the logic of Eq�
������ and use these equations to de�ne the parton distribution functions�
In particular� let us de�ne

xf�f �x�Q�� �
ys

��
ImW�f �x�Q

��� ������

where W�f is the second form factor of W��
f � de�ned in ������� neglecting

terms suppressed by powers of Q�� In the parton model evaluation�

f�f �x� � ff �x� � f �f �x�� ������

From ������ and the de�nition ������� we know that f�f �x� enters in the
correct way into the formula for the deep inelastic scattering cross section�
However� parton distribution functions have other important properties� in�
cluding the normalization conditions ������ and ������ and the evolution
with Q� discussed in Section ���� We must now see whether we can derive
these properties from ������ using the operator product expansion�

The Dispersion Integral

The operator product analysis has given us explicit expressions for W� and
W� as a series in inverse powers of Q�� In the following discussion� we will
concentrate on the analysis of W�� We must work out the relation of its se�
ries expansion to the observable deep inelastic scattering cross section� As
in the discussion of Section ���� the OPE analysis naturally takes place in
an unphysical kinematic region� To make the operator product expansion� we
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Figure ������ Analytic singularities of W����Q
�� in the complex � plane�

for �xed Q��

needed to consider Q� to be larger than any other kinematic invariant� How�
ever� in the physical region for deep inelastic scattering� �P � q � Q�� We need
a formula that connects these two distinct regions�

To state this problem more precisely� de�ne

� � �P � q � ys� ������

in the frame in which the proton is at rest� � � �mpq
�� The form factor

W� can be viewed as a function of � and Q�� Then� for �xed Q�� the OPE
gives a series expansion about the point � � �� while the physical region for
deep inelastic scattering is � � Q�� Because this region is associated with
a physical scattering process� W����Q

��� viewed as an analytic function of
� for �xed Q�� will have a branch cut along the real � axis in this region�
The discontinuity across this branch cut will be ��i� times the imaginary part
of W�� which appears in the expression ������ for the deep inelastic cross
section� Because expression ������ is symmetric under the interchange of
�q� �� and ��q� ��� W� must obey

W�����Q�� � W����Q
��� ������

Thus� W� must also have a branch cut along the negative real axis� from
� � �Q� to ��� The discontinuity across this cut gives the cross section for
the u�channel process in which positive energy comes in through the second
current and out through the �rst� Since q� � �Q� � �� there is no possible
physical t�channel process� thusW� has no further singularities in the complex
� plane� The analytic structure of W����Q

�� is shown in Fig� ���
Now consider the contour integral

In �

Z
d�

��i



�n��
W����Q

��� ���
��

for n even� taken on a small circle surrounding the origin� This integral picks
out the coe	cient of �n�� in the series expansion for W�� The OPE formula
����
� gives us the leading contribution to this coe	cient for large Q��

In �
X
f

Q�
f

�

�Q��n��
An
f � ���
�
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Figure ������ Contour of integration involved in the derivation of the mo�
ment sum rules for W��

The corrections to this formula are of order 	s�Q
��� from the evaluation of

the OPE coe	cient functions�
On the other hand� we can also distort the contour as shown in Fig� ���

and evaluate it as an integral over the discontinuities of W�� By the symmetry
������� the two branch cuts give equal contributions� Thus�

In � �

�Z
Q�

d�

��i



�n��
��i� ImW����Q

��� ���
��

Now change variables to x � Q���� The integral becomes

In �
�

�Q��n��

�Z
�

dx xn��
�

��
ImW�� ���
��

When we equate ���
� and ���
�� and relate ImW� to the parton distri�
butions f�f �x� using ������� the relation we have derived splits into a series
of sum rules�

�Z
�

dx xn��f�f �x�Q�� � An
f � ���
��

for n even� These relations are known as the moment sum rules for the deep
inelastic form factors� They relate the x moments of the parton distribution
functions� as de�ned by Eq� ������� to the proton matrix elements of twist��
operators�

Because W� is a symmetric function of �� the moment sum rules apply
only for even n� However� in deep inelastic neutrino scattering� there is a third
form factor in W�� � associated with the interference term between the vector
and axial vector parts of the weak interaction current� In Problem ���� we
show that this form factor can be used to derive a set of sum rules for odd n�

�Z
�

dx xn��f�f �x�Q�� � An
f � ���

�
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where An
f is the coe	cient of the proton matrix element ������ for odd n�

and f�f �x� is a form factor which� in the parton model� evaluates to

f�f �x� � ff �x�� f �f �x�� ���
��

Combining this information with the argument given below ������� we
can see that the de�nition of the parton distribution functions from the deep
inelastic form factors has the correct normalization� Using ������� we �nd

�Z
�

dx f��x� � Nf � ���
��

the �net� number of quarks of �avor f in the proton� Similarly� ���
�� and
������ imply

�Z
�

dx xf��x� � hxif � ���
��

where hxif is the fraction of the total energy�momentum of the proton carried
by quarks and antiquarks of �avor f �

Operator Rescaling

If the coe	cients An
f were truly constants� relations ���
�� and ���

�

would be consistent with parton distribution functions that satisfy Bjorken
scaling� However� as we remarked below ������� these factors actually de�
pend on Q�� since this is the normalization point of the operators in the oper�
ator product expansion ������� Since this dependence comes only through
operator rescaling� it involves only logarithms of Q�� and so contributes only
a slow violation of Bjorken scaling� We can work out the Q� dependence of
the parton distribution functions quantitatively by summing the leading log�
arithmic corrections to the matrix elements of the twist�� operators�

To account for these corrections� let us �rst assume �incorrectly� as we will
see below� that the twist�� operators ������ are renormalized without oper�
ator mixing� Then the leading logarithmic corrections to the matrix element

of the operator O�n�
f would be summed by rescaling the operator normalized

at Q to operators normalized at a standard reference point �� of order  GeV�
The relation between these conventions would be�O�n�

f

�
Q
�

�
log�Q��&��

log����&��

�anf ��b��O�n�
f

�
�
� ���
��

where anf is the �rst coe	cient of the � function of O�n�
f � Then the factors An

f

would depend on Q� according to

An
f �Q

�� �

�
log�Q��&��

log����&��

�anf ��b�
An
f ��

��� ������



��� Chapter �
 Operator Products and E�ective Vertices

Figure ������ Diagrams contributing the anomalous dimension of the quark
twist�� operators�

This equation agrees with the scale dependence of operator product coe	�
cients written in ������� for the special case of an operator product of cur�
rents� a� � a� � �� To �nd the explicit form of the rescaling factor� we must
compute anf �

To compute the � functions of the quark twist�� operators� we must com�
pute their counterterms for operator rescaling� These are determined by the
diagrams shown in Fig� ���� It su	ces to compute these diagrams with ex�
ternal momentum p entering through the quark line and zero external momen�
tum injected into the operator� Under these conditions� the matrix element of

the operator O�n�
f � in leading order� equals

� ���p�� � � � p�n � �����

Here and at all later points in the discussion� we will treat the matrix elements

of O�n�
f as though they are symmetrized in the n indices and have all possible

traces subtracted� We must now evaluate the diagrams of Fig� ��� and collect
all terms that rescale this structure�

The �rst diagram of Fig� ��� is quite straightforward to evaluate�

�

Z
d�k

�����
�ig����ta

ik
k�
���k�� � � � k�n ik

k�
��t

a �i
�k � p��

� �ig�C��r� � ����
Z

d�k

�����


�k����k � p��
k���k�� � � � k�n k�

������
We combine denominators using identity �������



�k����k � p��
�

�Z
�

dx
��� x�

�k� ����
� ������

the quantities in the denominator on the right are k � k � xp and � �
�x� � x�p�� We must now shift the integral� substitute k � k � xp in the
numerator� and pick out a term proportional to �n � � powers of p� If this
term contains the factor g�i�j � we may drop it� since it contributes to the
coe	cient of an operator of higher twist and since� in any event� it will be
removed when we subtract traces� Thus� we must choose carefully which two
factors of k we replace with k when we replace the others with �xp�� The
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following choices� simpli�ed using the rotational symmetry of the k integral�
do not give useful contributions�

k�ik�j �


�
k�g�i�j �

k���k�j � 

�
k���j��� �



�
k�g���j �

������

In the second line� we have used the symmetry under �� � �j � The one
remaining placement of the factors of k is

k��� k� 

�
k�������� � �

�
k���� � ����
�

Thus ������ has the value

� �ig� �
�

�Z
�

dx � ��� x�

Z
d�k

�����
k�

�k� ����
����xp��� � � � �xp�n�

� �i�
�
g�

�Z
�

dx�� x�xn��
i

�����
,���d

� ��
��p�� � � � p�n

�
�

�

�

n�n� �

g�

�����
,���d

� ��
��p�� � � � p�n � ������

It is not so obvious that there are additional contributions to the rescaling

of the operatorsO�n�
f � Note� however� that the covariant derivatives in ������

contain explicit factors of the gauge �eld�

iD�j � i��j � gAa�j ta� ������

and these may be contracted with gauge �eld vertices on the external legs�
These contributions give rise to the second and third diagrams in Figure ����
The term in which two factors of Aa� from ������ are contracted with one
another is proportional to G�i�j and thus does not contribute to the rescaling
of the leading�twist operators�

The contributions we have just described have the form of sums over j�
where �j is the index of the derivative that includes the contraction� Then
the second diagram of Fig� ��� is the sum over j of the following integral�

�

Z
d�k

�����
�ig���t

a ik
k�
���k�� � � � k�j��

� ��gtag��j �p�j�� � � � p�n �i
�k � p��

� ig�C��r�

Z
d�k

�����


k��k � p��
��j k���k�� � � � k�j��p�j�� � � � p�n �

������
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Since �j and �� are symmetrized� we can use ������ to rewrite

��j k��� � k�j��� � ��jk�� � g�j�� k
� ����k�j �

������

where� in the second line� the symmetrization of indices and subtraction of
traces is understood� Now combine denominators� To obtain a term with
�n�� factors of p� we must replace every factor k in the numerator of ������
with �xp�� This gives

� ig�
�

�

�Z
�

dx

Z
d�k

�����


�k� ����
�����xp��� � � � �xp�j �p�j�� � � � p�n

� ig�
�

�

�Z
�

dx xj��
i

�����
,���d

� ��
��p�� � � � p�n

� ��

�

�

j

g�

�����
,���d

� ��
��p�� � � � p�n � ������

This contribution must be summed over j from � to n� The third diagram of
Fig� ��� makes an equal contribution�

Summing the rescaling factors from the three diagrams of Fig� ���� we

�nd for the operator rescaling counterterm of O�n�
f

�f �
g�

�����
�

�

h
�

nX
j
�



j
� �

n�n� �

i ,���d
� �

�M����d��
� �����

From this result� we can derive the Callan�Symanzik � function by the use of
������ and the �eld strength renormalization counterterm ������ We �nd

�nf �
�

�

g�

�����

h
 � �

nX
�



j
� �

n�n� �

i
� ������

Notice that this expression vanishes for n � � so that there is no rescaling of
A�
f � as required by ���
��� For n � � �nf is positive and so its coe	cient anf

is negative� This implies that the higher moments of the quark distribution
functions are suppressed as Q� becomes large�

Operator Mixing

The QCD rescaling of the operators O�n�
f is still more complicated because

QCD contains additional twist�� operators which can be built from gluon
�elds� These new operators are mixed with the quark twist�� operators by the
diagrams of Fig� ����

For n even� the diagrams of Fig� ��� give the operators O�n�
f matrix

elements in the state of a gluon with momentum p� The tensor structure of
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Figure ������ Diagrams that produce operator mixing between twist��
quark and gluon operators�

this matrix element contains the term

g�	p�� � � � p�n � ������

where 	� � are the polarization indices of the external gluons� This structure
arises from the operator

O�n�
g

������n � �

�
F f����iD��� � � � �iD�n���F�ng

� � traces� ������

symmetrized on ��� � � ��n� with traces subtracted� These operators have di�
mension �n� �� and spin n� and thus have twist ��

The gluon operators ������ are relevant only for n even� Using the ma�
nipulation

F����iD��� � � �F�n
� � i���

�
F��� � � �F�n

�

�� �iD���F��� � � �F�n
� � ����
�

we can transfer the covariant derivatives from one factor of F�� to the other�
giving

O�n�
g � ���nO�n�

g � ���
�O��� ������

Thus� for n odd� the operator O�n�
g is equal to a total derivative� The matrix

elements of a total derivative are proportional to the momentum injected into
this operator� Since zero momentum is injected in the calculation of the proton

matrix elements of the OPE of currents� the operators O�n�
g have no e�ect on

the deep inelastic scattering cross section for n odd�

For n even� however� we must take account of the mixing of O�n�
g with

O�n�
f � The computation of the diagrams of Fig� ��� is quite similar to the

other operator rescaling calculations we have done in this chapter� and so we
reserve working out the details for Problem ���� We �nd that the diagrams
of Fig� ��� contain a structure proportional to ������ with the coe	cient

��n� � n� ��

n�n� ��n� ��

g�

�����
,���d

� �� ������

From this computation� we �nd that the renormalized twist�� quark operator�
properly normalized at the scale M � is given in terms of bare operators by�O�n�

f

�
M

� � � �f �
�O�n�

f

�
�
� ��g�

�O�n�
g

�
�
� ������
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Figure ������ Diagrams contributing to the operator rescaling of twist��
gluon operators� �a� contributions to gluon�quark mixing� �b� contributions
to diagonal gluon operator renormalization�

where �f is given by ����� and

�g � � g�

�����
��n� � n� ��

n�n� ��n� ��

,���d
� �

�M����d��
� ������

This equation gives us two elements of the anomalous dimension matrix of
twist�� operators�

The remaining elements of the � matrix for twist�� operators are gener�
ated by the diagrams shown in Fig� ��
� The diagram of Fig� ��
�a� gives

the mixing of O�n�
g back into O�n�

f � The diagrams of Fig� ��
�b�� combined
with the counterterm �� for gluon �eld strength rescaling� gives the diagonal
anomalous dimension� The counterterm �� is given explicitly� in Feynman�
�t Hooft gauge� in ������� The remainder of this anomalous dimension com�
putation is discussed in Problem ����

To describe the complete anomalous dimension matrix� we begin by con�
sidering a strong interaction model with one quark �avor� In this case� there

is one twist�two operator O�n�
f which mixes with O�n�

g � These two operators
mix through a �	 � matrix

�n � � g�

�����

�
anff anfg
angf angg

�
� ������

where

anff � ��

�

h
 � �

nX
�



j
� �

n�n� �

i
�

anfg � �
n� � n� �

n�n� ��n� ��
�

angf �
�

�

n� � n� �

n�n� � �
�

angg � ��
h
�
�

�

�
nf � �

nX
�



j
� �

n�n� �
� �

�n� ��n� ��

i
�

�����
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Notice that this matrix is not symmetric� In the last line� nf is the number
of quark �avors� equal to  in this case� this term comes from �������

In the realistic case� QCD contains several quark �avors�u� d� s� and also
c and b when we work at momenta su	ciently large that we can ignore the
masses of these particles� Then the anomalous dimension matrix �n has size
�nf � � 	 �nf � �� The submatrix acting on quark operators is diagonal�
with all of the diagonal entries being given by anff in ������ The quark�
gluon and gluon�quark entries are all given by anfg and angf � respectively� and
are independent of the �avor� The gluon diagonal entry is given by angg in
����� with the realistic value of nf � This means that the gluon operator
mixes with only one linear combination of quark operators�X

f

O�n�
f � ������

the orthogonal linear combinations are simply rescaled� with the exponent
given by anff or �������

Let us now apply this analysis of operator mixing to the evaluation of the
moment sum rules� For odd n� there is no operator mixing� and so the Q�

dependence of the right�hand side of ���

� is correctly given by the simple
rescaling �������

For even n� we must take operator mixing into account� The right�hand
side of the sum rule ���
�� is the proton matrix element of a twist�� operator
normalized at the scaleQ� Let us write an arbitrary linear combination of these
operators as

cni
�O�n�

i

�
Q
� ������

where the index i runs over g and the various �avors f � To rescale this operator
to a �xed reference momentum �� we rewrite the coe	cients in a basis of left
eigenvectors of �n and rescale each eigenvector acccording to ���
��� In
terms of the matrix anij of rescaling coe	cients� we can write the rescaling
abstractly as

cni
�O�n�

i

�
Q
�� cni

	�
log�Q��&��

log����&��

�an��b�

ij

�O�n�
j

�
�
� ������

This rescaling� acting with cni to the left of the matrix �an�� is precisely the
prescription required by Eq� �������

Let us work this out explicitly for the case n � �� The right�hand side

of the moment sum rule ���
�� is given by the matrix element of O���
f � We

rewrite this as

O���
f �

�O���
f � 

nf

X
f �

O���
f �

�
�



nf

X
f �

O���
f � � ����
�

The �rst term is simply rescaled� the second term mixes with the gluon oper�

ator O���
g � The anomalous dimension matrix acting on �

P
f Of �Og� for n � �
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has coe	cients �
a�ff a�fgnf

a�gf a�gg

�
�

�� ��
�

�
�nf

��
� � �

�nf

�
� ������

The left eigenvectors of this matrix� and their corresponding eigenvalues� are

�� � � a� � ���
�
��nf

� � a� � ��

�

��
�

� nf

�
�

������

Notice that the �rst eigenvector gives a linear combination of operators c�iO���
i

with zero anomalous dimension� This operator is in fact the total energy
momentum tensor of QCD�

T�� �
X
f

O���
f

�� �O���
g

�� � ������

which must have � � �� If we expand the second term in ����
� in terms
of the components ������� we can compute the full form of the operator
rescaling� We �nd�O���

f

�
Q
�



��� � nf
T

�


nf �
��
� � nf �

�
log�Q��&��

log����&��

��� �	� �nf ���b�h�
�

X
f

O���
f � nfO���

g

i
�

�

�
log�Q��&��

log����&��

������b�h
O���
f � 

nf

X
f �

O���
f �

i
�
� ������

where T is the energy�momentum tensor ������� The right�hand side of
the n � � moment sum rule is given by the coe	cient of the proton matrix
element of this operator� To evaluate this coe	cient� we need to de�ne gluon
analogues of the An

f � by writing� analogously to �������

hP j O�n�
g

������n jP i � An
g � �P�� � � �P �n � traces� ������

For the case n � �� we note in particular that

hP jT�� jP i � �P�P � � �����

thus� ������ implies X
f

A�
f �A�

g � � ������

If we replace each operator in ������ by the corresponding coe	cient A�
i ����

we will have an expression for the right�hand side of the n � � moment sum
rule which makes its Q� dependence explicit�

Although expression ������ is rather complicated� it has a simple form in
the extreme limit Q� ��� At asymptotic Q�� the last two terms of ������
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Figure ������ Fractions of the total energy�momentum of the proton carried
by various parton species� as a function of Q� according to the CTEQ �t to
deep inelastic scattering data described in Fig� ����� The Q dependence of
the curves is calculated from the QCD evolution equations�

tend to zero� and the right�hand side of ������ becomes a �xed number
times the energy�momentum tensor� Then� using ������ we can evaluate
the n � � moment sum rule completely�

�Z
�

dx xf�f �x�� 

��� � nf
� ������

In this extreme limit� we �nd that each quark �avor carries the same �xed
fraction of the energy�momentum of the proton� By ������� the remainder
is carried by the gluons� To illustrate� in a theory with nf � �� each quark
�avor carries ���� of the total momentum of the proton� and the gluons carry
the remaining ���� Figure ��� shows how slowly these asymptotic results
are approached starting from realistic parton distributions�

Relation to the Altarelli�Parisi Equations

The operator mixing analysis just described gives predictions for the moments
of parton distributions which imply that these integrals are Q� dependent� Of
the various moment integrals that do not involve operator mixing� only the
n �  integrals which give the �avor quantum numbers of the proton are
constant as a function of Q�� The rest decrease as powers of logQ�� Similarly�
one linear combination of the matrix elements of n � � twist�� operators
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remains constant with Q�� This relation is expression by the sum rule �������
To write this relation more clearly� let us introduce the parton distribution of
gluons as a smooth function satisfying the relations

�Z
�

dx xn��fg�x�Q�� � A�n�
g �Q��� ������

Then ������ becomes just the total momentum sum rule for parton distri�
butions �������

�Z
�

dx x
hX

f

f�f �x� � fg�x�
i
� � ����
�

It is not di	cult to verify that� for n � �� all of the eigenvalues of the
matrix anij of anomalous dimension coe	cients are negative� Thus� all of the
higher moment sum rules decrease� subject to the �avor charge and momen�
tum conservation laws� In other words� the operator renormalization analysis
predicts that parton distributions shift down to smaller values of x as logQ�

increases� It is pleasing that this is the same conclusion that we reached in
Section ��
� where we derived the Altarelli�Parisi equations to describe this
evolution of the parton distributions�

Given that the operator analysis and the Altarelli�Parisi equations im�
ply the same qualitative behavior for the parton distributions� how do these
analyses compare quantitatively� To compare them directly� we should work
out what predictions the Altarelli�Parisi equations make for the moments
of the parton distribution functions� Let us begin with the simpler case of
f�f �x� � ff �x�� f �f �x��

To �nd the Altarelli�Parisi equation for this quantity� subtract the last
two equations of ������� The term involving the gluon distribution cancels�
and we �nd

d

d logQ�
f�f �x� �

	s�Q
��

��

�Z
x

dz

z
Pq�q�z�f

�
f �

x

z
�� ������

Now de�ne

M�
fn �

�Z
�

dx xn��f�f �x�� ������

This quantity obeys the di�erential equation

d

d logQ�
M�

fn �
	s�Q

��

��

�Z
�

dx xn��
�Z
x

dz

z
Pq�q�z�f

�
f �

x

z
�� ������
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Interchange the order of integration on the right�hand side� and change vari�
ables to y � x�z�

�Z
�

dx xn��
�Z

x

dz

z
�

�Z
�

dz

z

zZ
�

dx xn��

�

�Z
�

dz

z

�Z
�

dy yn��zn

�

�Z
�

dz zn��
�Z

�

dy yn��� ������

Then the right�hand side of the di�erential equation neatly factorizes�

d

d logQ�
M�

nf �
	s�Q

��

��

 �Z
�

dz zn��Pq�q�z�

�
�

�Z
�

dy yn��f�f �y�� �������

the last factor is againM�
fn� The coe	cient in this relation is the nth moment

of the splitting function Pq�q�z�� We can compute this from the explicit form
of this function given in �������

�Z
�

dz zn��Pq�q�z� �

�Z
�

dz zn��
�

�


 � z�

�� z��
�

�

�
��� z�

�
� ������

The integral over the distribution is done by using the de�nition ����
��

�Z
�

dz zn��


�� z��
�

�Z
�

dz
zn�� � 

�� z�

�

�Z
�

dz
��� z � � � � � zn��

�
� �

n��X
�



j
� �������

Then

�Z
�

dz zn��Pq�q�z� � ��

�

n��X
�



j
�

n��X
�



j
� �

�

�

� ��

�


 � �

nX
�



j
� �

n�n� �

�
�

�������
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Remarkably� this is just anf ��� as the anomalous dimension coe	cient is given
in ������ or ������ Thus� according to the Altarelli�Parisi equations� the
nth moment of f�f �x� obeys

d

d logQ�
M�

fn �
	s�Q

��

��
anf �M�

fn� �������

To integrate this equation� we need the explicit form of 	s�Q
��� Inserting

expression ������ we �nd

d

d logQ�
M�

fn �
anf
�b�



log�Q��&��
M�

fn� �����
�

The solution of this equation� derived from the Altarelli�Parisi equations� is
precisely the function ������ that we derived from the operator analysis of
the moment sum rules for f�f �

It is not di	cult to check that this conclusion is more general� By taking
the nth moment of the full Altarelli�Parisi equations ������� we convert
these equations to a set of ordinary di�erential equations for the moments�
The linear combination of quark distribution functionsX

f

�
ff �x� � f �f �x�

�
�������

couples to the gluon distribution and leads to a �	 � set of equations� All or�
thogonal linear combinations separate from the gluon distribution and thus
have moments that obey equations identical to �����
�� To analyze the cou�
pled equations� de�ne

M�
n �

�Z
�

dx xn��
X
f

�
ff �x� � f �f �x�

�
� Mgn �

�Z
�

dx xn��fg�x�� �������

Then one can show� by the manipulations that led to �����
�� that the
Altarelli�Parisi equations predict for these moments the set of coupled equa�
tions

d

d logQ�
M�

n �


�b�



log�Q��&��

�
anffM

�
n � anfgMgn

�
�

d

d logQ�
Mgn �



�b�



log�Q��&��

�
nfa

n
gfM

�
n � anggMgn

�
�

�������

where the coe	cients anij are proportional to the nth moments of the splitting
functions given in ������ and ������� In all cases� one can see that these co�
e	cients agree precisely with the corresponding coe	cients in ������ Thus�
the solution of these equations gives the same Q� dependence for the moments
of parton distribution functions that we found from the operator analysis�

Remarkably� the analysis of parton splitting functions given in Chapter �
and the analysis of operator renormalization factors given above have turned
out to be two views of the same basic phenomenon� Both sets of equations
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express the manner in which the constituents of hadrons in QCD are resolved�
layer by layer� by hard�scattering processes at successively higher values of the
momentum transfer� Our understanding that a quark� when studied on a �ne
scale� is resolved into a set of quarks� antiquarks� and gluons indicates that we
have gone far beyond the simple notions of one�particle relativistic mechanics�
Our two complementary derivations of this idea reinforce its fundamental
character as a prediction of quantum �eld theory� It is especially pleasing
that� as we saw at the end of Section ��
� Nature apparently accepts this
prediction and makes this consequence of quantum �eld theory an essential
part of the structure of hadrons�

Problems

���� Matrix element for proton decay� Some advanced theories of particle inter�
actions include heavy particles X whose couplings violate the conservation of baryon
number� Integrating out these particles produces an e�ective interaction that allows
the proton to decay to a positron and a photon or a pion� This e�ective interaction is
most easily written using the de�nite�helicity components of the quark and electron
�elds� If uL� dL� uR� eR are two�component spinors� then this e�ective interaction is

�L � �

m�
X

�abc�
�	��eR�uRa	uLb�dLc�

A typical value for the mass of the X boson is mX � ��
�� GeV�

�a� Estimate� in order of magnitude� the value of the proton lifetime if the proton
is allowed to decay through this interaction�

�b� Show that the three�quark operator in �L has an anomalous dimension

� � �� g�

�����
�

Estimate the enhancement of the proton decay rate due to the leading QCD
corrections�

���� Parity�violating deep inelastic form factor� In this problem� we �rst mo�
tivate the presence of additional deep inelastic form factors that are proportional to
di�erences of quark and antiquark distribution functions� Then we de�ne these func�
tions formally and work out their properties�

�a� Analyze neutrino�proton scattering following the method used at the beginning
of Section �
��� De�ne

J�� � u��
�
���
�

�
d� J�� � d��

�
���
�

�
u�

Let

W����� � �i

Z
d�x eiq�x hP jTfJ���x�J�����g jP i �
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averaged over the proton spin� Show that the cross section for deep inelastic
neutrino scattering can be computed from W����� according to

d�	

dxdy
��p� ��X� �

G�
F y

���

� Im$�k�k�� � k�k
�
� � g��k � k� � i���

�	k��k	�W������P� q�%�

�b� Show that any term in W����� proportional to q� or q� gives zero when con�
tracted with the lepton momentum tensor in the formula above� Thus we can
expand W����� with three scalar form factors�

W����� � �g��W ���
� � P�P �W

���
� � i�����P�q�W

���
� � � � � �

where the additional terms do not contribute to the deep inelastic cross section�
Find the formula for the deep inelastic cross section in terms of the imaginary

parts of W
���
� � W

���
� � and W

���
� �

�c� Evaluate the form factors W
���
i in the parton model� and show that

ImW
���
� � ��fd�x� � f�u�x���

ImW
���
� �

��

ys
x�fd�x� � f�u�x���

ImW
���
� �

��

ys
�fd�x�� f�u�x���

Insert these expressions into the formula derived in part �b� and show that the
result reproduces the �rst line of Eq� �������

�d� This analysis motivates the following de�nition� For a single quark #avor f � let

J�fL � f��
�
���
�

�
f�

De�ne

W
��
fL � �i

Z
d�x eiq�x hP jTfJ�fL�x�J�fL���g jP i �

Decompose this tensor according to

W��
fL � �g��W�fL � P�P �W�fL � i�����P�q�W�fL � � � � �

where the remaining terms are proportional to q� or q� � Evaluate the WiL in
the parton model� Show that the quantities W�fL and W�fL reproduce the
expressions for W�f and W�f given by Eqs� ��
����� and ��
������ and that
W�fL is given by

ImW�fL �
��

ys
�ff �x�� f �f �x���

�e� Compute the operator product of the currents in the expression for W��
fL � and

write the terms in this product that involve twist�� operators� Show that the
expressions for W�fL and W�fL that follow from this analysis reproduce the
expressions for W�f and W�f given by Eqs� ��
����� and ��
������ Find the
corresponding expression for W�fL�
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�f� De�ne the parton distribution f�f by the relation

f�f �x�Q
�� �

ys

��
ImW�fL�x�Q

���

Show that� by virtue of this de�nition� the distribution function f�f satis�es the
sum rule ��
����� for odd n�

���� Anomalous dimensions of gluon twist�� operators�

�a� Compute the divergent parts of the diagrams in Fig� �
���� and use these to
derive the second line of Eq� ��
��
��� Notice that this result holds only for n
even� Show that the two diagrams cancel for n odd�

�b� Compute the divergent parts of the diagrams in Fig� �
��� and use these to derive
the third and fourth lines of Eq� ��
��
���

���� Deep inelastic scattering from a photon� Consider the problem of deep�
inelastic scattering of an electron from a photon� This process can actually be measured
by analyzing the reaction e�e� � e�e� � X in the regime where the positron goes
forward� with emission of a collinear photon� which then has a hard reaction with the
electron� Let us analyze this process to leading order in QED and to leading�log order
in QCD� To predict the photon structure functions� it is reasonable to integrate the
renormalization group equations with the initial condition that the parton distribution
for photons in the photon is ��x� �� at Q� � � �� GeV�

�� Take + � ��� MeV� Assume
for simplicity that there are four #avors of quarks� u� d� c� and s� with charges �
�
��
� �
� ��
� respectively� and that it is always possible to ignore the masses of
these quarks�

�a� Use the Altarelli�Parisi equations to compute the parton distributions for quarks
and antiquarks in the photon� to leading order in QED and to zeroth order in
QCD� Compute also the probability that the photon remains a photon as a
function of Q��

�b� Formulate the problem of computing the moments of W� for the photon as a
problem in operator mixing� Compute the relevant anomalous dimension matrix
�� You should be able to assemble this matrix from familiar ingredients without
doing further Feynman diagram computations�

�c� Compute the n � � moments of the photon structure functions as a function of
Q��

�d� Describe qualitatively the evolution of the photon structure function as a func�
tion of x and Q��
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Perturbation Theory Anomalies

In many examples� we have seen that loop corrections can have an important
e�ect on the predictions of quantum �eld theory� We have studied examples in
which the relative importance of operators is shifted by radiative corrections�
and in which the form of the interactions they mediate is altered� However� in
speci�c circumstances� radiative corrections can have an even more signi�cant
e�ect� They can destroy symmetries of the classical equations of motion�

The most important e�ect of this type involves the chiral symmetries of
theories with massless fermions� In Section ���� we saw that the massless Dirac
Lagrangian has an enhanced symmetry associated with the separate number
conservation of left� and right�handed fermions� This symmetry is generated
by the axial vector current j� � ������ Classically�

��j
� � � ����

for zero�mass fermions� This equation of motion is true not only in free fermion
theory but also� as a classical �eld equation� in massless QED and QCD�

However� in this chapter� we will see that the true picture is not so simple�
We will show that� in gauge theories� the conservation of the axial vector
current is actually incompatible with gauge invariance� and that radiative
corrections in gauge theories supply a nonzero operator that appears on the
right�hand side of Eq� ����� This new conservation equation for the axial
current has a number of remarkable consequences� which we will discuss in
Sections ��� and ����

���� The Axial Current in Two Dimensions

Eventually� we will want to analyze the current conservation equation for the
axial current in massless QCD� However� this discussion will involve some
technical complication� so we will �rst study the physics that violates axial
current conservation in a context in which the calculations are relatively sim�
ple� A particularly simple model problem is that of two�dimensional massless
QED�

The Lagrangian of two�dimensional QED is

L � ��iD�� � �
� �F�� �

�� �����

���
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with �� � � ��  and D� � �� � ieA�� The Dirac matrices must be chosen to
satisfy the Dirac algebra �

��� ��
�
� �g�� � �����

In two dimensions� this set of relations can be represented by �	 � matrices�
we choose

�� �

�
� �i
i �

�
� �� �

�
� i
i �

�
� �����

The Dirac spinors will be two�component �elds�
The product of the Dirac matrices� which anticommutes with each of the

��� is

� � ���� �

�
 �
� �

�
� ���
�

Then� just as in four dimensions� there are two possible currents�

j� � ����� j� � ������ �����

and both are conserved if there is no mass term in the Lagrangian�
To make the conservation laws quite explicit� we label the components of

the fermion �eld � in this spinor basis as

� �

�
��
��

�
� �����

The subscript indicates the � eigenvalue� Then� using the explicit represen�
tations ����� and ������ we can rewrite the fermionic part of ����� as

L � �y�i�D� �D���� � �y�i�D� �D����� �����

In the free theory� the �eld equation of �� would be

i��� � ����� � �� �����

the solutions to this equation are waves that move to the right in the one�
dimensional space at the speed of light� We will thus refer to the particles
associated with �� as right�moving fermions� The quanta associated with ��
are� similarly� left�moving � This distinction is analogous to the distinction be�
tween left� and right�handed particles which gives the physical interpretation
of � in four dimensions� Since the Lagrangian ����� contains no terms that
mix left� and right�moving �elds� it seems obvious that the number currents
for these �elds are separately conserved� Thus�

��

�
���
���

�

�
�

�
� �� ��

�
���
���

�

�
�

�
� �� �����

It is a curious property of two�dimensional spacetime that the vector and
axial vector fermionic currents are not independent of each other� Let ��� be
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the totally antisymmetric symbol in two dimensions� with ��� � �� Then the
two�dimensional Dirac matrices obey the identity

��� � ������ � ����

The currents j� and j� have the same relation� Thus we can study the prop�
erties of the axial vector current by using results that we have already derived
for the vector current�

Vacuum Polarization Diagrams

In Section ��
� we computed the lowest�order vacuum polarization of QED in
dimensional regularization� In the limit of zero mass� we found� in Eq� �������

i/���q� � �i�q�g�� � q�q��
�e�

����d��
tr$%

�Z
�

dx x��x� ,���d
� �

��x��x�q����d�� �

�����
where tr$% � � gives the convention for tracing over Dirac matrices given in
Eq� ������� If we set tr$% � � to be consistent with ����� and then set d � �
in ������ we �nd the �nite and well�de�ned result

i/���q� � i�q�g�� � q�q��
�e�

��
� � � 

q�

� i
�
g�� � q�q�

q�

�e�
�
�

�����

Notice that this expression has the structure of a photon mass term� the
photon receives the mass

m�
� �

e�

�
� �����

Schwinger showed that this result is exact� and that the photon of two�
dimensional QED is a free massive boson�! In the discussion below Eq� �������
we pointed out that it is not possible for a vacuum polarization amplitude con�
sistent with the Ward identity to generate a mass for the photon unless it also
contains a pole at q� � �� In two dimensions� such a pole can arise from the
infrared behavior of the fermion�antifermion intermediate state� and we see
this behavior explicitly in ������

Once we have an explicit expression for the vacuum polarization� we can
�nd the expectation value of the current induced by a background electro�
magnetic �eld� This quantity is generated by the diagram of Fig� ��� which
givesZ

d�x eiq�x hj��x�i � i

e

�
i/���q�

�
A��q� � �

�
g�� � q�q�

q�

�
� e
�
A��q�� ���
�

�J� Schwinger� Phys� Rev� ���� ���� ��	����
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Figure �	��� Computation of hj�i in a background electromagnetic �eld�

where A��q� is the Fourier transform of the background �eld� This quantity
manifestly satis�es the current conservation relation q� hj��q�i � ��

The identity ���� between the vector and axial vector currents allows
us to derive from ���
� the corresponding expectation value of j�� We �nd�

j��q�
�
� ���� hj��q�i

� ���
e

�

�
A��q�� q�q

�

q�
A��q�

�
�

�����

If the axial vector current were conserved� this object would satisfy the Ward
identity� Instead� we �nd

q�
�
j��q�

�
�

e

�
���q�A��q�� �����

This is the Fourier transform of the �eld equation

��j
� �

e

��
���F�� � �����

Apparently� the axial vector current is not conserved in the presence of elec�
tromagnetic �elds� as the result of an anomalous behavior of its vacuum po�
larization diagram�

How could this happen� The Feynman diagrams formally satisfy the Ward
identity both for the vector and for the axial vector current� The problem
must come in the regularization of the vacuum polarization diagram� By di�
mensional analysis� we know that this diagram has the form

� ie�
�
Ag�� �B

q�q�

q�

�
� �����

The coe	cient B is a �nite integral� and is� in any event� unambiguously
determined by the low�energy structure of the theory since it is the residue
of the pole in q�� However� the integral A is logarithmically divergent� so its
value depends on the regularization� Dimensional regularization automatically
subtracts this integral to set A � B� then the vector current Ward identity
is satis�ed� But then we are led directly to ������ We could� alternatively�
regularize the integral A so that A � �� Working through the steps of the
previous paragraph with this modi�cation� we now �nd q�

�
j��q�

�
� �� but

q� hj��q�i � e

�
q�A��q�� ������

Though the result ����� is unpleasant� the result ������ would be a com�
plete disaster� since it depends on the unphysical gauge degrees of freedom
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of the vector potential� We conclude that it is not possible to regularize two�
dimensional QED so that� simultaneously� the theory is gauge invariant and
the axial vector current is conserved� The price of requiring gauge invariance
is the anomalous nonconservation of the axial current shown in ������

The Axial Vector Current Operator Equation

To understand what happened to the axial current from another viewpoint�
we now study the operator equation for the divergence of j�� Varying the
Lagrangian ������ we �nd the following equations of motion for the fermion
�elds�

�� � �ie A�� ����
� � ie� A� �����

By using these equations of motion in the most straightforward way� it is easy
to conclude that ��j

� � �� However� a closer look at these manipulations
reveals some subtleties� which alter the �nal conclusion�

The axial vector current is a composite operator built out of fermion
�elds� In the previous chapter we saw that products of local operators are
often singular� so we will de�ne the current by placing the two fermion �elds
at distinct points separated by a distance � and then carefully taking the limit
as the two �elds approach each other� Explicitly� we de�ne

j� � symm lim
���

	
��x� �

� ��
�� exp

h
�ie

x����Z
x����

dz � A�z�
i
��x� �

� �



� ������

Notice that� because we have placed � and � at di�erent points� we must
introduce a Wilson line �
�
�� in order that the operator be locally gauge
invariant� To give j� the correct transformation properties under Lorentz
transformations� the limit �� � should be taken symmetrically�

symm lim
���

n ��
��

o
� �� symm lim

���

n ����
��

o
�



d
g�� � ������

with d � � in this case�
We now compute the divergence of the axial current de�ned as in �������

��j
� � symm lim

���

	�
����x� �

� �
�
��� exp

h
�ie

x����Z
x����

dz �A�z�
i
��x� �

� �

� ��x� �
� ��

�� exp
h
�ie

x����Z
x����

dz �A�z�
i�
����x� �

� �
�

� ��x� �
� ��

��
��ie����A��x�

�
��x� �

� �



� ������
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Using the equations of motion ������ and keeping terms up to order �� we
can reduce this to

��j
� � symm lim

���

n
��x� �

� �
�
ieA�x� �

� �� ieA�x� �
� �

� ie������A��x�
�
���x� �

� �
o

� symm lim
���

n
��x� �

� �
��ie�������A� � ��A��

�
���x� �

� �
o
�

����
�
Expression ����
� seems to vanish in the limit �� �� However� we must

take account of the fact that the product of the fermion operators is singular�
In two dimensions� the contraction of fermion �elds is

��y���z� �

Z
d�k

�����
e�ik��y�z�

ik
k�

� ��� i
��

log�y � z��
�

�
�i
��

���y � z��
�y � z��

�

������

Thus�

��x � �
� �,��x� �

� � �
�i
��

tr
h����

��
,
i
� ������

Notice that the result ������ contains an extra minus sign from the inter�
change of fermion operators�

Because the contraction of fermion �elds is singular as � � �� the terms
of order � in the last line of ����
� can give a �nite contribution� Taking the
contraction according to ������� we �nd

��j
� � symm lim

���

	�i
��

tr
h����

��
���

i
� ��ie��F���
� ������

In two dimensions� tr$�����% � ����� Thus�

��j
� �

e

��
symm lim

���

n
�
���

�

��

o
���F��� ������

Now take the symmetric limit according to the prescription ������� We �nd
precisely the anomalous nonconservation equation ������ In this derivation�
����� appears as an operator relation� rather than in a simple matrix ele�
ment� Notice that� as in our �rst derivation of this equation� the assumption
of local gauge invariance played a crucial role� If we had de�ned the axial vec�
tor current by reversing the sign of the Wilson line in ������� a prescription
that would have done violence to local gauge invariance� we would have found
the various contributions canceling on the right�hand side of �������
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An Example with Fermion Number Nonconservation

To complete our discussion of the two�dimensional axial vector current� we
will show that the nonconservation equation ����� also has a global aspect�
In free fermion theory� the integral of the axial current conservation law givesZ

d�x ��j
� � NR �NL � �� ������

This relation implies that the di�erence in the number of right�moving and
left�moving fermions cannot be changed in any possible process� Combining
this with the conservation law for the vector current� we conclude that the
number of each type of fermion is separately conserved� From ������ we might
conclude that these separate conservation laws hold also in two�dimensional
QED� However� we have already found that we must be careful in making
statements about the axial current�

In two�dimensional QED� the conservation equation for the axial current
is replaced by the anomalous nonconservation equation ������ If the right�
hand side of this equation were the total derivative of a quantity falling o�
su	ciently rapidly at in�nity� its integral would vanish and we would still
retain the global conservation law� In fact� ���F�� is a total derivative�

���F�� � ���
�
���A�

�
� �����

However� it is easy to imagine examples where the integral of this quantity
does not vanish� for example� a world with a constant background electric
�eld� In such a world� the conservation law ������ must be violated� But how
can this happen�

Let us analyze this problem by thinking about fermions in one space
dimension in a background A� �eld that is constant in space and has a very
slow time dependence� We will assume that the system has a �nite length L�
with periodic boundary conditions� Notice that the constant A� �eld cannot
be removed by a gauge transformation that satis�es the periodic boundary
conditions� One way to see this is to note that the system gives a nonzero
value to the Wilson line

exp
h
�ie

LZ
�

dxA��x�
i
� ������

which forms a gauge�invariant closed loop due to the periodic boundary con�
ditions�

Following the derivation of the three�dimensional Hamiltonian� Eq� �������
we �nd that the Hamiltonian of this one�dimensional system is

H �

Z
dx�y

��i	�D�

�
�� ������
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where 	 � ���� � �� In the components ������

H �

Z
dx
n
� i�y�

�
�� � ieA�

�
�� � i�y�

�
�� � ieA�

�
��
o
� ������

For a constant A� �eld� it is easy to diagonalize this Hamiltonian� The eigen�
states of the covariant derivatives are wavefunctions

eiknx� with kn �
��n

L
� n � ��� � � � ��� ����
�

to satisfy the periodic boundary conditions� Then the single�particle eigen�
states of H have energies

�� � En � ��kn � eA���

�� � En � ��kn � eA���
������

Each type of fermion has an in�nite tower of equally spaced levels� To �nd
the ground state of H � we �ll the negative energy levels and interpret holes
created among these �lled states as antiparticles�

Now adiabiatically change the value of A�� The fermion energy levels
slowly shift in accord with the relations ������� If A� changes by the �nite
amount

�A� �
��

eL
� ������

which brings the Wilson loop ������ back to its original value� the spectrum
of H returns to its original form� In this process� each level of �� moves down
to the next position� and each level of �� moves up to the next position� as
shown in Fig� ���� The occupation numbers of levels should be maintained in
this adiabatic process� Thus� remarkably� one right�moving fermion disappears
from the vacuum and one extra left�moving fermion appears� At the same time�Z

d�x
� e
�
���F��

�
�

Z
dt dx

e

�
��A�

�
e

�
L
���A�

�
� ���

������

where we have inserted ������ in the last line� Thus the integrated form of
the anomalous nonconservation equation ����� is indeed satis�ed�

NR �NL �

Z
d�x
� e

��
���F��

�
� ������

Even in this simple example� we see that it is not possible to escape
the question of ultraviolet regularization in analyzing the chiral conservation
law� Right�moving fermions are lost and left�moving fermions appear from the
depths of the fermionic spectrum� E � ��� In computing the changes in the
separate fermion numbers� we have assumed that the vacuum cannot change
the charge it contains at large negative energies� This prescription is gauge
invariant� but it leads to the nonconservation of the axial vector current�
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Figure �	��� E�ect on the vacuum state of the Hamiltonian H of one�
dimensional QED due to an adiabatic change in the background A� �eld�

���� The Axial Current in Four Dimensions

All of the derivations we have just given for the two�dimensional axial current
have analogues in four dimensions� In Eq� ������� we showed that� in the case
of massless fermions� the four�dimensional Dirac equation splits neatly into
separate equations for left� and right�handed fermions� If we couple the Dirac
equation to a gauge �eld� we replace derivatives by covariant derivatives� This
does not seem to a�ect the manifest separation between the two helicity com�
ponents� Thus it seems clear that both the vector and axial vector currents
should remain conserved� However� after the analysis we have just completed
for the two�dimensional case� we know that we should not take these conser�
vation laws for granted� We will now make a more careful analysis of the axial
vector conservation law in four dimensions�

The Axial Vector Current Operator Equation

We begin with the case of massless four�dimensional QED� Of the three ar�
guments that we gave in the previous section for the two�dimensional axial
current conservation law� the operator derivation generalizes most easily� The
fermion �eld equations ����� are identical in the four�dimensional case� We
can again adopt the gauge�invariant de�nition of the axial vector current
������� When we take the divergence of this current� all of the manipulations
leading to Eq� ����
� are still correct�

From this point� we must compute the singular terms in the operator
product of the two fermion �elds in the limit � � �� As in two dimensions�
the leading term is given by contracting the two operators using a free��eld
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Figure �	��� Expansion of ��y���z� in the presence of a background gauge
�eld�

propagator� This contribution gives

��y���z� �

Z
d�k

�����
e�ik��y�z�

ik
k�

� ��
� i

���


�y � z��

�
�
�i
���

���y � z��
�y � z��

� ������

This is highly singular as �y � z� � �� but it gives zero when traced with
���� To �nd a nonzero result� we must consider terms of higher order in the
expansion of the product of operators�

In a nonzero background gauge �eld� the contraction of fermion �elds
is given by the series of diagrams shown in Fig� ���� We have computed the
leading term in this series in ������� The higher terms give less singular terms
as �y � z�� �� The second term in the series is given by

�

Z
d�k

�����
d�p

�����
e�i�k�p��yeik�z

i�k � p�
�k � p��

��ieA�p�� ik
k�
� �����

This contribution leads to�
��x� �

� ��
����x � �

� �
�

�

Z
d�k

�����
d�p

�����
eik��e�ip�x tr


������ i�k � p�

�k � p��
��ieA�p�� ik

k�

�
�

Z
d�k

�����
d�p

�����
eik��e�ip�x

�e���	��k � p��A	�p�k�
k��k � p��

� ������

To evaluate the limit �� �� we can expand the integrand for large k� Then

�
��x� �

� ��
����x� �

� �
� � �e���	�

Z
d�p

�����
e�ip�xp�A	�p�

Z
d�k

�����
eik��

k�
k�

� �e��	��
�
��A	�x�

� �

���

� i

���
log
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�
� �e��	��F�	�x�

� �i
���

��
��

�
� ������
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Figure �	��� Diagrams contributing to the two�photon matrix element of
the divergence of the axial vector current�

Substituting this expression into ����
�� we �nd

��j
� � symm lim

���

	
e

���
��	��F�	

��i��
��

���ie��F���
� ������

Now take the symmetric limit �� � in four dimensions� We �nd

��j
� � � e�

���
��	��F�	F�� � ����
�

This equation� which expresses the anomalous nonconservation of the four�
dimensional axial current� is known as the Adler�Bell�Jackiw anomaly� Adler
and Bardeen proved that this operator relation is actually correct to all orders
in QED perturbation theory and receives no further radiative corrections�y

Triangle Diagrams

We can con�rm the Adler�Bell�Jackiw relation by checking� in standard per�
turbation theory� that the divergence of the axial vector current has a nonzero
matrix element to create two photons� To do this� we must analyze the matrix
elementZ

d�xe�iq�x hp� kj j��x� j�i � ����������p� k � q�����p��
�
��k�M����p� k��

������
The leading�order diagrams contributing toM��� are shown in Fig� ���� The
�rst diagram gives the contribution

� �����ie��
Z

d��

�����
tr


���

i��� k�
��� k��

��
i�
��
��

i��� p�
��� p��

�
� ������

and the second diagram gives an identical contribution with �p� �� and �k� ��
interchanged�

It is easy to give a formal argument that the matrix element of the di�
vergence of the axial current vanishes at this order� Taking the divergence of
the axial current in ������ is equivalent to dotting this quantity with iq��

yS� Adler and W� A� Bardeen� Phys� Rev� ���� ���� ��	�	�� S� Adler� in Deser�
et� al� ��	����
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Now we operate on the right�hand side of ������ as we do to prove a Ward
identity� Replace

q��
�� � ��� p� �� k�� � ��� p�� � ���� k�� ������

Each momentum factor combines with the numerator adjacent to it to cancel
the corresponding denominator� This brings ������ into the form

iq� � � e�
Z

d��

�����
tr


�

��� k�
��� k��

��
�
��
�� � ���

�
��
��

��� p�
��� p��

�
�

������
Now pass �� through � in the second term and shift the integral over the
�rst term according to �� ��� k��

iq� � � e�
Z

d��

�����
tr


�
�
��
��

��� k�
��� k��

�� � �
�
��
��

��� p�
��� p��

��
�
�

���
��
This expression is manifestly antisymmetric under the interchange of �p� ��
and �k� ��� so the contribution of the second diagram in Fig� ��� precisely
cancels �������

However� because this derivation involves a shift of the integration vari�
able� we should look closely at whether this shift is allowed by the regulariza�
tion� From ������� we see that the integral that must be shifted is divergent� If
the diagram is regulated with a simple momentum cuto�� or even with Pauli�
Villars regularization� it turns out that the shift leaves over a �nite� nonzero
term� In Chapter �� we encountered a similar problem in our discussion of the
QED vacuum polarization diagram� We evaded the problem there by using di�
mensional regularization� Dimensional regularization of the diagrams of Fig�
��� will automatically insure the validity of the QED Ward identities for the
photon emission vertices�

p�M��� � k�M��� � �� ���
�

But in the analysis of the axial vector current� even dimensional regularization
has an extra subtlety� because � is an intrinsically four�dimensional object�
In their original paper on dimensional regularization�z 0t Hooft and Veltman
suggested using the de�nition

� � i�������� ���
��

in d dimensions� This de�nition has the consequence that � anticommutes
with �� for � � �� � �� � but commutes with �� for other values of ��

In the evaluation of ������� the external indices and the momenta p�
k� q all live in the physical four dimensions� but the loop momentum � has
components in all dimensions� Write

� � �k � ��� ���
��

zG� .t Hooft and M� J� G� Veltman� Nucl� Phys� B��� �
	 ��	����
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where the �rst term has nonzero components in dimensions �� � �� � and the
second term has nonzero components in the other d�� dimensions� Because �

commutes with the �� in these extra dimensions� identity ������ is modi�ed
to

q��
�� � ��� k�� � ���� p�� �� ��� ���
��

The �rst two terms cancel according to the argument given above� the shift
in ���
�� is justi�ed by the dimensional regularization� However� the third
term of ���
�� gives an additional contribution�

iq� � � e�
Z

d��

�����
tr


��� ��

��� k�
��� k��

��
�
��
��

��� p�
��� p��

�
� ���

�

To evaluate this contribution� combine denominators in the standard way� and
shift the integration variable � � � � P � where P � xk � yp� In expanding
the numerator� we must retain one factor each of �� � ��� p� and k to give a
nonzero trace with �� This leaves over one factor of �� and one factor of �
which must also be evaluated with components in extra dimensions in order
to give a nonzero integral� The factors �� anticommute with the other Dirac
matrices in the problem and thus can be moved to adjacent positions� Then
we must evaluate the integralZ

d��

�����
�� ��

��� ����
� ���
��

where � is a function of k� p� and the Feynman parameters� Using

����� � ��� �
�d� ��

d
�� ���
��

under the symmetrical integration� we can evaluate ���
�� as

i

����d��
�d� ��

�

,���d
� �

,������d�� ��
d��

�i
������

� ���
��

Notice the behavior in which a logarithmically divergent integral contributes
a factor �d � �� in the denominator and allows an anomalous term� formally
proportional to �d � ��� to give a �nite contribution� The remainder of the
algebra in the evaluation of ���

� is straightforward� The terms involving
the momentum shift P cancel� and we �nd

iq� � � e�
� �i
������

�
tr
�
����k��� p���

�
e�

���
���	�k�p	 �

���
��
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This term is symmetric under the interchange of �p� �� with �k� ��� so the
second diagram of Fig� ��� gives an equal contribution� Thus�

hp� kj ��j���� j�i � � e�

���
���	���ip������p���ik	�����k�

� � e�

���
hp� kj ���	�F��F	���� j�i �

������

as we would expect from the Adler�Bell�Jackiw anomaly equation�

Chiral Transformation of the Functional Integral

A third way of understanding the Adler�Bell�Jackiw anomaly comes from an�
alyzing the conservation law for the axial vector current from the functional
integral for the fermion �eld� In Section ���� we used the functional integral
to derive the current conservation equations and the Ward identities associ�
ated with any symmetry of the Lagrangian� It is instructive to see how this
argument breaks down when we apply it to the chiral symmetry of massless
fermions�

We �rst review the standard derivation of the axial vector Ward identities
following the method of Section ���� Starting from the fermionic functional
integral

Z �

Z
D�D� exp

h
i

Z
d�x��iD��

i
� �����

make the change of variables

��x�� ���x� � � � i	�x�����x��

��x�� ���x� � �� � i	�x����
������

Since the global chiral rotation� with constant 	� is a symmetry of the La�
grangian� the only new terms in the Lagrangian that result from ������ con�
tain derivatives of 	� Thus�Z

d�x���i D��� �
Z
d�x
�
��iD�� � ��	�x���

���
�

�

Z
d�x
�
��iD�� � 	�x������

����
�
�

������

Then� by varying the Lagrangian with respect to 	�x�� we derive the classical
conservation equation for the axial current� By carrying out a similar manipu�
lation on the functional expression for a correlation function� as in Eq� �������
we would derive the associated Ward identities�

In the argument just given� we assumed that the functional measure does
not change when we change variables from ���x� to �� This seems reasonable�
because the relation of �� and � in ������ looks like a unitary transformation�
However� we should examine this point more closely�! First� we must carefully

�K� Fujikawa� Phys� Rev� Lett� ��� ��	� ��	�	�� Phys� Rev� D��� �
�
 ��	
���
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de�ne the functional measure� To do this� expand the fermion �eld in a basis
of eigenstates of D� De�ne right and left eigenvectors of D by

�iD�
m � �m
m� )
m�iD� � �iD�
)
m�

� � �m )
m� ������

For zero background A� �eld� these eigenstates are Dirac wavefunctions of
de�nite momentum� the eigenvalues satisfy

��m � k� � �k��� � �k��� ����
�

For a �xed A� �eld� this is also the asymptotic form of the eigenvalues for
large k� These eigenfunctions give us a basis that we can use to expand � and
��

��x� �
X
m

am
m�x�� ��x� �
X
m

)am )
m�x�� ������

where am� )am are anticommuting coe	cients multiplying the c�number eigen�
functions ������� The functional measure over �� � can then be de�ned as

D�D� �
Y
m

damd)am� ������

and the functional measure over ��� �� can be de�ned in the same way�
If ���x� � � � i	�x�����x�� the expansion coe	cients of � and �� are

related by a in�nitesimal linear transformation � �C�� computed as follows�

a�m �
X
n

Z
d�x
ym�x�� � i	�x���
n�x�an �

X
n

�
�mn � Cmn

�
an� ������

Then

D��D�� � J�� � D�D�� ������

where J is the Jacobian determinant of the transformation � � C�� The
inverse of J appears in ������ as a result of the rule ������ or ������ for
fermionic integration� To evaluate J � we write

J � det
�
 � C

�
� exp

�
tr log

�
 � C

��
� exp

hX
n

Cnn � � � �
i
� ������

and we can ignore higher order terms in the last line because C is in�nitesimal�
Thus�

logJ � i

Z
d�x	�x�

X
n


yn�x��

n�x�� �����

The coe	cient of 	�x� looks like tr$�% � �� However� we must regularize the
sum over eigenstates n in a gauge�invariant way� The natural choice isX

n


yn�x��

n�x� � lim

M��

X
n


yn�x��

n�x�e

��n�M
�

� ������
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As ����
� indicates� the sign of ��n will be negative at large momentum after
a Wick rotation� thus� the sign in the exponent of the convergence factor is
given correctly� We can write ������ in an operator formX

n


yn�x��

n�x� � lim

M��

X
n


yn�x��
e�i
D���M�


n�x�

� lim
M��

hxj tr��e�i
D���M�� jxi � ������

where� in the second line� we trace over Dirac indices�
To evaluate ������� we rewrite �iD�� according to ������� In our present

conventions� this equation reads

�iD�� � �D� �
e

�
���F�� � ������

with ��� � i
� $�

�� �� %� Since we are taking the limit M � �� we can con�
centrate our attention on the asymptotic part of the spectrum� where the
momentum k is large and we can expand in powers of the gauge �eld� To ob�
tain a nonzero trace with �� we must bring down four Dirac matrices from
the exponent� The leading term is given by expanding the exponent to order
�� � F ��� and then ignoring the background A� �eld in all other terms� This
gives

lim
M��

hxj tr��e��D���e�����F ��M� � jxi
� lim
M��

tr
h
�
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���F���x�

��i
hxj e����M� jxi �
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�

The matrix element in ����
� can be evaluated by a Wick rotation�

hxj e����M� jxi � lim
x�y
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�����
e�ik��x�y�ek
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� i
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E�M
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������

Then ����
� reduces to
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M��

�ie�
� � ���M

� tr
h
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i
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Thus�

J � exp
h
�i
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d�x	�x�

� e�

����
�����F��F���x�
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In all� we �nd that� after the change of variables ������� the functional integral
����� takes the form

Z �

Z
D�D� exp


i

Z
d�x

�
��iD�� � 	�x�

n
��j

� �
e�

���
�����F��F��

o��
�

������
Varying the exponent with respect to 	�x�� we �nd precisely the Adler�Bell�
Jackiw anomaly equation�

This derivation of the axial vector anomaly is especially interesting be�
cause it generalizes readily to any even dimensionality� The functional deriva�
tion always picks out for the right�hand side of the anomaly equation the
pseudoscalar operator built from gauge �elds that has the same dimension� d�
as the divergence of the current� In two dimensions� this derivation leads im�
mediately to ������ As long as d is even� we can always construct a matrix
� that anticommutes with all of the Dirac matrices by taking their product�
Then� the functional derivation leads straightforwardly to the result

��j
� � ���n�� �en

n-����n
����������nF���� � � �F��n����n � ������

where n � d���
At the end of the previous section� we argued that the axial vector

anomaly leads to global nonconservation of fermionic charges in a two�
dimensional system with a macroscopic electric �eld� In the same way� the
four�dimensional anomaly equation leads to global nonconservation of the
number of left� and right�handed fermions in background �elds in which the
right�hand side of ����
� is nonzero� These are �eld con�gurations with par�
allel electric and magnetic �elds� In Problem ��� we work out an example
of four�dimensional massless fermions in a simple situation of this type and
show that the fermion numbers are indeed violated� in a manner similar to
what we saw at the end of Section ��� in accord with the Adler�Bell�Jackiw
anomaly�

���� Goldstone Bosons and Chiral Symmetries in QCD

The Adler�Bell�Jackiw anomaly has a number of important implications for
QCD� To describe these� we must �rst discuss the chiral symmetries of QCD
systematically� In this discussion� we will ignore all but the lightest quarks u
and d� In many analyses of the low�energy structure of the strong interactions�
one also treats the s quark as light� this gives results that naturally generalize
the ones we will �nd below�

The fermionic part of the QCD Lagrangian is

L � uiDu� diDd�muuu�mddd� �����

If the u and d quarks are very light� the last two terms are small and can
be neglected� Let us study the implications of making this approximation� If
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we ignore the u and d masses� the Lagrangian ����� of course has isospin
symmetry� the symmetry of an SU��� unitary transformation mixing the u
and d �elds� However� because the classical Lagrangian for massless fermions
contains no coupling between left� and right�handed quarks� this Lagrangian
actually is symmetric under the separate unitary transformations�

u
d

�
L

� UL

�
u
d

�
L

�

�
u
d

�
R

� UR

�
u
d

�
R

� ������

It is useful to separate the U�� and SU��� parts of these transformations� then
the symmetry group of the classical� massless QCD Lagrangian is SU��� 	
SU���	U��	U��� Let Q denote the quark doublet� with chiral components

QL �
���

�

��
u
d

�
� QR �

���
�

��
u
d

�
� ������

Then we can write the currents associated with these symmetries as

j�L � QL�
�QL� j�R � QR�

�QR�

j�aL � QL�
��aQL� j�aR � QR�

��aQR�
������

where �a � �a�� represent the generators of SU���� The sums of left� and
right�handed currents give the baryon number and isospin currents

j� � Q��Q� j�a � Q���aQ� ����
�

The corresponding symmetries are the transformations ������ with UL � UR�
The di�erences of the currents ������ give the corresponding axial vector
currents j�� j�a�

j� � Q���Q� j�a � Q����aQ� ������

In the discussion to follow� we will derive conclusions about the strong inter�
actions by assuming that the classical conservation laws for these currents are
not spoiled by anomalies� We will show below that this assumption is correct
for the isotriplet currents j�a but not for j��

The vector SU���	U�� transformations are manifest symmetries of the
strong interactions� and the associated currents lead to familiar conservation
laws� What about the orthogonal� axial vector� transformations� These do
not correspond to any obvious symmetry of the strong interactions� In ����
Nambu and Jona�Lasinio hypothesized that these are accurate symmetries of
the strong interactions that are spontaneously broken�y This idea has led to
a correct and surprisingly detailed description of the properties of the strong
interactions at low energy�

yY� Nambu and G� Jona�Lasinio� Phys� Rev� ���� �� ��	����
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Figure �	��� A quark�antiquark pair with zero total momentum and angular
momentum�

Spontaneous Breaking of Chiral Symmetry

Before we describe the consequences of spontaneously broken chiral symmetry�
let us ask why we might expect the chiral symmetries to be spontaneously
broken in the �rst place� In the theory of superconductivity� a small electron�
electron attraction leads to the appearance of a condensate of electron pairs
in the ground state of a metal� In QCD� quarks and antiquarks have strong
attractive interactions� and� if these quarks are massless� the energy cost of
creating an extra quark�antiquark pair is small� Thus we expect that the
vacuum of QCD will contain a condensate of quark�antiquark pairs� These
fermion pairs must have zero total momentum and angular momentum� Thus�
as Fig� ��
 shows� they must contain net chiral charge� pairing left�handed
quarks with the antiparticles of right�handed quarks� The vacuum state with
a quark pair condensate is characterized by a nonzero vacuum expectation
value for the scalar operator

h�jQQ j�i � h�jQLQR �QRQL j�i � �� ������

which transforms under ������ with UL � UR� The expectation value signals
that the vacuum mixes the two quark helicities� This allows the u and d quarks
to acquire e�ective masses as they move through the vacuum� Inside quark�
antiquark bound states� the u and d quarks would appear to move as if they
had a sizable e�ective mass� even if they had zero mass in the original QCD
Lagrangian�

The vacuum expectation value ������ signals the spontaneous breaking
of the full symmetry group ������ down to the subgroup of vector symmetries
with UL � UR� Thus there are four spontaneously broken continuous symme�
tries� associated with the four axial vector currents� At the end of Section
�� we proved Goldstone�s theorem� which states that every spontaneously
broken continuous symmetry of a quantum �eld theory leads to a massless
particle with the quantum numbers of a local symmetry rotation� This means
that� in QCD with massless u and d quarks� we should �nd four spin�zero
particles with the correct quantum numbers to be created by the four axial
vector currents�

The real strong interactions do not contain any massless particles� but
they do contain an isospin triplet of relatively light mesons� the pions� These
particles are known to have odd parity �as we expect if they are quark�
antiquark bound states�� Thus� they can be created by the axial isospin cur�
rents� We can parametrize the matrix element of j�a between the vacuum
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and an on�shell pion by writing

h�j j�a�x� ���b�p�� � �ip�f��abe�ip�x� ������

where a� b are isospin indices and f� is a constant with the dimensions of
�mass��� We show in Problem ��� that the value of f� can be determined from
the rate of �� decay through the weak interaction� one �nds f� � �� MeV�
For this reason� f� is often called the pion decay constant � If we contract
������ with p� and use the conservation of the axial currents� we �nd that
an on�shell pion must satisfy p� � �� that is� it must be massless� as required
by Goldstone�s theorem�

If we now restore the quark mass terms in ������ the axial currents are
no longer exactly conserved� The equation of motion of the quark �eld is now

iDQ �mQ� �iD�Q�
� � Qm� ������

where

m �

�
mu �
� md

�
������

is the quark mass matrix� Then one can readily compute

��j
�a � iQ

�
m� �a

�
Q� �����

Using this equation together with ������� we �nd

h�j��j�a���
���b�p�� � �p�f��ab � h�j iQ�m� �a

�
�Q
���b�p�� � ������

The last expression is an invariant quantity times

tr
��
m� �a

�
� b
�
� �

��
ab�mu �md�� ������

Thus� the quark mass terms give the pions masses of the form

m�
� � �mu �md�

M�

f�
� ������

The mass parameter M has been estimated to be of order ��� MeV� Thus�
to give the observed pion mass of �� MeV� one needs only �mu �md� � �
MeV� This is a small perturbation on the strong interactions�

This argument has an interesting implication for the nature of the isospin
symmetry of the strong interactions� In the limit in which the u and d quarks
have zero mass in the Lagrangian� these quarks acquire large� equal e�ective
masses from the vacuum with spontaneously broken chiral symmetry� As long
as the masses mu and md in the Lagrangian are small compared to the e�ec�
tive mass� the u and d quarks will behave inside hadrons as though they are
approximately degenerate� Thus the isospin symmetry of the strong interac�
tions need have nothing to do with a fundamental symmetry linking u and d�
it follows for any arbitrary relation between mu and md� provided that both
of these parameters are much less than ��� MeV� Similarly� the approximate
SU��� symmetry of the strong interactions follows if the fundamental mass of
the s quark is also small compared to the strong interaction scale� The best
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Figure �	��� Matrix element of the axial isospin current in the nucleon� �a�
kinematics of the amplitude� �b� contribution that leads to a pole in q��

current estimates of the mass ratios mu � md � ms are in fact  � � � ��� so
that the fundamental Lagrangian of the strong interactions shows no sign of
�avor symmetry among the quark masses�z

The identi�cation of the pions as Goldstone bosons of broken chiral sym�
metry has a number of implications for hadronic matrix elements� Here we
will give only one example� In the following argument� we will work in the
limit of exact chiral symmetry� ignoring the small corrections from the u and
d masses�

The matrix element of the axial isospin current in the nucleon� a quantity
that enters the theory of neutron and nuclear � decay� can be written in terms
of form factors as follows�

hN j j�a�q� jNi � u
h
���F 

� �q
�� �

i���q�
�m

F 
� �q

�� � q��F 
� �q

��
i
u� ����
�

The kinematics of the vertex is shown in Fig� ���� Notice that there is one
more possible form factor than in the vector case� Eq� ������� The value of F 

�

at q� � � is not restricted by the value of any manifestly conserved charge�
Conventionally� one writes simply

F 
� ��� � gA� ������

However� we will now show that the value of this quantity can be computed�
If we ignore quark masses� the axial vector current in ����
� is conserved�

so the form factors satisfy

� � u�p��

q�F 

� �q
�� � q��F 

� �q
��

�
u�p�

� u�p��

�p� � p��F 

� �q
�� � q��F 

� �q
��

�
u�p�

� u�p��

�mN�

F 
� �q

�� � q��F 
� �q

��

�
u�p��

������

zThe determination of the fundamental quark masses is reviewed by J� Gasser
and H� Leutwyler� Phys� Repts� �� �� ��	
���
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Thus� we �nd

gA � lim
q���

q�

�mN
F 
� �q

��� ������

This equation implies that gA � � unless F 
� contains a pole in q�� Such a

pole would imply the presence of a physical massless particle� but fortunately�
there is one available�the massless pion� The process in which the current
creates a pion that is then absorbed by the nucleon indeed leads to a pole in
F 
� �q

��� as shown in Fig� ����b��
Let us now compute this pole term and use it to determine gA� The

low�energy pion�nucleon interaction is conventionally parametrized by the La�
grangian

�L � ig�NN�
aN��aN� ������

The amplitude for the current j�a to create the pion is given by �������
Then the contribution of Fig� ����b� to the current vertex is

�g�NNu���
a��u � i

q�
� �iq�f��� ������

Thus�

F 
� �q

�� �


q�
� �f�g�NN � �����

We �nd that gA is given by a combination of f�� the nucleon mass� and the
pion�nucleon coupling constant�

gA �
f�
mN

g�NN � ������

This strange identity� called the Goldberger�Trieman relation� is satis�ed ex�
perimentally to 
� accuracy�

The identi�cation of the pion as the Goldstone boson of spontaneously
broken chiral symmetry leads to numerous other predictions for current matrix
elements and pion scattering amplitudes� In particular� the leading terms of
the pion�pion and pion�nucleon scattering amplitudes at low energy can be
computed directly in terms of f� by arguments similar to one just given�!

Anomalies of Chiral Currents

Up to this point� we have discussed the chiral symmetries of QCD according
to the classical current conservation equations� We must now ask whether
these equations are a�ected by the Adler�Bell�Jackiw anomaly� and what the
consequences of that modi�cation are�

To begin� we study the modi�cation of the chiral conservation laws due
to the coupling of the quark currents to the gluon �elds of QCD� The ar�
guments given in the previous section go through equally well in the case of

�The detailed consequences of spontaneously broken chiral symmetry are worked
out in a very clear manner in Georgi ��	
���
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Figure �	��� Diagrams that lead to an axial vector anomaly for a chiral
current in QCD�

massless fermions coupling to a non�Abelian gauge �eld� so we expect that an
axial vector current will receive an anomalous contribution from the diagrams
shown in Fig� ���� The anomaly equation should be the Abelian result� sup�
plemented by an appropriate group theory factor� In addition� since the axial
current is gauge invariant� the anomaly must also be gauge invariant� That
is� it must contain the full non�Abelian �eld strength� including its nonlinear
terms� These terms are actually included in the functional derivation of the
anomaly given at the end of Section ����

For the axial currents of QCD� written in ������� we can read the group
theory factors for the Adler�Bell�Jackiw anomaly from the diagrams of Fig�
���� For the axial isospin currents�

��j
�a � � g�

���
��	��F c

�	F
d
�� � tr

�
�atctd

�
� ������

where F c
�� is a gluon �eld strength� �a is an isospin matrix� tc is a color matrix�

and the trace is taken over colors and �avors� In this case� we �nd

tr
�
�atctd

�
� tr$�a% tr$tctd% � �� ������

since the trace of a single �a vanishes� Thus the conservation of the axial
isospin currents is una�ected by the Adler�Bell�Jackiw anomaly of QCD� How�
ever� in the case of the isospin singlet axial current� the matrix �a is replaced
by the matrix  on �avors� and we �nd

��j
� � �g

�nf
����

��	��F c
�	F

c
�� � ����
�

where nf is the number of �avors� nf � � in our current model�
Thus� the isospin singlet axial current is not in fact conserved in QCD� The

divergence of this current is equal to a gluon operator with nontrivial matrix
elements between hadron states� Some subtle questions remain concerning the
e�ects of this operator� In particular� it can be shown� as we saw for the two�
dimensional axial anomaly in Eq� ������ that the right�hand side of ����
�
is a total divergence� Nevertheless� again in accord with our experience in
two dimensions� there are physically reasonable �eld con�gurations in which
the four�dimensional integral of this term takes a nonzero value� This topic
is discussed further at the end of Section ����� In any event� Eq� ����
�
indeed implies that QCD has no isosinglet axial symmetry and no associated
Goldstone boson� This equation explains why the strong interactions contain
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no light isosinglet pseudoscalar meson with mass comparable to that of the
pions�

Though the axial isospin currents have no axial anomaly from QCD in�
teractions� they do have an anomaly associated with the coupling of quarks
to electromagnetism� Again referring to the diagrams of Fig� ���� we see that
the electromagnetic anomaly of the axial isospin currents is given by

��j
�a � � e�

���
��	��F�	F�� � tr

�
�aQ�

�
� ������

where F�� is the electromagnetic �eld strength� Q is the matrix of quark
electric charges�

Q �

� �
� �

� � �
�

�
� ������

and the trace again runs over �avors and colors� Since the matrices in the trace
do not depend on color� the color sum simply gives a factor of �� The �avor
trace is nonzero only for a � �� in that case� the electromagnetic anomaly is

��j
�� � � e�

����
��	��F�	F�� � ������

Because the current j�� annihilates a �� meson� Eq� ������ indicates
that the axial vector anomaly contributes to the matrix element for the decay
�� � ��� We will now show that� in fact� it gives the leading contribution to
this amplitude� Again� we work in the limit of massless u and d quarks� so
that the chiral symmetries are exact up to the e�ects of the anomaly�

Consider the matrix element of the axial current between the vacuum and
a two�photon state�

hp� kj j���q� j�i � ����
�
�M����p� k�� ������

This is the same matrix element ������ that we studied in QED perturbation
theory in Section ���� Now� however� we will study the general properties of
this matrix element by expanding it in form factors� In general� the amplitude
can be decomposed by writing all possible tensor structures and applying
the restrictions that follow from symmetry under the interchange of �p� ��
and �k� �� and the QED Ward identities ���
�� This leaves three possible
structures�

M��� � q�����	p�k	M� �
�
����	k� � ����	p�

�
k�p	M�

�
��
����	p� � ����	k�

�
k�p	 � ������p� k��p � k

�M��
�����

The second term satis�es ���
� by virtue of the on�shell conditions p� �
k� � ��

Now contract ����� with �iq�� to take the divergence of the axial vector
current� We �nd

iq�M��� � iq�����	p�k	M� � i�����q��p� k��p � kM�� ����
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Figure �	��� Contribution that leads to a pole in the axial vector current
form factorM��

the other terms automatically give zero� Using q � p� k� q� � �p � k� we can
simplify this to

iq�M��� � iq�����	p�k	�M� �M��� �����

The whole quantity is proportional to q� and apparently vanishes in the limit
q� � �� This contrasts with the prediction of the axial vector anomaly� Taking
the matrix element of the right�hand side of ������� we �nd

iq�M��� � � e�

���
����	p�k	 � �����

The con�ict can be resolved if one of the form factors appearing in �����
contains a pole in q�� Such a pole can arise through the process shown in
Fig� ���� in which the current creates a �� meson which subsequently decays
to two photons� The amplitude for the current to create the meson is given
by ������� Let us parametrize the pion decay amplitude as

iM��� � ��� � iA����
�
��
���	p�k	 � �����

where A is a constant to be determined� Then the contribution of the process
of Fig� ��� to the amplitude M��� de�ned in ������ is�

iq�f�
� i
q�
�
iA����	p�k	

�
� ���
�

This is a contribution to the form factor M��

M� �
�i
q�
f� �A� �����

plus terms regular at q� � �� Now� by equating ����� to ������ we
determine A in terms of the coe	cient of the anomaly�

A �
e�

���


f�
� �����

+From the decay matrix element ������ it is straightforward to work
out the decay rate of the ��� Note that� though we have worked out the decay
matrix element in the limit of a massless ��� we must supply the physically
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correct kinematics which depends on the �� mass� Including a factor �� for
the phase space of identical particles� we �nd

,��� � ��� �


�m�



��



�

X
pols�

��M��� � ���
���

�


���m�
�A� � ��p � k��

� A� � m
�
�

���
�

�����

Thus� �nally�

,��� � ��� �
	�

����
m�
�

f��
� �����

This relation� which provides a direct measure of the coe	cient of the Adler�
Bell�Jackiw anomaly� is satis�ed experimentally to an accuracy of a few per�
cent�

���� Chiral Anomalies and Chiral Gauge Theories

Up to this point� we have coupled gauge �elds to fermions in a parity�
symmetric manner� replacing the derivative in the Dirac equation by a covari�
ant derivative� This procedure couples the gauge �eld to the vector current of
fermions� However� this procedure gives only a subset of the possible couplings
of fermions to gauge bosons� In this section we will construct more general�
parity�asymmetric� couplings and discuss their interplay with the axial vector
anomaly�

We will focus primarily on theories of massless fermions� If the Lagrangian
contains no fermion mass terms� it has no terms that mix the two helicity
states of a Dirac fermion� Thus� in a theory that contains massless Dirac
fermions �i� we can write the kinetic energy term in the helicity basis ������
as

L � �yLii� � ��Li � �yRii� � ��Ri� ������

There is no di	culty in coupling this system to a gauge �eld by assigning
the left�handed �elds �Li to one representation of the gauge group G and
assigning the right�handed �elds to a di�erent representation� For example�
we might assign the left�handed �elds to a representation r of G and take the
right�handed �elds to be invariant under G� This gives

L � �yLii� �D�Li � �yRii� � ��Ri� �����

with D� � �� � igAa
�t
a
r � In more conventional notation� ����� becomes

L � �i��
�
�� � igAa

�t
a
r

���
�

��
�� ������
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It is straightforward to verify that the classical Lagrangian ������ is invari�
ant to the local gauge transformation

� �
�
 � i	ata

���
�

��
��

Aa
� � Aa

� �


g
��	

a � fabcAb
�	

c�

������

which generalizes �
����� Since the right�handed �elds are free �elds� we can
even eliminate these �elds and write a gauge�invariant Lagrangian for purely
left�handed fermions�

The idea of gauge �elds that couple only to left�handed fermions plays a
central role in the construction of a theory of weak interactions� The coupling
of the W boson to quarks and leptons described in ����� can be derived by
assigning the left�handed components of quarks and leptons to doublets of an
SU��� gauge symmetry

QL �

�
u
d

�
L

� LL �

�
�
�

�
L

� ������

and then identifying the W bosons as gauge �elds that couple to this SU���
group� In this picture� it is the restriction of the symmetry to left�handed
�elds that leads to the helicity structure of the weak interaction e�ective
Lagrangian� We will discuss a complete� explicit model of weak interactions�
incorporating this idea� in the next chapter�

To work out the general properties of chirally coupled fermions� it is useful
to rewrite their Lagrangian with one further transformation� Below Eq� �������
we noted that the quantity ����R transforms under Lorentz transformations as
a left�handed �eld� Thus it is useful to rewrite the right�handed components
in ������ as new left�handed fermions� by de�ning

��Li � ����Ri� ��yLi � �TRi�
�� ����
�

This transformation relabels the right�handed fermions as antifermions and
calls their left�handed antiparticles a new species of left�handed fermions� By
using ������� we can rewrite the Lagrangian for the right�handed fermions asZ

d�x�yRii� � ��Ri �
Z
d�x��yLii� � ���Li� ������

The minus sign from fermion interchange cancels the minus sign from inte�
gration by parts� Notice that� if the fermions are coupled to gauge �elds in
the representation r� this manipulation changes the covariant derivative as
follows�

�yRi� �
�
� � igAatar

�
�R � ��yL i� �

�
� � igAa�tar�

T
�
��L

� ��yL i� �
�
� � igAata�r

�
��L�

������

Thus the new �elds ��L belong to the conjugate representation to r� for which
the representation matrices are given by �
����� In this notation� QCD with
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nf �avors of massless fermions is rewritten as an SU��� gauge theory coupled
to nf massless fermions in the � and nf massless fermions in the � represen�
tation of SU���� The most general gauge theory of massless fermions would
simply assign left�handed fermions to an arbitrary� reducible representation
R of the gauge group G� We have just seen that rewriting a system of Dirac
fermions leads to R � r�r� a real representation in the sense described below
�
����� Conversely� if R is not a real representation� then the theory cannot
be rewritten in terms of Dirac fermions and is intrinsically chiral�

The rewriting ����
� transforms the mass term of the QCD Lagrangian
as follows�

m�i�i � m
�
�yR�L � h�c�

�
� �m���TLi���Li � h�c�

�
� ������

This has the form of theMajorana mass term that we encountered in Problem
���� The most general mass term that can be built purely from left�handed
fermion �elds is

�LM � Mij�
T
Li�

��Lj � h�c� ������

The matrix Mij is symmetric under i� j� since the minus sign from the an�
tisymmetry of �� is compensated by a minus sign from fermion interchange�
This mass term is gauge invariant if Mij is invariant under G� For example�
the mass term in ������ couples � and � indices together in an SU��� singlet
combination� In general� a gauge�invariant mass term exists if the represen�
tation containing the fermions is strictly real � in the sense described below
�
����� In an intrinsically chiral theory� there is no possible gauge�invariant
mass term� We will see in the next chapter that� in the gauge theory of the
weak interactions� mass terms for the quarks and leptons are forbidden by
gauge invariance� We will present a solution to this problem in Section �����

At the classical level� there is no restriction on the representation R of the
left�handed fermions� However� at the level of one�loop corrections� many pos�
sible choices become inconsistent due to the axial vector anomaly� In a gauge
theory of left�handed massless fermions� consider computing the diagrams of
Fig� ���� in which the external �elds are non�Abelian gauge bosons and the
marked vertex represents the gauge symmetry current

j�a � ���
���

�

�
ta�� ������

The gauge boson vertices also contain factors of � � ����� The three pro�
jectors can be moved together into a single factor� Then� if we regularize
this diagram as in Section ���� the term containing a � has an axial vector
anomaly that leads to the relation

hp� �� b� k� �� cj��j�a j�i � g�

���
���	�p�k	 � Aabc� �����

where Aabc is a trace over group matrices in the representation R�

Aabc � tr
�
ta
�
tb� tc
��
� ������
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Figure �	�	� Diagrams contributing to the anomaly of a gauge symmetry
current in a chiral gauge theory�

This equation implies that� unless Aabc vanishes� the current j�a is not con�
served� The factor ������ is totally symmetric in �a� b� c�� so this condition
is independent of which current is treated as an external operator� As we de�
scribed in Sections �� and ���� we can change the regularization of the
diagram so that the external current is conserved� but only at the price of
violating the conservation of one of the other two currents in the diagram�

Since the whole construction of a theory with local gauge invariance is
based on the existence of an exact global symmetry� the violation of the con�
servation of j�a does violence to the structure of the theory� For example�
triangle diagrams of the form of Fig� ��� will now generate divergent gauge
boson mass terms and will upset the delicate relations between three� and
four�point vertices discussed in Chapter �� These relations� following from
the Ward identity� were necessary to insure the cancellation of unphysical
states and the unitarity of the S�matrix� The only way to avoid this prob�
lem is to insist that Aabc � � as a fundamental consistency condition for
chiral gauge theories�y Gauge theories satisfying this condition are said to be
anomaly free�

As an example of the application of this condition� consider the prototype
weak interaction gauge theory that we presented in ������� If the two gauge
bosons in Fig� ��� are SU��� gauge bosons and the current j�a is an SU���
gauge current� we would evaluate ������ by substituting ta � �a � �a��
and using the relation f�b� �cg � ��bc� This gives

Aabc �


�
tr
�
�a � ��bc� � �� ������

so the consistency condition is satis�ed� If the fermions in ������ also cou�
ple to electromagnetism� there is an additional consistency condition that we
would �nd by taking the current in Fig� ��� to be the electromagnetic current�
The factor Aabc for this case is

tr
�
Q
�
� b� � c

��
� ������

where Q is the matrix of electric charges� If we simplify as in ������� the
trace ������ becomes

�
� tr
�
Q
�
�bc� ����
�

yD� J� Gross and R� Jackiw� Phys� Rev� D�� ��� ��	����
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This factor is proportional to the sum of the fermion electric charges� which
does not vanish either for quarks or for leptons� However� if we sum over one
quark doublet and one lepton doublet� with a factor � for colors� we �nd

tr
�
Q
�
� � � � �� � �

� � � ��� � � �� ������

Remarkably� the weak interaction gauge theory described by ������ can be
consistently combined with QED only if the theory contains equal numbers
of quark and lepton doublets�

We complete this section by working out more generally the condition
that a chiral gauge theory be anomaly free� We will �rst derive some basic
properties of the anomaly factor Aabc and then apply these to chiral gauge
theories with simple gauge groups�

If the fermion representation R is real� R is equivalent to its conjugate
reprsentation R� Thus� as we described below �
����� taR is related by a uni�
tary transformation to ta�R � ��taR�T � Since ������ is invariant to unitary
transformations of the ta� we can replace taR by ta�R� Then

Aabc � tr
�
��ta�T���tb�T � ��tc�T��

� � tr
��
tc� tb
�
ta
�

� �Aabc�

������

Thus� if R is real� the gauge theory is automatically anomaly free� As a special
case� any gauge theory of Dirac fermions is anomaly free�

In more general circumstances� we can simplify the calculation of Aabc by
noting that it is an invariant of the gauge group G that is totally symmetric
with three indices in the adjoint representation� For some possible groups� a
suitable invariant may not exist� and in those cases Aabc must vanish� For ex�
ample� in SU��� the adjoint representation has spin � The symmetric product
of two spin� multiplets gives spin � plus spin �� with no spin� component�
Thus� there is no symmetric tensor coupling two spin� indices to give a spin �
The factor ������ must then vanish in any SU��� gauge theory� We saw this
happen in an explicit example in Eq� �������

In SU�n� groups� n � �� there is a unique symmetric invariant dabc of the
required type� It appears in the anticommutator of representation matrices of
the fundamental representation��

tan� t
b
n

�
� �

n�
ab � dabctcn� ������

The uniqueness of this invariant implies that� in an SU�n� gauge theory� any
trace of the form of ������ is proportional to dabc� For each representation
r� we can de�ne an anomaly coe
cient A�r� by

tr
�
tar
�
tbr� t

c
r

��
� �

�A�r�d
abc� ������

For the fundamental representation� we can see from ������ that A�n� � �
It follows from the argument of ������ that

A�r� � �A�r�� ������
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For higher representations� the anomaly coe	cients can be worked out using
methods similar to those we used in Section 
�� to compute C��r�� For exam�
ple� we show in Problem ��� that� if a and s are the SU�n� representations
corresponding to antisymmetric and symmetric two�index tensors� then

A�a� � n� �� A�s� � n� �� �����

An SU�n� gauge theory is anomaly free if the anomaly coe	cients of the
various irreducible components of the fermion multiplet R sum to zero� For
example� the SU�n� gauge theory of left�handed fermions with representation
content

R � a� �n� ��n ������

is anomaly free�
Of the various simple Lie groups listed below �
����� only SU�n��

SO��n���� and E� have complex representations� Of these� only SU�n� and
SO���� which has the same Lie algebra as SU���� have a symmetric invariant
of the type required to build the anomaly� Gauge theories based on SO��n����
n � �� and on E� are automatically anomaly free� The groups SO��� and E�

have been suggested as candidates for the grand uni�ed gauge symmetry of
particle physics� which we will discuss in Section �����

There is one further constraint on the representation content of a chiral
gauge theory� which comes from considering its coupling to gravity� It is pos�
sible to show that the diagrams of Fig� ��� give an anomaly contribution
when computed with a gauge current j�a and external gravitational �elds�
The group�theory factor that multiplies this diagram is

tr
�
taR
�
� ������

This factor automatically vanishes if the gauge group is non�Abelian� However�
if the gauge group of the theory contains U�� factors� the theory cannot be
consistently coupled to gravity unless each of the U�� generators is traceless�z

Once we have constructed a consistent chiral gauge theory� we have an
additional problem of �nding a prescription for calculating in this theory con�
sistently� In a vector�like gauge theory� we can de�ne ultraviolet�divergent
diagrams with dimensional regularization� This guarantees that the divergent
diagrams will be regulated in a way that respects the Ward identities of lo�
cal gauge invariance� To generalize dimensional regularization to chiral gauge
theories� we need to introduce a dimensional continuation of �� The 0t Hooft�
Veltman de�nition used to de�ne the chiral current in Section ��� is not
satisfactory� because this de�nition does not manifestly respect the conser�
vation of the gauge currents� A useful alternative procedure is to de�ne �

formally as an object that anticommutes with all of the ��� This prescription
gives unambiguous� gauge�invariant results for amplitudes that are not pro�
portional to ����� � at least through two�loop order� In Section ���� we will

zL� Alvarez�Gaum0e and E� Witten� Nucl� Phys� B���� ��	 ��	
���
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use this prescription to compute loop diagrams in weak interaction theory�
As a last resort� one can always compute with a non�gauge�invariant regula�
tor and add non�gauge�invariant counterterms to the theory so that the gauge
theory Ward identities remain valid�

���� Anomalous Breaking of Scale Invariance

There is one more important example of a symmetry that is an invariance at
the classical level and is broken by quantum corrections� This is the classi�
cal scale invariance of a massless �eld theory with a dimensionless coupling
constant� In Chapter �� we saw that a quantum �eld theory with no classi�
cal dimensionful parameters still depends on a mass scale through the regu�
larization of ultraviolet divergences� or� equivalently� through the running of
coupling constants� We have already seen how to analyze this induced depen�
dence on the renormalization scale using the Callan�Symanzik equation� In
this section� we will show how the violation of classical scale invariance by
quantum corrections can be described as a current conservation anomaly�

In this book we have avoided giving a careful treatment of the energy�
momentum tensor of a quantum �eld theory� In Section ���� we used Noether�s
theorem to demonstrate that the invariance of a quantum �eld theory under
spacetime translations implies the presence of a conserved tensor T�� � In
Section ���� we gave an alternative derivation of this result using the functional
integral formalism� However� to discuss the theory of scale invariance� we will
need some more detailed properties of the energy�momentum tensor� We will
now simply state these properties and refer elsewhere for their derivations�!

The tensor T�� de�ned by expressions ����� and ������ is called the
canonical energy�momentum tensor� The expressions that de�ned this tensor
do not imply that T�� is symmetric� In fact� this tensor need not be symmetric�
and� in a gauge theory� it need not be gauge�invariant� However� it is always
possible to convert T�� into a symmetric and gauge�invariant tensor 5�� by
the addition

5�� � T�� � ��*
���� ������

where *��� is antisymmetric under interchange of � and �� The form of the
added term implies that 5�� is conserved if T�� is� and that the global energy�
momentum four�vector is unchanged�

P � �

Z
d�xT �� �

Z
d�x5�� � ����
�

A scale transformation of a scalar �eld theory can be de�ned as a trans�
formation of variables


�x�� e�D�
�xe���� ������

�The conclusions presented in the next three paragraphs are derived with care in
C� G� Callan� S� Coleman� and R� Jackiw� Ann� Phys� �	� �� ��	����
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with D � � the canonical mass dimension of the �eld� The scale transforma�
tion is de�ned similarly in theories of fermion and gauge �elds� If this trans�
formation is an invariance of the classical Lagrangian� as it will be if there are
no dimensionful couplings� this theory will possess a conserved current D��
called the dilatation current� The dilatation current has a simple relation to
the symmetric energy�momentum tensor 5�� � D� � 5��x� � so that

��D
� � 5�

�� ������

The derivation of these results from Noether�s theorem is not straightfor�
ward� There is a simpler derivation� which� however� uses formalism beyond
the scope of this book� If the quantum �eld theory under consideration is
coupled to gravity� then the energy�momentum tensor can be identi�ed as
the source of the gravitational �eld� This energy�momentum tensor can be
found by varying the Lagrangian Lm of matter �elds with respect to the
spacetime metric g���x�� This construction gives a manifestly symmetric and
gauge�invariant tensor� which turns out to be 5�� �

5�� � �
�

�g���x�

Z
d�xLm� ������

A scale transformation can be represented as a change in the spacetime metric

g���x�� e��g���x�� ������

Combining ������ and ������� we see that the change in the Lagrangian
induced by this transformation is just the trace of 5�� � This will be equal by
Noether�s theorem to the divergence of the corresponding current� giving us
back Eq� �������

In QED� it is not hard to guess the form of the symmetric energy�
momentum tensor�

5�� � �F��F �
� �

�
�g

���F���
� � �

��i��
�D� � ��D��� � g����iD �m���

���
��
This is a gauge�invariant symmetric tensor that leads to the familiar expres�
sion for the total energy�

H �

Z
d�x
n
�
� �E

� �B�� � �y��i��� �r�m��
o
� ���
�

For future reference� we note that these results are true at the classical level
in any spacetime dimension d� In four dimensions� the trace of the gauge �eld
terms cancels automatically� After using the Dirac equation� which is valid as
an operator equation of motion� we �nd that the trace of 5�� is given by

5�
� � m�� ���
��

and indeed vanishes� classically� if m � ��
When quantum corrections are included� we know that a scale transfor�

mation is not a symmetry of the theory� since the same theory referred to a
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larger scale contains a di�erent value of the renormalized coupling constant�
The shift of the renormalized coupling is

g � g � ���g�� ���
��

and the corresponding change in the Lagrangian is

���g�
�

�g
L� ���
��

Thus� when quantum corrections are included� the equation for the dilatation
current in a classically scale�invariant theory should read

��D
� � 5�

� � ��g�
�

�g
L� ���

�

In massless QED� we can write this formula most usefully by rescaling the
gauge �elds so that the coupling constant e is removed from the covariant
derivative� eA� � A�� Then e appears only in the term

L � � 

�e�
�F���

� � � � � � ���
��

and Eq� ���

� reads

5�
� �

��e�

�e�
�F���

�� ���
��

This relation� which says that the trace of the symmetric energy�momentum
tensor takes a nonzero value as a result of quantum corrections� is known as
the trace anomaly�

We should be able to check the trace anomaly equation ���
�� directly in
perturbation theory� We now evaluate the trace of 5�� explicitly to one�loop
order� The formalism we have set up is very similar to that of the background
�eld calculation of the � function done in Section ���� As in that section� we
will integrate over the �uctuating parts of quantum �elds in the presence of
a background �eld with a nonzero F�� � Equation ���
�� predicts that this
integration will lead to the expression

h5�
�i � C

Z
d�k

�����
A���k��k�g�� � k�k��A��k�� ���
��

where A� is the background �eld and the constant C is equal to ��e��e��
Since we will be using dimensional regularization� we should begin by

writing the trace of 5�� in d dimensions�

5�
� � ��� d

�
�F���

� � �� d��iD�� ���
��

The one�loop matrix element of this quantity proportional to two powers of
the background �eld arises from the three diagrams shown in Fig� ���� Since
the second term on the right�hand side of ���
�� vanishes by the equation
of motion of ��x�� one might expect that this term gives zero contribution
to the trace� Indeed� it is easy to check that the �rst two diagrams in Fig�
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Figure �	��
� One�loop diagrams contributing to the anomalous trace of
1�� �

��� cancel� These diagrams have the same structure� since the �rst has an
extra propagator and an extra factor p from the operator matrix element� and
opposite overall signs�

The �rst term on the left�hand side of ���
�� is unexpected� since
it apparently vanishes in four dimensions� However� the fermion loop dia�
gram is divergent� and in dimensional regularization� this introduces a factor
���� d���� As a result� this diagram gives a nonzero contribution to the op�
erator matrix element� In massless QED� the fermion loop diagram has the
value

� �i�k�g�� � k�k��
�

������
�
,���d

� � � ��nite�
�
� ������

Then the complete expression for the third diagram in Fig� ��� isZ
d�k

�����
A���k�

�
����d

�

�
�k�g�� � k�k��

�i
k�

�
�ik� �

������


�� d��

�
A��k��

�����
This is of the form of ���
��� with

C �


���
� ������

which is indeed the �rst � function coe	cient in massless QED�
This discussion generalizes to QCD and other gauge theories� In a non�

Abelian gauge theory� 5�� is given by the obvious generalization of ���
��
with the Abelian �eld�strength tensor F�� replaced by the non�Abelian ex�
pression F a

�� � The trace of 5�� is again given by

5�
� � ��� d

�
�F a

���
�� ������

plus terms that vanish by the equations of motion� In the background �eld
gauge� the one�loop diagrams with the operator 5�

� inserted into the loop
cancel as above� We saw in Section ��� that the two�point functions in this
gauge sum to

� �i�k�g�� � k�k��
h �b�
�����

i�
,���d

� � � ��nite�
�
� ������

where ��g� � �b�g�������� Following through the logic of the previous para�
graph� we again �nd the result ���
�� with the identi�cation of C as the
�rst � function coe	cient�
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As with the axial vector anomaly� the trace anomaly can be found in
many di�erent ways� For each possible method of regulating a quantum �eld
theory� there is a derivation of the trace anomaly that exploits the possible
pathology of that particular regulator� For example� if one uses a Pauli�Villars
regulator with heavy fermions to cancel the divergence of the QED fermion
loop diagram� the heavy fermions . contribute a term M.. to the trace of
5�� � The loop diagram with this term inserted turns out to have a �nite limit
as M ��� which precisely reproduces the trace anomaly� This computation
is worked out in Problem ����

As with the axial vector anomaly� each derivation of the anomaly with
a di�erent regulator� taken individually� seems arti�cial� as if there were a
problem with the �eld theory that we are not quite clever enough to �x�
Eventually� though� we are forced to conclude that the quantum �eld theory
is trying to tell us something� The anomalous symmetries of the classical
theory cannot be promoted to symmetries of the quantum theory� Instead�
the anomalous conservation laws require profound and qualitative changes in
the theory from the classical to the quantum level�

Problems

�	�� Fermion number nonconservation in parallel E and B elds�

�a� Show that the Adler�Bell�Jackiw anomaly equation leads to the following law
for global fermion number conservation� If NR and NL are� respectively� the
numbers of right� and left�handed massless fermions� then

�NR ��NL � �
e�

���

Z
d�xE �B�

To set up a solvable problem� take the background �eld to be A� � ��� �� Bx�� A��
with B constant and A constant in space and varying only adiabatically in time�

�b� Show that the Hamiltonian for massless fermions represented in the components
���� is

H �

Z
d�x
h
�yR��i� �D��R � �yL��i� �D��L

i
�

with Di � ri� ieAi� Concentrate on the term in the Hamiltonian that involves
right�handed fermions� To diagonalize this term� one must solve the eigenvalue
equation �i� �D�R � E�R�

�c� The �R eigenvectors can be written in the form

�R �

�
���x

��
���x

��

�
ei�k�x

��k�x
���

The functions �� and ��� which depend only on x�� obey coupled �rst�order
di�erential equations� Show that� when one of these functions is eliminated� the
other obeys the equation of a simple harmonic oscillator� Use this observation to
�nd the single�particle spectrum of the Hamiltonian� Notice that the eigenvalues
do not depend on k��



Problems ���

�d� If the system of fermions is set up in a box with sides of length L and periodic
boundary conditions� the momenta k� and k� will be quantized�

ki �
��ni
L

�

By looking back to the harmonic oscillator equation in part �c�� show that the
condition that the center of the oscillation is inside the box leads to the condition

k� � eBL�

Combining these two conditions� we see that each level found in part �c� has a
degeneracy of

eL�B

��
�

�e� Now consider the e�ect of changing the background A adiabatically by an
amount ��	���� Show that the vacuum loses right�handed fermions� Repeat�
ing this analysis for the left�handed spectrum� one sees that the vacuum gains
the same number of left�handed fermions� Show that these numbers are in accord
with the global nonconservation law given in part �a��

�	�� Weak decay of the pion�

�a� In the e�ective Lagrangian for semileptonic weak interactions ��
��
�� the
hadronic part of the operator is a left�handed current involving the u and d
quarks� Show that this current is related to the quark currents of Section �	�
as follows�

uL�
�dL �

�

�
�j�� � ij�� � j�� � ij����

where �� � are isospin indices� Using this identi�cation and ��	�

�� show that
the amplitude for the decay �� � ��� is given by

iM � GF f�u�q��p��� ��v�k��

where p� k� q are the momenta of the ��� ��� ��

�b� Compute the decay rate of the pion� Show that this rate vanishes in the limit of
zero lepton mass� and that the relative rate of pion decay to muons and electrons
is given by

���� � e���

���� � ����
�
�
me

m�

�� ���m�
e
m

�
��

�

���m�
�
m

�
��

�
� �����

From the measured pion lifetime� �� � ��� � ���� sec� and the pion and muon
masses� m� � ��� MeV� m� � ��� MeV� determine the value of f��

�	�� Computation of anomaly coe�cients�

�a� Consider a product r� � r� of SU�n� representations� which is decomposed into
irreducible representations as in ����	
�� Using the explicit form of the generators
given in ����		�� show that the anomaly coe�cients satisfy

d�A�r�� � d�A�r�� �
X
i

A�ri��
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�b� As we saw in Problem ����� the two�index symmetric and antisymmetric ten�
sors form irreducible representations of SU�n�� which we will call s and a� re�
spectively� In SU��� the representation a is three�dimensional� Show that it is
equivalent to the � Compute the anomaly coe�cients for a and s� making use
of the identity in part �a��

�c� Since SU�n� has a unique three�index symmetric tensor dabc which is already
nonvanishing in an SU�� subgroup� we can compute the anomaly coe�cient
in SU�n� by restricting our attention to three generators in this subgroup� By
decomposing SU�n� representations into SU�� representations� compute the
anomaly coe�cients for a and s in SU�n� and derive Eq� ��	������ Find the
anomaly coe�cient of the j�index totally antisymmetric tensor representation
of SU�n�� Why does the result always vanish when �j � n�

�	�� Large fermion mass limits� In the text� we derived the Adler�Bell�Jackiw and
trace anomalies by the use of dimensional regularization� As an alternative� one could
imagine deriving these results using Pauli�Villars regularization� In that technique� one
regularizes the value of a fermion loop integral by subtracting the value of the same
loop diagram computed with fermions 2 of large mass M � The parameter M plays
the role of the cuto� and should be taken to in�nity at the end of the calculation� The
anomalies arise because some pieces of the diagrams computed for very heavy fermions
do not disappear in the limit M ��� These nontrivial M �� limits are interesting
in their own right and can have physical applications �for example� in part �c� of the
Final Project for Part III��

�a� Show that the Adler�Bell�Jackiw anomaly equation is equivalent to the following
large�mass limit of a fermion matrix element between the vacuum and a two�
photon state�

lim
M��

n
hp� kj �iM2�2 j�i

o
� � e�

���
���	�p��

�
��p�k	�

�
��k��

�b� Show that the trace anomaly� at one�loop order� is equivalent to the following
large�mass limit�

lim
M��

n
hp� kjM22 j�i

o
� �

e�

���
$p � k ���p� � ���k�� p � ���k� k � ���p�%�

�c� Show that the matrix element in part �a� is ultraviolet��nite before the M ��
limit is taken� Evaluate the matrix element explicitly at one�loop order and verify
the limit claimed in part �a��

�d� The matrix element in part �b� has a potential ultraviolet divergence� However�
show that the coe�cient of �p � ���k�k � ���p�� is ultraviolet��nite� and that the
rest of the expression is determined by gauge invariance� Compute the full ma�
trix element using dimensional regularization as a gauge�invariant regulator and
verify the result claimed in part �b��
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Gauge Theories with Spontaneous

Symmetry Breaking

In the course of this book� we have discussed three distinct fashions in which
symmetries can be realized in a quantum �eld theory� The simplest case is
a global symmetry that is manifest� leading to particle multiplets with re�
stricted interactions� A second possibility is a global symmetry that is spon�
taneously broken� Then� as discussed in Chapter �! the symmetry currents
are still conserved and interactions are similarly restricted� but the vacuum
state does not respect the symmetry and the particles do not form obvious
symmetry multiplets� Instead� such a theory contains massless particles� Gold�
stone bosons� one for each generator of the spontaneously broken symmetry�
The third case is that of a local� or gauge� symmetry� As we saw in Chap�
ter 
� such a symmetry requires the existence of a massless vector �eld for
each symmetry generator� and the interactions among these �elds are highly
restricted�

It is now only natural to consider a fourth possibility� What happens if we
include both local gauge invariance and spontaneous symmetry breaking in
the same theory� In this chapter and the next� we will �nd that this combina�
tion of ingredients leads to new possibilities for the construction of quantum
�eld theory models� We will see that spontaneous symmetry breaking requires
gauge vector bosons to acquire mass� However� the interactions of these mas�
sive bosons are still constrained by the underlying gauge symmetry� and these
constraints can have observable consequences�

In elementary particle physics� the principal application of spontaneously
broken local symmetry is in the currently accepted model of weak interac�
tions� This model� due to Glashow� Weinberg� and Salam� is introduced in
Section ����� There we will see that it makes a number of precise and success�
ful predictions for weak interaction phenomena� Remarkably� this model also
uni�es the weak interactions with electromagnetism in a single larger gauge
theory�

�Section ���� is necessary background for the present chapter� but the rest of
Chapter �� is not�

��	
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���� The Higgs Mechanism

In this section we analyze some simple examples of gauge theories with spon�
taneous symmetry breaking� We begin with an Abelian gauge theory� and
then study several examples of non�Abelian models�

An Abelian Example

As our �rst example� consider a complex scalar �eld coupled both to itself
and to an electromagnetic �eld�

L � � �
� �F���

� � jD�
j� � V �
�� �����

with D� � �� � ieA�� This Lagrangian is invariant under the local U��
transformation


�x� � ei��x�
�x�� A��x�� A��x� � 

e
��	�x�� ������

If we choose the potential in L to be of the form

V �
� � ���
�
�
�

�
�
�
��� ������

with �� � �� the �eld 
 will acquire a vacuum expectation value and the U��
global symmetry will be spontaneously broken� The minimum of this potential
occurs at

h
i � 
� �
���
�

����
� ������

or at any other value related by the U�� symmetry �������
Let us expand the Lagrangian ����� about the vacuum state ������� De�

compose the complex �eld 
�x� as


�x� � 
� �
p
�

�

��x� � i
��x�

�
� ����
�

The potential ������ is rewritten

V �
� � � 

��
�� �



�
� ���
�� �O�
�i �� ������

so that the �eld 
� acquires the mass m �
p
�� and 
� is the massless

Goldstone boson� So far� this whole analysis follows that in Section ��
But now consider how the kinetic energy term of 
 is transformed� Insert�

ing the expansion ����
�� we rewrite

jD�
j� � �
� ���
��

� � �
� ���
��

� �
p
�e
� �A��

�
� � e�
��A�A
� � � � � � ������

where we have omitted terms cubic and quartic in the �elds A�� 
�� and 
��
The last term written explicitly in ������ is a photon mass term

�L � �
�m

�
AA�A

�� ������
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where the mass
m�
A � �e�
�� ������

arises from the nonvanishing vacuum expectation value of 
� Notice that the
sign of this mass term is correct� the physical spacelike components of A�

appear in ������ as
�L � � �

�m
�
A�A

i���

with the correct sign for a potential energy term�
In Chapter �� and again in Chapter � for the non�Abelian case� we argued

that a gauge boson cannot obtain a mass� unless this mass term is associated
with a pole in the vacuum polarization amplitude� There is a counterexample
to this result in two�dimensional spacetime� there� as we saw in Section ���
a pole of the required form can arise from the infrared singularity generated
by a massless fermion pair� However� in four dimensions� a pole in the vac�
uum polarization amplitude can be created only by a massless scalar particle�
Typically� in situations with unbroken symmetry� no such particle is available�

However� a model with a spontaneously broken continuous symmetry
must have massless Goldstone bosons� These scalar particles have the quan�
tum numbers of the symmetry currents� and therefore have just the right
quantum numbers to appear as intermediate states in the vacuum polariza�
tion� In the model we are now discussing� we can see this pole arise explicitly
in the following way� The third term in Eq� ������ couples the gauge boson
directly to the Goldstone boson 
�� this gives a vertex of the form

� i
p
�e
���ik�� � mAk

�� ������

If we also treat the mass term ������ as a vertex in perturbation theory� then
the leading�order contributions to the vacuum polarization amplitude give the
expression

� im�
Ag

�� � �mAk
��

i

k�
��mAk

��

� im�
A

�
g�� � k�k�

k�

�
�

�����

The Goldstone boson supplies exactly the right pole to make the vacuum
polarization amplitude properly transverse�

Although the Goldstone boson plays an important formal role in this
theory� it does not appear as an independent physical particle� The easiest
way to see this is to make a particular choice of gauge� called the unitarity

gauge� Using the local U�� gauge symmetry ������� we can choose 	�x� in
such a way that 
�x� becomes real�valued at every point x� With this choice�
the �eld 
� is removed from the theory� The Lagrangian ����� becomes

L � � �
� �F���

� � ���
�
� � e�
�A�A

� � V �
�� ������
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If the potential V �
� favors a nonzero vacuum expectation value of 
� the
gauge �eld acquires a mass� it also retains a coupling to the remaining� physical
�eld 
��

This mechanism� by which spontaneous symmetry breaking generates a
mass for a gauge boson� was explored and generalized to the non�Abelian case
by Higgs� Kibble� Guralnik� Hagen� Brout� and Englert� and is now known
as the Higgs mechanism� However� this mechanism had an earlier application
to the theory of superconductivity� In Chapter �� we constructed the Landau
description of a second�order phase transition� To describe a superconductor�
Landau and Ginzburg coupled this theory to an external electromagnetic �eld�
they obtained precisely the Lagrangian ������ Since the gauge �eld acquires a
nonzero mass� external electromagnetic �elds penetrate a superconductor only
to the depth m��

A � This explains the Meissner e�ect� the observed exclusion
of macroscopic magnetic �elds from a superconductor�

The role of the Goldstone boson in the Higgs mechanism is intricate�
and seems mysterious at this level of the discussion� We �rst saw that the
involvement of the Goldstone boson is necessary� as a matter of principle� in
order for the gauge boson to acquire a mass� We then saw that the Goldstone
boson can be formally eliminated from the theory� However� we might argue
that the Goldstone boson has not completely disappeared� A massless vector
boson has only two physical polarization states� we saw in Chapter � that
the longitudinal polarization state cannot be produced� and appears in the
formalism only to cancel other unphysical contributions� However� a massive
vector boson must have three physical polarization states� In its rest frame�
it is a spin� object� which can make no distinction between transverse and
longitudinal polarizations� It is tempting to say that the gauge boson acquired
its extra degree of freedom by eating the Goldstone boson� In Sections ��
and ��� we will clarify this picture� by studying the quantization and gauge�
�xing of spontaneously broken gauge theories�

Systematics of the Higgs Mechanism

The Higgs mechanism extends straightforwardly to systems with non�Abelian
gauge symmetry� It is not di	cult to derive the general relation by which a
set of scalar �eld vacuum expectation values leads to the appearance of gauge
boson masses� Let us work out this relation and then apply it in a number of
examples�

Consider a system of scalar �elds 
i that appear in a Lagrangian invariant
under a symmetry group G� represented by the transformation


i � � � i	ata�ij
j � ������

It is convenient to write the 
i as real�valued �elds� for example� writing n
complex �elds as �n real �elds� Then the group representation matrices ta

must be pure imaginary and� since they are Hermitian� antisymmetric� Let us
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write

taij � iT a
ij � ������

so that the T a are real and antisymmetric�
If we promote the symmetry group G to a local gauge symmetry� the

covariant derivative on the 
i is

D�
 � ��� � igAa
�t
a�
 � ��� � gAa

�T
a�
�

Then the kinetic energy term for the 
i is

�
� �D�
i�

� � �
� ���
i�

� � gAa
����
iT

a
ij
j� �

�
�g

�Aa
�A

b��T a
�i�T
b
�i� ����
�

Now let the 
i acquire vacuum expectation values

h
ii � �
��i� ������

and expand the 
i about these values� The last term in Eq� ����
� contains
a term with the structure of a gauge boson mass�

�L � �
�m

�
abA

a
�A

b�� ������

with the mass matrix

m�
ab � g��T a
��i�T

b
��i� ������

This matrix is positive semide�nite� since any diagonal element� in any basis�
has the form

m�
aa � g��T a
��

� � � �no sum��

Thus� generically� all of the gauge bosons will receive positive masses� However�
it may be that some particular generator T a of G leaves the vacuum invariant�

T a
� � ��

In that case� the generator T a will give no contribution to ������� and the
corresponding gauge boson will remain massless�

As in the Abelian case� the gauge boson propagator receives a contribution
from the Goldstone bosons� which is necessary to make the vacuum polariza�
tion amplitude transverse� To compute this contribution� we need the vertex
that mixes gauge bosons and Goldstone bosons� This comes from the second
term of the Lagrangian ����
�� When we insert the vacuum expectation value
of the scalar �eld ������� this term becomes

�L � gAa
���
i�T

a
��i� ������

This interaction term does not involve all of the components of 
�only those
that are parallel to a vector T a
� for some choice of T a� These vectors repre�
sent the in�nitesimal rotations of the vacuum� thus the components 
i that
appear in ������ are precisely the Goldstone bosons� Using the fact that these
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bosons are massless� we can compute the counterpart� for the non�Abelian
case� of the Goldstone boson diagram in Eq� ������

�
X
j

�
gk��T a
��j

� i
k�
��gk��T b
��j

�
� �������

The sum runs over those components j with a nonzero projection onto the
space spanned by the T a
�� or equally well� over all j� This diagram is there�
fore proportional to the mass matrix ������� Combining this expression with
the contribution to the vacuum polarization from ������� we �nd a properly
transverse result�

� im�
ab

�
g�� � k�k�

k�

�
� ������

where m�
ab is given by Eq� �������

Non�Abelian Examples

Let us now apply this general formalism to some speci�c examples of non�
Abelian gauge theories� Consider �rst a model with an SU��� gauge �eld
coupled to a scalar �eld 
 that transforms as a spinor of SU���� The covariant
derivative acting on 
 is

D�
 � ��� � igAa
��

a�
� �������

where �a � �a��� The square of this expression is the scalar �eld kinetic
energy term�

If 
 acquires a vacuum expectation value� we can use the freedom of SU���
rotations to write this expectation value in the form

h
i � p
�

�
�
v

�
� �������

Then the gauge boson masses arise from

jD�
j� � 

�
g�
�
� v
�
�a� b

�
�
v

�
Aa
�A

b� � � � � � �������

We can symmetrize the matrix product under the interchange of a and b�
using f�a� � bg � �

��
ab� we �nd the mass term

�L �
g�v�

�
Aa
�A

a�� �����
�

All three gauge bosons receive the mass

mA �
gv

�
� �������

signaling that all three generators of SU��� are broken equally well by ��������



���� The Higgs Mechanism �	�

Figure �
��� The space of con�gurations for a scalar �eld in the vector
representation of SU���� When the SU��� symmetry is spontaneously bro�
ken� the allowed vacuum states lie on a spherical surface� If the vacuum
expectation value �� lies in the  direction� then the generator T

� leaves ��
unchanged� while T � and T � rotate �� in the directions shown�

What if we had taken 
 to transform according to the vector representa�
tion of SU���� If we take 
 to be a real�valued vector under SU���� we must
assign it the covariant derivative

�D�
�a � ��
a � g�abcA
b
�
c� �������

Again� the 
 kinetic energy term is the square of this object� and so� if 

acquires a vacuum expectation value� we �nd the gauge boson mass term

�L �


�
�D�
�

� �
g�

�

�
�abcA

b
��
��c

��
� � � � � �������

If a vector of SU��� acquires an expectation value 
�� we can choose
our coordinates so that this vector points in any particular direction in the
internal space� We will choose it to point in the � direction� as indicated in
Fig� ����

h
ci � �
��c � V �c�� �������

Inserting ������� into �������� we �nd

�L �
g�

�
V �
�
�ab�A

b
�

��
�

g�

�
V �
�
�A�

��
� � �A�

��
�
�
� �������

The gauge bosons corresponding to the generators  and � acquire masses

m� � m� � gV� ������

while the boson corresponding to the generator � remains massless� It is easy
to see the reason for this distinction by glancing at Fig� ���� The vacuum
expectation value of 
c destroys the symmetry of rotation about the axes 
and �� but it preserves the symmetry of rotation about the � axis� As we saw
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in our general analysis� gauge bosons corresponding to unbroken symmetry
generators remain massless�

It is interesting that this model contains both massive and massless gauge
bosons� with the distinction between these bosons created by spontaneous
symmetry breaking� If we interpret the massive bosons as W bosons and the
massless gauge boson as the photon� it is tempting to interpret this theory as
a uni�ed model of weak and electromagnetic interactions� Georgi and Glashow
proposed this model as a serious candidate for the theory of weak interactions�y

However� Nature chooses a di�erent model� which we will discuss in the next
section�

We turn next to a more complicated example� Consider an SU��� gauge
theory with a scalar �eld in the adjoint representation� The covariant deriva�
tive of 
 takes the form

D�
a � ��
a � gfabcA
b
�
c� �������

and so the gauge �eld masses arise from the term

�L �
g�

�

�
fabcA

b
�
c
��
� �������

We can write this more clearly by de�ning the quantity

( � 
ct
c� �������

where tc are the �	 � traceless Hermitian matrices that represent the genera�
tors of SU���� Using this notation and the de�nition �
���� of the structure
constants� we can rewrite the mass term ������� as

�L � �g� tr�$ta�(%$tb�(%�Aa
�A

b�� �����
�

Now let ( acquire a vacuum expectation value

h(i � (�� �������

Since (� is a traceless Hermitian matrix� we should analyze its e�ects by
diagonalizing it� In principle� (� could have three arbitrary eigenvalues that
sum to zero� However� when one minimizes explicit potential energy functions�
one often �nds expectation values that preserve some of the original symmetry�
We will consider two examples�

First� (� might have the orientation

(� � j
j �
�� 


��

�A � �������

yH� Georgi and S� L� Glashow� Phys� Rev� Lett� ��� ��	� ��	����



���� The Higgs Mechanism �	�

This matrix commutes with the four SU��� generators

ta �

�
�a �
� �

�
� t� �



�
p
�

�� 


��

�A � �������

Thus� the expectation value ������� breaks SU��� spontaneously to SU���	
U�� and leaves the gauge bosons corresponding to these four generators mass�
less� The remaining four generators of SU����

t� �


�

�� � � 
� � �
 � �

�A � t �


�

�� � � �i
� � �
i � �

�A �

t� �


�

�� � � �
� � 
�  �

�A � t� �


�

�� � � �
� � �i
� i �

�A �

�������

acquire the masses

m� �
�
�gj
j��� �������

as one can check by substituting these matrices into Eq� �����
��
Another possible orientation for (� is

(� � j
j �
�� 

�
�

�A � ������

In this case� only t� and t� commute with (�� so the original SU��� symmetry
is broken down to U��	U��� By substituting into �����
�� one can determine
that the gauge bosons corresponding to the remaining generators of SU���
acquire the masses

t�� t� � m� �
�
�gj
j��� t�� t� t�� t� � m� �

�
gj
j��� �������

Still larger symmetry groups o�er a wider variety of symmetry�breaking
patterns� and more complex mass matrices� We consider one further example
in Problem ����

Formal Description of the Higgs Mechanism

Up to this point� our study of the Higgs mechanism has been based on the ex�
plicit analysis of scalar �eld Lagrangians coupled to gauge �elds� Scalar �eld
theories provide the simplest examples of systems with spontaneous symmetry
breaking� and the explicit calculations they allow are useful for visualization�
But symmetries can be broken in other ways� In the theory of superconductiv�
ity� for example� the Abelian gauge invariance of electromagnetism is broken
by pairs of electrons that condense in the ground state of a metal� In Sec�
tion ���� we argued that� in the approximation that quark masses are very
small� QCD possesses global symmetries that are spontaneously broken by a
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condensation of quark�antiquark pairs� In these examples� spontaneous sym�
metry breaking is the result of strong interactions beyond perturbation theory�
We would like to understand whether these more general mechanisms of spon�
taneous symmetry breaking can also give mass to vector bosons� and� if so�
how the masses can be calculated�

To carry out this analysis� we will need to abstract several ideas from
the preceding discussion� First� we will discuss in general terms the relations
between gauge bosons� Goldstone bosons� and global symmetry currents� Then
we will use this information to construct the gauge boson mass matrix without
making direct use of the Lagrangian�

Consider� �rst� an arbitrary quantum �eld theory L� with a global sym�
metry G� In Section ���� we derived the Noether current corresponding to the
G symmetry by varying the Lagrangian by a local gauge transformation with
in�nitesimal parameter 	a�x�� Transforming with a constant 	a should leave
L� unchanged� Then the more general variation of L� must take the form

�L� � ����	a�J�a� �������

for some set of vector operators J�a built from the �elds of L�� The variational
principle then tells us that

��J
�a � �� �������

We can identify the J�a as the Noether currents of the global gauge symmetry�
We can now couple this globally symmetric theory to non�Abelian gauge

�elds� promoting the global symmetry to a local symmetry� To �rst order in g�
the new Lagrangian should take the form

L � L� � gAa
�J

�a �O�A��� �����
�

To check this� note that the transformation ������� compensates the varia�
tion due to a gauge transformation of Aa

�� Eq� �
����� to leading order in g�
The terms of order A� and higher can in general be arranged to compensate
the higher�order terms in the gauge transformation� Thus� matrix elements in�
volving only one insertion of the gauge �eld can be evaluated using properties
of the Noether currents of the original globally symmetric theory� Note in par�
ticular that the conservation law for these currents� Eq� �������� guarantees
that the Ward identities for these matrix elements are satis�ed�

If the global symmetry of the theory L� is spontaneously broken� this
theory will contain Goldstone bosons� which will stand in a special relation
to the Noether currents� At long wavelength� the Goldstone bosons become
in�nitesimal symmetry rotations of the vacuum� Qa j�i� where Qa is the global
charge associated with J�a� Thus� the operators J�a have the correct quantum
numbers to create Goldstone bosons from the vacuum� Let j�ki denote a
Goldstone boson state� In general� there will be a current J�a that can create
or destroy this boson� we can parametrize the corresponding matrix element
as

h�jJ�a�x� j�k�p�i � �ip�F a
ke
�ip�x� �������
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where p� is the on�shell momentum of the boson and F a
k is a matrix of

constants� The elements F a
k vanish when a denotes a generator of an unbroken

symmetry� Then the nonvanishing matrix elements of F a
k connect the currents

of the spontaneously broken symmetries to their corresponding Goldstone
bosons� Since the currents J�a are conserved� we �nd

� � �� h�j J�a�x� j�k�p�i � �p�F a
ke
�ip�x� �������

which implies that the bosons with nonzero matrix elements ������� satisfy
p� � � on shell and so are massless� This is another proof of Goldstone�s
theorem�z

Since the scalar �eld theory that we examined earlier in this section should
be a special case of this analysis� we should �nd there an example of the
relation given in Eq� �������� Comparing Eqs� ����
� and �����
�� we see
that� for the scalar �eld theory�

J�a � ��
iT
a
ij
j � �������

which is indeed the Noether current corresponding to the global gauge sym�
metry� Inserting the vacuum expectation value ������� we �nd

J�a � ��
i�T
a
��i� �������

which leads to the set of matrix elements

h�jJ�a�x� j
i�p�i � �ip��T a
��ie
�ip�x� ����
��

Using this relation� we can identify

F a
i � T a

ij
�j ����
�

for the Higgs mechanism in a weakly coupled scalar �eld theory� To be more
precise� the index i runs over all components of the scalar �eld 
� However�
we saw in the discussion below Eq� ������ that ����
� is nonzero only for
components 
i that are Goldstone bosons� and only for symmetry generators
a that are spontaneously broken� Thus the nonzero components of ����
�
form precisely the structure ��������

As a concrete illustration of the way that the objects T a
� link spon�
taneously broken generators and Goldstone bosons� consider the situation of
SU��� symmetry broken by a scalar �eld in the vector representation� as in
Eq� ������� and Fig� ���� According to the �gure� rotations about the  axis
tip the vacuum expectation value of 
 into the � direction� rotations about
the )� axis tip this expectation value into the  direction� and rotations about
� leave h
i invariant� Thus the gauge generators T � and T � are spontaneously
broken� and the scalar �eld components 
� and 
� are the corresponding
Goldstone bosons� This accords with the result of computing the elements of
�T a
��i explicitly� Using �T a�bc � �bac� we �nd

�T a
��b � �bac h
ci � V �ba�� ����
��

zA special case of this argument appeared in the discussion of Eq� ��	�

��
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Inserting this result into formula ����
��� we see that the current of each spon�
taneously broken symmetry creates and destroys its own Goldstone boson�

Now we can use this formalism to study the working of the Higgs mecha�
nism in this general context� Consider the original theory L� coupled to gauge
bosons of G� To see how the Higgs mechanism operates� we must compute the
vacuum polarization amplitude� This amplitude is required by the Ward iden�
tity to be transverse� so it is necessarily of the form

� i
�
g�� � k�k�

k�

�
� �m�

ab �O�k���� ����
��

It is not easy to compute the nonsingular terms in ����
�� in this general
situation� but it is straightforward to compute the singular term� which comes
from contributions with an intermediate Goldstone boson� Combining Eqs�
�����
� and �������� we see that the amplitude for a gauge boson to convert
to a Goldstone boson is

� �gk�F a
j � ����
��

Then the pole contribution to the vacuum polarization is

� �gk�F a
j�

i

k�
��gk�F b

j�� ����

�

Comparing ����

� with ������� we identify

m�
ab � g�F a

jF
b
j � ����
��

Notice that� in the case in which the symmetry is broken by a scalar �eld�
this result reverts to ������� However� Eq� ����
�� applies to any theory of
spontaneously broken symmetry� whether the symmetry breaking is apparent
from the Lagrangian or whether it requires strong interactions or other non�
perturbative e�ects� It is a general result� then� that any gauge boson coupled
to the current of a spontaneously broken symmetry acquires a mass�

���� The Glashow�Weinberg�Salam Theory

of Weak Interactions

We are now ready to write down the spontaneously broken gauge theory
that gives the experimentally correct description of the weak interactions� a
model introduced by Glashow� Weinberg� and Salam �GWS�� Like the second
SU��� model considered in the previous section� this model gives a uni�ed
description of weak and electromagnetic interactions� in which the massless
photon corresponds to a particular combination of symmetry generators that
remains unbroken�

Again we begin with a theory with SU��� gauge symmetry� To break the
symmetry spontaneously� we introduce a scalar �eld in the spinor represen�
tation of SU���� as in Eq� �������� However� we know that this theory leads
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to a system with no massless gauge bosons� We therefore introduce an addi�
tional U�� gauge symmetry� We assign the scalar �eld a charge ��� under
this U�� symmetry� so that its complete gauge transformation is


� ei�
a�aei	��
� ����
��

�Here �a � �a���� If the �eld 
 acquires a vacuum expectation value of the
form

h
i � p
�

�
�
v

�
� ����
��

then a gauge transformation with

	� � 	� � �� 	� � � ����
��

leaves h
i invariant� Thus� the theory will contain one massless gauge boson�
corresponding to this particular combination of generators� The remaining
three gauge bosons will acquire masses from the Higgs mechanism�

Gauge Boson Masses

It is straightforward to work out the details of the mass spectrum by using
the methods of the previous section� The covariant derivative of 
 is

D�
 �
�
�� � igAa

��
a � i ��g

�B�

�

� �������

where Aa
� and B� are� respectively� the SU��� and U�� gauge bosons� Since

the SU��� and U�� factors of the gauge group commute with one another�
they can have di�erent coupling constants� which we have called g and g��

The gauge boson mass terms come from the square of Eq� �������� evalu�
ated at the scalar �eld vacuum expectation value ����
��� The relevant terms
are

�L �


�
� � v �

�
gAa

��
a �



�
g�B�

��
gAb�� b �



�
g�B�

��
�
v

�
� ������

If we evaluate the matrix product explicitly� using �a � �a��� we �nd

�L �


�

v�

�

�
g��A�

��
� � g��A�

��
� � ��gA�

� � g�B��
�
�
� �������

There are three massive vector bosons� which we will notate as follows�

W
� �

p
�

�
A�
� � iA�

�

�
with mass mW � g

v

�
�

Z�
� �

p
g� � g��

�
gA�

� � g�B�

�
with mass mZ �

p
g� � g��

v

�
�
�������

The fourth vector �eld� orthogonal to Z�
�� remains massless�

A� �
p

g� � g��
�
g�A�

� � gB�

�
with mass mA � �� �������
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We will identify this �eld with the electromagnetic vector potential�
+From now on it will be more convenient to write all expressions in terms

of these mass eigenstate �elds� Consider� for instance� the coupling of the
vector �elds to fermions� For a fermion �eld belonging to a general SU���
representation� with U�� charge Y � the covariant derivative takes the form

D� � �� � igAa
�T

a � ig�Y B�� �����
�

In terms of the mass eigenstate �elds� this becomes

D� � �� � i
gp
�

�
W�
� T

� �W�
� T

��� i
p

g� � g��
Z�
�
g�T � � g��Y

�
� i

gg�p
g� � g��

A�

�
T � � Y

�
� �������

where T � �T � � iT �� � The normalization is chosen so that� in the spinor
representation of SU����

T � �
� ��

� � i��� � �� �������

The last term of Eq� ������� makes explicit the fact that the massless gauge
boson A� couples to the gauge generator �T � � Y �� which generates precisely
the symmetry operation ����
���

To put expression ������� into a more useful form� we should identify the
coe	cient of the electromagnetic interaction as the electron charge e�

e �
gg�p
g� � g��

� �������

and identify the electric charge quantum number as

Q � T � � Y� �������

These substitutions� with Q � � for the electron� give the conventional form
of the coupling of the electromagnetic �eld�

To simplify expression ������� further� we de�ne the weak mixing angle�
�w� to be the angle that appears in the change of basis from �A�� B� to �Z�� A���

Z�

A

�
�

�
cos �w � sin �w
sin �w cos �w

��
A�

B

�
�

that is�

cos �w �
gp

g� � g��
� sin �w �

g�p
g� � g��

� �������

Then� with the manipulation in the Z� coupling

g�T � � g��Y � �g� � g���T � � g��Q�
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we can rewrite the covariant derivative ������� in the form

D� � �� � i
gp
�

�
W�
� T

� �W�
� T

��� i
g

cos �w
Z�
�
T � � sin� �wQ

�� ieA�Q�

������
where

g �
e

sin �w
� �������

We see here that the couplings of all of the weak bosons are described by
two parameters� the well�measured electron charge e� and a new parameter �w�
The couplings induced by W and Z exchange will also involve the masses of
these particles� However� these masses are not independent� since it follows
from Eqs� ������� that

mW � mZ cos �w� �������

All e�ects ofW and Z exchange processes� at least at tree level� can be written
in terms of the three basic parameters e� �w� and mW �

Coupling to Fermions

The covariant derivative ������ uniquely determines the coupling of the W
and Z� �elds to fermions� once the quantum numbers of the fermion �elds are
speci�ed� To determine these quantum numbers� we must take account of the
fact� mentioned in Section ���� that the W boson couples only to left�handed
helicity states of quarks and leptons�

At the level of the classical Lagrangian� there is no di	culty in construct�
ing theories in which the left� and right�handed components of a fermion �eld
couple di�erently to gauge bosons�! Already in Section ��� we saw that the
kinetic energy term for Dirac fermions splits into separate pieces for the left�
and right�handed �elds�

�i�� � �Li��L � �Ri��R� �������

When we couple � to a gauge �eld� we can assign �L and �R to di�erent
representations of the gauge group� Then the two terms on the right�hand
side of ������� will contain two di�erent covariant derivatives� and these will
imply two di�erent sets of couplings�

In the GWS model� we can use this technique to insure that only the left�
handed components of the quark and lepton �elds couple to theW bosons� We
assign the left�handed fermion �elds to doublets of SU���� while making the
right�handed fermion �elds singlets under this group� Once we have speci�ed
the T � value for each fermion �eld� the value of Y that we must assign follows
from Eq� �������� This means that the Y assignments will also be di�erent for

�In Section �	��� we argued that there is a possible problem with this strategy at
the level of quantum corrections� We will check below whether the speci�c model we
construct avoids this problem�
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the left� and right�handed components of quarks and leptons� For the right�
handed �elds� T � � �� and so we reproduce the standard electric charges by
assigning Y to equal the electric charge� For example� for the right�handed u
quark �eld� Y � ����� for e�R� Y � �� For the left�handed �elds�

EL �

�
�e
e�

�
L

� QL �

�
u
d

�
L

� �����
�

the assignments Y � ��� and Y � ���� respectively� combine with T � �
��� to give the correct electric charge assignments� Since the left� and right�
handed fermions live in di�erent representations of the fundamental gauge
group� it is often useful to think of these components as distinct particles�
which are mixed by the fermion mass terms�

In fact� the construction of fermion mass terms is a serious problem� be�
cause all possible such terms are forbidden by global gauge invariances� For
example� we cannot write an electron mass term

�L � �me

�
eLeR � eReL�� �������

because the �elds eL and eR belong to di�erent SU��� representations and
have di�erent U�� charges� For the next few pages� we will ignore this prob�
lem by treating all fermion �elds as massless� This description will su	ce to
analyze the structure of the weak interactions at high energies� where the
quark and lepton masses can be ignored� At the end of this section we will
return to the problem of writing quark and lepton mass terms in the GWS
theory� The solution to this problem will reinforce the idea that the left� and
right�handed fermion �elds are fundamentally independent entities� mixed to
form massive fermions by some subsidiary process�

If we ignore fermion masses� the Lagrangian for the weak interactions of
quarks and leptons follows directly from the charge assignments given above�
The fermion kinetic energy terms for e� �� u� and d are

L � EL�iD�EL � eR�iD�eR �QL�iD�QL � uR�iD�uR � dR�iD�dR� �������

In each term� the covariant derivative is given by Eq� �����
�� with T a and Y
evaluated in the particular representation to which that fermion �eld belongs�
For example�

QL�iD�QL � QLi�
�
�
�� � igAa

��
a � i ��g

�B�

�
QL� �������

A right�handed neutrino would have zero coupling both to SU��� and to U���
so we have simply omitted this �eld from Eq� ��������

To work out the physical consequences of the fermion�vector boson cou�
plings� we should write Eq� ������� in terms of the vector boson mass eigen�
states� using the form of the covariant derivative given in Eq� ������� Equation
������� then takes the form

L � EL�i ��EL � eR�i��eR �QL�i��QL � uR�i��uR � dR�i��dR
� g
�
W�
� J

��
W �W�

� J
��
W � Z�

�J
�
Z

�
� eA�J

�
EM �

�������
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where

J��W �
p
�

�
�L�

�eL � uL�
�dL
�
�

J��W �
p
�

�
eL�

��L � dL�
�uL
�
�

J�Z �


cos �w

h
�L�

�
�
�
�

�
�L � eL�

�
�� �

� � sin� �w
�
eL � eR�

�
�
sin� �w

�
eR

� uL�
�
�
�
� � �

� sin
� �w
�
uL ��uR�

�
�� �

� sin
� �w
�
uR

� dL�
�
�� �

� �
�
� sin

� �w
�
dL � dR�

�
�
�
� sin

� �w
�
dR

i
�

J�EM � e��
���e� u��

�
� �

�

�
u� d��

�� �
�

�
d� �������

Here we have used Eq� ������� to simplify the W boson currents� Notice
that the current J�EM associated with the photon �eld is indeed the standard
electromagnetic current�

Anomaly Cancellation

As we have just seen� there is no di	culty in writing a Lagrangian that cou�
ples the GWS gauge bosons to fermions in a chiral fashion� However� these
chiral couplings do present a potential problem that appears at the level of
one�loop corrections� In Section ���� we saw that an axial current that is con�
served at the level of the classical equations of motion can acquire a nonzero
divergence through one�loop diagrams that couple this current to a pair of
gauge bosons� The Feynman diagram that contains this anomalous contribu�
tion is a triangle diagram with the axial current and the two gauge currents
at its vertices� In a gauge theory in which gauge bosons couple to a chiral
current� the dangerous triangle diagrams appear in the one�loop corrections
to the three�gauge�boson vertex function� The anomalous terms violate the
Ward identity for this amplitude� Thus� as we argued in Section ���� theo�
ries in which gauge bosons couple to chiral currents can be gauge invariant
only if the anomalous contribution somehow disappears� Fortunately� as we
saw there� the anomalous terms can be arranged to cancel when one sums
over all possible fermion species that can circulate in these diagrams�y

Within the GWS theory� the requirement from experiment that the weak
interaction currents are left�handed forced us to choose a chiral gauge cou�
pling� Now we must check that the anomalous terms from the triangle dia�
grams cancel as required� We will �nd that they do� but only through a subtle
and rather magical interplay of the quantum numbers of quarks and leptons�

The anomalous term of a triangle diagram of three gauge bosons Aa
�� A

b
� �

yIf you have not read Chapter �	� but you are willing to assume that the fermion
triangle diagram contains a contribution that violates gauge invariance� you should
still be able to follow the argument that follows�
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and Ac
� is proportional to the group theoretic invariant

tr
�
�ta
�
tb� tc
��
� ������

where the trace is taken over all fermion species� The anticommutator comes
from taking the sum of two triangle diagrams in which the fermions circle in
opposite directions� The factor � registers the fact that the anomaly is asso�
ciated with chiral currents� this factor equals � for left�handed fermions and
� for right�handed fermions� In theories such as QED or QCD in which the
gauge bosons couple equally to right� and left�handed species� the anomalies
automatically cancel� This bookkeeping method is a special case of the more
general method presented in Section ����

To evaluate the anomalies of the GWS theory� it is easiest to work in the
basis of SU��� 	 U�� gauge bosons� before the mixing to the photon and
Z� mass eigenstates� It su	ces to evaluate the triangle diagrams for massless
fermions� so that right� and left�handed fermions have distinct quantum num�
bers� However� we must consider not only the anomalies of diagrams with three
SU��� 	 U�� gauge bosons� but also diagrams with both weak�interaction
gauge bosons and color SU��� gauge bosons of QCD� If we consider e�ects of
gravity on the weak�interaction gauge theory� there is also a possibly anoma�
lous diagram with one weak�interaction gauge boson and two gravitons� We
can omit diagrams� such as the anomaly of three SU��� bosons or of one SU���
boson and two gravitons� in which all of the couplings are left�right symmet�
ric� Then the full set of diagrams with possible anomalous terms is shown in
Fig� ����� All of the possible anomalies must cancel if the Ward identities of
the SU���	 U�� gauge theory are to be satis�ed�

It is a special property of SU��� gauge theory that the anomaly of three
SU��� gauge bosons always vanishes� this result follows from the property of
Pauli sigma matrices f�a� �bg � ��ab� which implies that the trace ������
vanishes� The anomalies containing one SU��� boson or one SU��� boson are
proportional to

tr$ta% � � or tr$�a% � �� �������

The remaining nontrivial anomalies are those of one U�� boson with two
SU��� bosons or two SU��� bosons� the anomaly of three U�� bosons� and
the gravitational anomaly with one U�� gauge boson�

The anomaly of one U�� boson with two SU��� bosons is proportional
to the group theory factor

tr$tatbY % � �
��

ab �
X
q

Yq � �������

where the sum runs over left�handed quarks and right�handed quarks� with an
extra ��� for the left�handed contributions� Inserting the charge assignments
given above for uL� dL� uR� and dR� we �ndX

q

Yq � �� � �� � � �� � � �� �
� � � �� �������
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Figure �
��� Possible gauge anomalies of weak interaction theory� All of
these anomalies must vanish for the Glashow�Weinberg�Salam theory to be
consistent�

Similarly� the anomaly of a U�� boson with two SU��� bosons is proportional
to

tr$�a� bY % � �
��

ab
X
fL

YfL� �����
�

where the sum runs over the left�handed fermions EL and QL� Thus�X
fL

YfL � ��� �
� �� � � �� � �� �������

the factor � counts the color states of the quarks� The anomaly of three U��
gauge bosons is proportional to a sum involving left� and right�handed leptons
and quarks�

tr$Y �% � ���� �
� �

� � ���� � �
�
�� �� �

� � � �� �
� � �� �

� �
�
�
� �� �������

Finally� the gravitational anomaly with one U�� gauge boson is proportional
to

tr$Y % � ���� �
� � � ���� �

�
�� �� �� � �� �� �� �

� �
�
� �� �������

The Glashow�Weinberg�Salam theory is thus a chiral gauge theory that
is completely free of axial vector anomalies among the gauge currents� How�
ever� the cancellation of anomalies requires that leptons and quarks appear
in complete multiplets with the structure of �EL� eR� QL� uR� dR�� This set of
�elds is often called a generation of quarks and leptons� The consistency of the
theory requires that quarks and leptons appear in Nature in equal numbers�
organizing themselves into successive generations in this way�

Experimental Consequences of the GWS Theory

Now that we have a fundamental theory for the coupling of W and Z bosons
to fermions� we can work out the consequences of this theory for observable
processes mediated by weak bosons� This analysis should reproduce the ef�
fective Lagrangian description of the weak interactions used in Chapters �



�
� Chapter �� Gauge Theories with Spontaneous Symmetry Breaking

Figure �
��� Some processes with virtual W and Z boson exchange�

and �� and also predict additional observable e�ects of weak boson exchange�
In our discussion here� we will derive only the most basic relations in this sub�
ject� we do not have space for a systematic survey of the phenomenology
of weak interactions� However� we encourage the reader to study the exper�
imental foundations of the weak interactions� which contain many beautiful
illustrations of the principles of quantum �eld theory�z

At energies low compared to the vector boson masses� the couplings of the
weak bosons have their major e�ects through processes that involve virtual
weak boson exchange� These processes are shown in Fig� ����� We will derive
the Feynman rules for massive gauge bosons in Chapter �� Meanwhile� it is
reasonable to guess that the W and Z boson propagators are given by�

W���p�W ����p�� � �ig��
p� �m�

W

� hZ��p�Z���p�i � �ig��
p� �m�

Z

� �������

We will see in Section �� that these propagators give correct expressions for
diagrams with W and Z exchange up to terms of order �mf�mW �� where mf

is a fermion mass�
First consider theW exchange diagram in Fig� ����� in the limit of energies

low compared to the W mass� We can then neglect the p� term in the denom�
inator of the W propagator �������� Taking the W coupling from Eq� ��������
we �nd that the diagram can be described by the e�ective Lagrangian

�LW �
g�

m�
W

J��W J��W

�
g�

�m�
W

�
eL�

��L � dL�
�uL
��
�L��eL � uL��dL

�
�

�������

The coe	cient is often written in terms of the Fermi constant�

GFp
�
�

g�

�m�
W

� ������

The various terms in this e�ective Lagrangian reproduce the expressions we
have already written in Eqs� ������ ������� and ������� Since these in�
teractions among leptons and quarks are mediated by the exchange of an

zThe experimental successes of the theory of weak interactions are reviewed in
the book of Commins and Bucksbaum ��	
��
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electrically charged vector boson� they are called collectively charged�current

interactions� The e�ective Lagrangian ������� turns out to provide an impres�
sively successful description of the phenomenology of charged�current weak
interactions� We have described its use in high�energy neutrino scattering�
but it has comparable successes in nuclear ��decay� muon decay� and a variety
of other processes�

In a similar way� we can work out the e�ective Lagrangian resulting from
virtual Z� exchange� We �nd

�LZ �
g�

�m�
Z

J�ZJ�Z

�
�GFp

�

�X
f

f��
�
T � � sin� �wQ

�
f

��
�

�������

where the sum in the second line runs over all left�handed and right�handed
�avors� and we have used relation ������� to simplify the prefactor�We say that
the e�ective Lagrangian ������� mediates neutral current weak interaction
processes� Notice that� if we de�ne SU��� gauge currents as

J�a �
X
f

f��T af� �������

then the e�ective Lagrangians of W and Z exchange can be written together
in the simple form

�LW ��LZ �
�GFp

�

h
�J���� � �J���� � �J�� � sin� �wJ

�
EM ��

i
� �������

This expression becomes manifestly invariant under an unbroken global SU���
symmetry in the limit g� � � or sin� �w � �� We will discuss this observation
further at the end of this section�

The neutral current e�ective Lagrangian ������� contains terms that cou�
ple together all of the various species of quarks and leptons� These terms
violate parity� and so distinguish themselves from the e�ects of strong and
electromagnetic interactions� For example� Eq� ������� predicts the existence
of neutral current deep inelastic neutrino scattering events� in which a high�
energy neutrino shatters a nucleon but does not convert to a �nal�state muon
or electron� This process is analyzed in Problem ����� Similarly� the neutral�
current interaction predicts the presence of parity�violating e�ects in electron
deep inelastic scattering� It also predicts a parity�violating electron�nucleon
interaction that should mix atomic energy levels� and a similar parity�violating
nucleon�nucleon interaction� Within the GWS theory� the strengths of all of
these various e�ects are predicted in terms of the Fermi constant and one ad�
ditional parameter� the value of sin� �w� Thus� the GWS theory can be tested
by observing each of these e�ects and asking whether a single value of this
parameter can account for the strengths of all of these disparate processes�
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Figure �
��� Diagrams contributing to the process e�e� � ff in the
Glashow�Weinberg�Salam theory�

Further tests of the GWS theory are available at higher energies� The
process e�e� � ff is a�ected in an essential way� since the theory contains a
new diagram with s�channel Z� exchange� which interferes with the standard
photon exchange diagram� as shown in Fig� ����� It is straightforward to work
out the e�ects of this interference using the methods of Section 
��� so we
have left this analysis as Problem �����

As the center�of�mass energy approaches mZ � the Z
� appears directly as

a resonance in the e�e� annihilation cross section� Similarly� both the W and
the Z can be observed as resonances in quark�antiquark annihilation� viewed
as a parton subprocess in proton�antiproton scattering� The positions of these
resonances are predicted from GF � sin

� �w� and the value of e or 	� according
to Eqs� ������� and ������� Using these relations� we �nd

m�
W �

�	p
�GF sin� �w

� m�
Z �

�	p
�GF sin� �w cos� �w

� �����
�

The detailed shape of the Z� resonance is shown in Fig� ���
� The experimental
measurements shown are compared to a theoretical curve with the resonance
position adjusted for the best �t� The height and width of the resonance are
then predicted by the GWS theory� The resonance is broadened to higher
energies by processes in which the electron and positron radiate collinear
photons before annihilation� this correction was discussed in Problem 
�
�

Because the Lagrangian of the GWS theory treats left� and right�handed
fermions as distinct species with completely di�erent quantum numbers� the
couplings of the Z� to left� and right�handed fermions di�er sign�cantly� One
manifestation of this is the presence of a polarization asymmetry� a net polar�
ization of fermions produced in the decay Z� � ff � or an asymmetry in the
inverse process of Z� production� This asymmetry can be read directly from
the form of the Z� current given in ��������

Af
LR �

,�Z� � fLfR�� ,�Z� � fRfL�

,�Z� � fLfR� � ,�Z� � fRfL�

�
� �� � jQf j sin� �w�� � �Qf sin

� �w�
�

� �� � jQf j sin� �w�� � �Qf sin
� �w��

�

�������
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Figure �
��� The total cross section for e�e� annihilation to hadrons for
Ecm close to the Z

� boson mass� as measured by the ALEPH� DELPHI� L�
and OPAL experiments and compiled by the Particle Data Group� Phys� Rev�
D�
� ��		��� Fig� ����� References to the original articles are given there�
The solid curve is the prediction of the GWS theory�

For a realistic value sin� �w � ����� this expression gives a 
� asymmetry for
charged leptons and a �
� asymmetry for d� s� and b quarks� The asymmetry
can be checked experimentally for leptons by measuring the polarization of �
leptons at the Z� resonance� or by measuring the relative cross sections for
producing the resonance using left� versus right�handed electrons� For quarks�
the asymmetry can be determined indirectly from the forward�backward pro�
duction asymmetry on the resonance� as explained in Problem �����

Because the weak neutral current has so many di�erent manifestations�
the GWS theory of weak interactions can be subjected to a stringent test by
comparing the values of the parameter sin� �w needed to account for each of
its predicted e�ects� Table ��� presents the values of sin� �w extracted from
a wide variety of weak interaction neutral current e�ects and asymmetries� In
all cases� one�loop radiative corrections must be included to analyze the ex�
periment at the required level of accuracy� These radiative corrections involve
some subtlety� First� one must adopt a speci�c renormalization convention
that de�nes sin� �w and use it consistently in all calculations� The table shows
results for two di�erent choices of this convention� In both conventions� the
values of weak�interaction observables are taken to be functions of 	� GF � and
a third independent parameter� In the �rst column this parameter is the mass
ratio mW �mZ � and� following the tree�level expression �������� we consider
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Table ����� Values of sin� �w from Weak Interaction Experiments

Observed Quantity or Process s�W sin� �wMS

mZ ������ ��� ������ ���
mW ������ ��
� ������ ����
,Z ����
� ��� ������ ���
Lepton f�b asymmetries at the Z� ������ ��� ����
 ��
All pair�production asymmetries at the Z� �����
 ��� ����� ���
Ae
LR at the Z� ����� ��� ������ ���

Deep inelastic neutrino scattering ������ ���� ����� �
�
Neutrino�proton elastic scattering ����
 ��� ���� ����
Neutrino�electron elastic scattering ����� ��� ���� ���
Atomic parity violation ���� ��� ����� ���
Parity violation in inelastic e� scattering ���� ��� ����� ���

The values listed here are obtained by �tting experimental observations by
adjusting the value of s�W or sin

� �wMS� taking � andGF as accurately known
parameters� The numbers in parentheses are the standard errors in the last
displayed digits� The conversion from the experimentally measured quantities
to s�W or sin

� �wMS depends on the value of the top quark mass and the mass
of the Higgs boson� These values assume a top quark mass of ��	 GeV and a
Higgs mass of �� GeV� the quoted errors include an uncertainty of �� GeV in
the top quark mass and a range from �� GeV to ���� GeV for the Higgs mass�
The di�erences in the relative errors between the two columns re#ect the
importance of this theoretical uncertainty� Some observables depend weakly
on �s� these values assume �s�mZ� � �����
 ����� This table is taken from
the article of P� Langacker and J� Erler for the Particle Data Group� Phys�
Rev� D�
� ��� ��		��� That article contains a full set of references and a
discussion of the sources of uncertainty in these determinations�

this ratio to de�ne a renormalized value of sin� �w�

s�W � � m�
W

m�
Z

� �������

In the second column� the third parameter is sin� �w computed from the weak
interaction coupling constants de�ned by minimal subtraction �Eq� �������
The di�erences between di�erent de�nitions of sin� �w appear at the level
of one�loop computations and can reveal interesting physics� this subject is
discussed in Section ����

A second subtlety is that the one�loop corrections to weak neutral current
processes depend on the value of the t quark mass� which has only recently
been determined and is still somewhat poorly known� The dependence on the
t quark mass is relatively strong� for interesting reasons that we will discuss
in Section ���� The one�loop corrections also depend weakly on properties of
the particles responsible for the spontaneous symmetry breaking�
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We can see from Table ��� that a wide variety of e�ects due to the
weak neutral current have been observed� with magnitudes accounted for by
a single� consistent value of sin� �w� This remarkable concordance of theory
and experiment gives us con�dence that the Glashow�Weinberg�Salam theory
is indeed the correct description of weak and electromagnetic interactions�

Fermion Mass Terms

We now return to the problem of writing mass terms for the quarks and
leptons� Recall that one cannot put ordinary mass terms into the Lagrangian�
because the left� and right�handed components of the various fermion �elds
have di�erent gauge quantum numbers and so simple mass terms violate gauge
invariance� To give masses to the quarks and leptons� we must again invoke
the mechanism of spontaneous symmetry breaking�

We began this section by assuming that a scalar �eld 
 acquires a vacuum
expectation value ����
��� in order to give mass to the W and Z bosons� This
scalar �eld needed to be a spinor under SU��� and to have Y � �� in order
to produce the correct pattern of gauge boson masses� With these quantum
numbers� we can also write a gauge�invariant coupling linking eL� eR� and 
�
as follows�

�Le � ��eEL � 
 eR � h�c� �������

Here the SU��� indices of the doublets EL and 
 are contracted� notice also
that the charges Y of the various �elds sum to zero� The parameter �e is a
new dimensionless coupling constant� If we replace 
 in this expression by its
vacuum expectation value ����
��� we obtain

�Le � � p
�
�ev eLeR � h�c�� � � � � �������

This is a mass term for the electron� The size of the mass is set by the vacuum
expectation value of 
� rescaled by the new dimensionless coupling�

me �
p
�
�ev� �������

Since the electron mass is proportional to v� one might expect that the
masses of the electron and the W boson should be of the same order� In fact�
taking the observed values� me�mW � �	 ���� Since �e is a renormalizable
coupling� it must be treated as an input to the theory� Thus the GWS theory
allows the electron to be very light� but it cannot explain why the electron is
so light compared to the W boson�

We can write mass terms for the quark �elds in the same way� Notice
that� in the following expression� both terms are invariant under SU��� and
have zero net Y �

�Lq � ��dQL � 
 dR � �u�
abQLa


y
buR � h�c� ������
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Substituting the vacuum expectation value of 
 from Eq� ����
��� these terms
become

�Lq � � p
�
�dv dLdR � p

�
�uv uLuR � h�c�� � � � � �������

standard mass terms for the d and u quarks� The GWS theory thus gives the
relations

md �
p
�
�dv� mu �

p
�
�uv� �������

As with the electron� the theory parametrizes but does not explain the small
values of the d and u quark masses observed experimentally�

When additional generations of quarks are introduced into the theory�
there can be additional coupling terms that mix generations� Alternatively�
we can diagonalize the Higgs couplings by choosing a new basis for the quark
�elds� We will show that this is always possible in Section ����� However�
this simpli�cation of the Higgs couplings causes a complication in the gauge
couplings� Let

uiL � �uL� cL� tL� � diL � �dL� sL� bL� �������

denote the up� and down�type quarks in their original basis� and let u�iL and
d�iL denote the quarks in the basis that diagonalizes their Higgs couplings� This
latter basis is the physical one� since it is the basis that diagonalizes the mass
matrix� The two bases are related by unitary transformations�

uiL � U ij
u u

�j
L � diL � U ij

d d
�j
L � �����
�

In this new basis� the W boson current takes the form

J��W �
p
�
uiL�

�diL �
p
�
u�iL�

��UyuUd�ijd
�j
L � �������

This expression is conventionally written

J��W �
p
�
u�iL�

�Vijd
�j
L � �������

where Vij is a unitary matrix called the Cabibbo�Kobayashi�Maskawa �CKM�
matrix� The o��diagonal terms in Vij allow weak�interaction transitions be�
tween quark generations� For example� restricting to two generations for sim�
plicity and writing

V�jd
�j
L � cos �cd

�
L � sin �cs

�
L� �������

the term proportional to sin �c allows an s quark to decay weakly to a u
quark� We have made use of this structure in our discussion of the e�ective
Lagrangian for K meson decays in Section ���� We will discuss CKM �avor
mixing and its symmetry properties in more detail in Section �����

It is interesting to note that there is no term within the structure we
have described that gives a mass to the neutrino� If we wanted to generalize
Eq� ������� to allow a neutrino mass term� we would have to introduce a new
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fermion �eld �R that is completely neutral under SU���	U��� Then we could
write the Higgs coupling

�L� � ����abELa

y
b�R � h�c�� �������

which would give the �e a mass� presumably comparable to that of the elec�
tron� But we know from experiment that neutrino masses are extremely small�
the mass of the �e is known to be less than � eV� This extreme suppression of
the neutrino masses would be naturally explained if the states �R do not ex�
ist� We will show in Section ���� that this assumption also implies that there
are no transitions between leptons of di�erent generations� this result is also
in accord with very strong experimental bounds�

The Higgs Boson

This discussion of fermion mass generation emphasizes that the scalar �eld
that causes spontaneous breaking of the gauge symmetry is an important
ingredient in the structure of the Glashow�Weinberg�Salam theory� We should
therefore ask whether it has any more direct manifestations�

To investigate this question� we will work in the unitarity gauge� analogous
to that used for the Abelian model in Eq� ������� Let us parametrize the scalar
�eld 
 by writing


�x� � U�x�
p
�

�
�

v � h�x�

�
� ������

The two�component spinor on the right has an arbitrary real�valued lower
component� given by the vacuum expectation value of 
 plus a �uctuating
real�valued �eld h�x� with hh�x�i � �� This spinor is acted on by a general
SU��� gauge transformationU�x� to produce the most general complex�valued
two�component spinor� We can now make a gauge transformation to eliminate
U�x� from the Lagrangian� This reduces 
 to a �eld with one physical degree
of freedom�

An explicit renormalizable Lagrangian that leads to a vacuum expectation
value for 
 is

L �
��D�


��� � ��
y
� ��
y
��� �����

The minimum of the potential energy occurs at

v �
���
�

����
� ������

In the unitarity gauge� the potential energy terms in ����� take the form

LV � ���h� � �vh� � 

�
�h�

� �

�
m�
hh

� �
r
�

�
mhh

� � 

�
�h��

������
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Figure �
��� Feynman rules for the couplings of the Higgs boson to vector
bosons� to fermions� and to itself�

The quantum of the �eld h�x� is a scalar particle with mass

mh �
p
��� �

r
�

�
v� ������

This particle is known as the Higgs boson� As for the fermions in the GWS
theory� the Higgs boson has a mass whose general magnitude is controlled by
the vacuum expectation value v� but whose precise value is determined by a
new� unspeci�ed� renormalizable coupling constant�

The expansion of the kinetic energy term of ����� in unitarity gauge
yields the gauge boson mass term �������� plus additional terms involving the
Higgs boson �eld� Explicitly�

LK �


�
���h�

� �
h
m�
WW��W�

� �


�
m�
ZZ

�Z�

i
�
�
 �

h

v

��
� ����
�

where mW and mZ are given by Eqs� ��������
Finally� the fermion mass terms in Eqs� ������� and ������ lead to direct

couplings of the Higgs boson to fermions� Evaluating these terms in unitarity
gauge� we �nd that� for any quark or lepton �avor� the Higgs boson couples
according to

Lf � �mfff
�
 �

h

v

�
� ������

The Higgs boson couplings in Eqs� ������� ����
�� and ������ lead to
the Feynman rules shown in Fig� �����

In general� the couplings of the Higgs boson to other particles of the weak
interaction theory are proportional to the masses of those particles� Thus� the
particles that are most easily made in the laboratory have very weak couplings
to the Higgs boson� which makes it di	cult to observe this particle� In any
event� the Higgs boson has not yet been found� As of this writing� the Higgs
boson that we have just described has been searched for and excluded for
values of mh below �� GeV� If the self�coupling � is large� however� the Higgs
boson could have a mass as large as ��� GeV� thus� a large dynamic range
remains unexplored�

2 
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The phenomenological properties of the Higgs boson are worked out in
more detail in the Final Project of Part III�

A Higgs Sector�

Since there is no experimental evidence for the existence of the simple Higgs
boson contained in the GWS model� it is worth asking whether the W and Z
bosons might acquire mass by a more complicated mechanism� There are two
aspects to this question�

First� is it certain that the W and Z bosons are gauge bosons of a spon�
taneously broken SU���	 U�� symmetry� The evidence for this idea comes
from the universality of the couplings of the various quarks and leptons to the
weak interactions� This universality is tested in the fact that the same value of
the Fermi constant describes all charged�current weak�interaction processes�
and that this same strength of coupling combined with a single value of sin� �w
describes the whole range of weak neutral current phenomena� We have seen�
especially in the discussion of Chapter �� that the principle of local gauge
invariance leads naturally to the prediction of universal� �avor�independent�
coupling constants� No other principle is known that would explain this strik�
ing regularity� Thus there is compelling evidence that the underlying theory
of the weak interactions is a spontaneously broken gauge theory�

However� it is quite possible that the mechanism of the spontaneous break�
ing of SU��� 	 U�� is more complicated than the simple model of a single
scalar �eld that we have written in Eq� ������ In principle� the breaking of
SU���	U�� might be the result of the dynamics of a complicated new set of
particles and interactions� which we will refer to as the Higgs sector� Experi�
ment gives us only three properties of this new sector� First� it must generate
the masses of the quarks and leptons� Second� it must generate the masses of
the W and Z bosons� The third piece of information� which is the only non�
trivial one� comes from the relation ������� between weak boson masses in the
GWS theory�

mW � mZ cos �w� ������

This relation is satis�ed experimentally to better than � accuracy� that is� to
the level of one�loop radiative corrections� Whatever complicated mechanism
we invoke to generate the spontaneous breaking of SU��� 	 U��� it should
reproduce this relation in a natural way�

To understand the implications of relation ������� we must analyze the
gauge boson mass matrix without assuming that SU���	 U�� is broken by
the expectation value of a scalar �eld� Actually� it is possible to compute
the gauge boson mass matrix under much less restrictive assumptions� using
the argument given at the very end of Section ���� There we constructed
the gauge boson mass matrix from the matrix elements for gauge currents to
create or destroy Goldstone bosons� We will now show that relation ������
follows for a large class of models of SU��� 	 U�� breaking for which these
matrix elements satisfy certain simple properties�
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Any model of weak�interaction symmetry breaking must contain some set
of �elds that is responsible for the spontaneous breaking of SU��� 	 U���
Think of this sector of the theory as a �eld theory with a global SU���	U��
symmetry� which is promoted to a local symmetry through its coupling to
gauge bosons� In the theory with global symmetry� this symmetry is sponta�
neously broken to U��� Since three continuous symmetries are spontaneously
broken� this sector must supply three Goldstone bosons� which will eventually
be eaten by W�� W�� and Z�� Call these three bosons �a� where a � � �� ��
Let J�a be the SU��� symmetry currents of the new sector� and let J�Y be
the U�� current� The gauge boson mass matrix will then be constructed from
the matrix elements �������� which here take the form

h�jJ�A j�b�p�i � �ip�FA
b� ������

with A � � �� �� Y and b � � �� �� Using the method of Eq� ����

�� we �nd
that the gauge boson vacuum polarization contains the pole term

� i

k�
�gAF

A
c��gBF

B
c�� ������

summed over c� where gA � g for A � � �� � and gA � g� for A � Y � Then we
can identify the gauge boson mass matrix as

m�
AB � gAgBF

A
cF

B
c� �������

To reproduce the known form of the weak gauge boson mass matrix� we
must now place constraints on the FA

b� First we must insure that the photon
remains massless� This follows if the linear combination of charges �������
annihilates the vacuum� In the language of Eq� ������� we must insist that
the corresponding linear combination of currents cannot excite a Goldstone
boson�

h�j �J�� � J�Y
� j�a�p�i � �� ������

We can also achieve relation ������� using the following additional assump�
tion� The symmetry�breaking sector has an SU��� global symmetry� under
which the three Goldstone bosons and the three SU��� gauge currents trans�
form as triplets� which remains exact when the SU��� gauge symmetry is spon�
taneously broken� This global SU��� symmetry implies that� if A � a � � �� �
in Eq� �������

h�j J�a
���b�p�� � �iFp��ab� �������

where F is a parameter with the dimensions of mass� Combining ������� and
������� we have

h�j J�Y �����p�� � �iFp�� �������

Inserting this form for FA
b into �������� we �nd the gauge boson mass matrix

m� � F �

�B�
g�

g�

g� �gg�
�gg� g��

�CA � �������
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where the matrix acts on the gauge boson �A�
�� A

�
�� A

�
�� B��� The eigenvectors

of this matrix are precisely ������� and �������� To reproduce the eigenvalues�
we need only de�ne

v � �F� �����
�

We have now shown that the GWS relation between the W and Z boson
masses is not special to the situation in which the gauge symmetry is broken
by a single scalar �eld� This relation follows from the much more general as�
sumption of an unbroken global SU��� symmetry of the Higgs sector� This
symmetry is often called custodial SU��� symmetry�! We have seen this sym�
metry already as the global SU��� symmetry of the weak�interaction e�ective
Lagrangian ��������

For the case of a single scalar �eld� the custodial symmetry arises in the
following way� If we write the �eld 
 in terms of its four real components� the
Lagrangian ����� �ignoring the gauge couplings� has O��� global symmetry�
The vacuum expectation value of 
 breaks this symmetry down to O���� that
is� SU����

However� there are many other quantum �eld theories that break SU���
spontaneously while leaving another global SU��� symmetry unbroken� One
rather complex example is given by QCD with two massless �avors� if we
identify the gauged SU��� with the symmetry generated by UL in ������
and identify the custodial SU��� with vectorial isospin symmetry� A copy
of the familiar strong interactions with a mass scale large enough to give
F � �
 GeV would be a perfectly acceptable model for the Higgs sector�
�Unfortunately� it is not easy in this model to generate masses for the quarks
and leptons��

The question of the nature of the Higgs sector and the explicit mechanism
of SU���	U�� breaking is probably the most pressing open problem in the
theory of elementary particles� We will discuss this question further in the
Epilogue�

���� Symmetries of the Theory of Quarks and Leptons

Putting together the theory of strong interactions described in Chapter � and
the theory of weak and electromagnetic interactions described in the previous
section� we have now constructed a complete description of elementary particle
interactions� It is interesting to investigate the symmetries of this theory� to
ask what might be the fundamental symmetries of the underlying description
of Nature�

We have already seen� in the arguments leading up to Eq� �
���� that
the Lagrangian of a gauge theory is highly restricted by the conditions of
renormalizability and gauge invariance� In this section� we will construct the

�P� Sikivie� L� Susskind� M� Voloshin� and V� Zakharov� Nucl� Phys� B���� �
	
��	
���
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most general renormalizable Lagrangian consistent with the SU���	SU���	
U�� gauge symmetries of the strong� weak and electromagnetic interactions�
We can then ask what further global symmetries we must impose on this
theory in order to give it the global symmetries that we see in Nature�

As a �rst step� we will ignore the Higgs scalar �eld and the mass terms
of quarks� leptons� and gauge bosons� Then the Lagrangian of the theory of
quarks and leptons is entirely speci�ed by gauge invariance and renormaliz�
ability� We have

LK � �

�

X
i

�F a
i�� �

� �
X
J

�J�iD��J � �������

where the index i runs over the three factors of the gauge group and the index
J runs over the various multiplets of chiral fermions�

In principle� we could add to ������� the following pseudoscalar pure
gauge operators�

�L� �
X
i

�ig
�
i

����
�����F a

i��F
a
i�� � �������

These terms are apparently odd under both P and T � However� we saw at the
end of Section ��� that terms of this form can be generated or canceled by
making a change of variables in the e�ective action� For example� the change
of variables on the right�handed electron �eld

eR � ei�eR �������

produces� according to ������ or ������� a correction to the Lagrangian in�
volving the P � and T �odd combination of �eld strengths for the U�� gauge
�eld

�L � 	 � g��

����
�����F��F�� � �������

The coe	cient of ������� di�ers from the corresponding coe	cient in ������
because we transform only the right�handed chiral component of the electron
�eld� If we were to transform another fermion �eld� of hypercharge Y � we
would �nd a similar shift� with the coe	cient proportional to Y �� If this new
�eld coupled to the SU��� or SU��� gauge �elds� we would also �nd terms
proportional to those �eld strengths� Thus� we can eliminate the term in
������� involving the U�� �eld strengths by making the change of variables
������� with 	 � � �

���� We can eliminate all three terms in ������� by
making appropriate chiral rotations on three fermion multiplets� say� eR� EL�
and QL� The change of variables �������� which rotates the right�handed
electron �eld� is not symmetric under parity and� in fact� changes the de�nition
of the parity operation� By making this change of variables� we are choosing
new coordinates in which the P and T transformation properties of the whole
theory are as simple as possible�

Let us now investigate the properties of the Lagrangian ������� under
P � C� and T � The couplings of the QCD gauge bosons are invariant to each
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of these symmetries separately� However� the couplings of the SU��� gauge
bosons violate P and C as much as possible� Recall from Section ��� that P
converts a left�handed electron to a right�handed electron� and that C converts
a left�handed electron to a left�handed positron� Each of these operations
converts a particle that couples to SU��� gauge bosons to one that does not�
However� the combination of these two operations interchanges left�handed
particles with right�handed antiparticles� Thus the combined operation CP is
a symmetry of �������� This Lagrangian is also invariant under time reversal�

Thus� we see that the discrete symmetries of C and P � on the one hand�
and CP and T � on the other� stand on a very di�erent footing in gauge �eld
theories� Any chiral gauge theory will naturally violate C and P � At this
level in our analysis� it is a mystery why C and P should be observed to be
approximate symmetries of Nature� On the other hand� every theory of gauge
bosons and massless fermions respects CP and T � It is known experimentally
that Nature contains some interaction that violates CP � since the CP selection
rules are weakly violated in the decays of the K� meson� But to �nd a source
for this violation� we must add terms to our basic gauge theory ��������

We must� �rst of all� add dynamics to ������� that will cause the sponta�
neous breaking of SU���	U��� We will begin by working with the simplest
model with one Higgs scalar �eld 
� The most general renormalizable La�
grangian for 
 is

L� �
��D�


��� � ��
y
� ��
y
��� �������

The Hermiticity of L� implies that the parameters �� and � are real� Thus
this Lagrangian respects P � C� and T � As discussed at the end of the previous
section� this Lagrangian also automatically has the custodial SU��� symmetry
required to produce the mass relation �������

Finally� we must add the terms that couple the Higgs �eld to the quarks
and leptons� Here� renormalizability and gauge invariance provide the weakest
constraints� and there are many allowed interactions� We will �rst analyze the
coupling of 
 to the quark �elds� and then generalize this discussion to the
leptons�

In writing the Higgs �eld couplings to the quarks� we should recall that
there are known to be three generations of quarks and leptons� Thus there are
three doublets of left�handed quarks�

Qi
L �

�
ui

di

�
L

�

��
u
d

�
L

�

�
c
s

�
L

�

�
t
b

�
L

�
� ������

There are six right�handed quarks� three with Y � �
� and three with Y � � �

� �

uiR �
�
uR� cR� tR

�
� diR �

�
dR� sR� bR

�
� �������

When we couple gauge �elds to these quarks� we replace the ordinary deriva�
tives with covariant derivatives� This automatically gives all of the quarks the
same coupling to QCD and all quarks of the same type the same coupling to



��� Chapter �� Gauge Theories with Spontaneous Symmetry Breaking

the weak interactions� It does not allow mixing between the various quark �a�
vors� However� the coupling of the Higgs �eld to the quarks does not follow
from a gauge principle and so need not have any of these restrictions� Unless
we require quark �avor conservation by postulating a new discrete symmetry
of the theory� the Higgs couplings will� in general� mix the various �avors�

If we do not impose any additional symmetries on the theory� we must
write the most general renormalizable gauge�invariant coupling with the struc�
ture of Eq� �������

Lm � ��ijd Q
i
L � 
 djR � �iju �

abQ
i
La


y
bu

j
R � h�c�� �������

where �ijd and �iju are general� not necessarily symmetric or Hermitian�
complex�valued matrices� The operation of CP interchanges the operators
written in ������� with their Hermitian conjugates without changing the co�
e	cients� thus� CP is equivalent to the substitutions

�ijd � ��ijd �
�� �iju � ��iju �

�� �������

CP would be a symmetry of ������� if the matrices �ij were real�valued�
however� there is no principle that requires this� Without the imposition of
further symmetry requirements� it seems that ������� does maximum violence
to all discrete and �avor conservation symmetries�

However� just as we were able to eliminate the T �violating terms �������
by making a chiral rotation� we can simplify the form of ������� by appropri�
ate chiral transformations� To �nd the required transformations� diagonalize
the Hermitian matrices obtained by squaring �d and �u� De�ne unitary ma�
trices Uu and Wu by

�u�
y
u � UuD

�
uU

y
u� �yu�u � WuD

�
uW

y
u � �����
�

where D�
u is a diagonal matrix with positive eigenvalues� Then

�u � UuDuW
y
u � �������

where Du is the diagonal matrix whose diagonal elements are the positive
square roots of the eigenvalues of �����
�� We can de�ne unitary matrices Ud
and Wd in a similar way and decompose �d as

�d � UdDdW
y
d � �������

Now make the change of variables

uiR �W ij
u u

j
R� diR �W ij

d d
j
R� �������

This eliminates the unitary matrices Wu and Wd from the Higgs coupling
�������� Since each of the three uiR and each of the three diR have the same
coupling to the gauge �elds� Wu and Wd commute with the corresponding
covariant derivatives� Thus� under ��������X

i

�
uiR�iD�uiR � d

i
R�i D�diR

��X
i

�
uiR�iD�uiR � d

i
R�iD�diR

�
� �������
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and so Wu and Wd disappear from the theory�
The analogous transformation on the left�handed �elds also makes a dra�

matic simpli�cation� Make the change of variables

uiL � U ij
u u

j
L� diL � U ij

d d
j
L� �������

This transformation eliminates Uu� Ud from the terms in ������� that involve
the lower component of the Higgs �eld� In unitarity gauge� only these terms
survive� By combining the diagonal elements of Du and Dd with the vacuum
expectation value of the Higgs �eld� we can relate these elements to quark
masses�

mi
u �

p
�
Dii
u v� mi

d �
p
�
Dii
d v� ������

With this replacement� ������� takes the form

Lm � �mi
dd

i
Ld

j
R

�
 �

h

v

�
�mi

uu
i
Lu

i
R

�
 �

h

v

�
� h�c� �������

This has the standard form of quark mass terms and Higgs boson couplings�
The transformations ������� and ������� thus convert the quark �elds to the
basis of mass eigenstates� In this basis� the mass terms and Higgs couplings
are diagonal in �avor and conserve P � C� and T �

Since left�handed u and d quarks have identical couplings to QCD� the
matrices Uu and Ud commute with the QCD couplings in the covariant deriva�
tive� However� uL and dL are mixed by the weak interactions� and so we must
investigate the e�ect of ������� on the SU���	U�� couplings more carefully�
This is most easily done by referring to the Lagrangian �������� The matri�
ces Uu and Ud cancel out of the pure kinetic terms in the �rst line of ��������
They also cancel out of the electromagnetic current J�EM � for example�

uiL�
�uiL � uiLU

y
u
ij��Uu

jkukL � uiL�
�uiL� �������

By the same logic� Uu and Ud cancel out of the Z� boson current�
However� in the current that couples to the W boson �eld� we �nd

J�� �
p
�
uiL�

�diL �
p
�
uiL�

�
�
U yuUd

�ij
djL� �������

That is� the charge�changing weak interactions link the three uiL quarks with
a unitary rotation of the triplet of diL quarks� with this rotation given by the
unitary matrix

V � UyuUd� �����
�

The matrix V is known as the Cabibbo�Kobayashi�Maskawa �CKM� mixing
matrix�

The matrix V can have complex elements� but we can remove phases
from V by performing phase rotations of the various quark �elds� Before
analyzing the case of three generations� it is useful to consider the case of two



��� Chapter �� Gauge Theories with Spontaneous Symmetry Breaking

generations�u� d� c� and s� In this case� V is a �	 � unitary matrix� Such a
matrix has � parameters� we can write its most general form as

V �

�
cos �ce

i� sin �ce
i	

� sin �ce
i����� cos �ce

i�	���

�
� �������

One parameter of V is a rotation angle� and the other three are phases� We
can remove these phases by performing the change of variables on the quark
�elds

qiL � exp$i	i%qiL� �������

This global phase rotation has no e�ect on any term of the Lagrangian except
for the weak charged current �������� A phase rotation that is equal for all
four quark �avors cancels out of �������� However� the other three possible
phase transformations are just what we need to eliminate 	� �� and ��

When we have chosen the phases of the quark �elds in this way� V takes
the form

V �

�
cos �c sin �c
� sin �c cos �c

�
� �������

Then the quark terms in the weak charged current can be written

J�� �
p
�

�
cos �cuL�

�dL � sin �cuL�
�sL � sin �ccL�

�dL � cos �ccL�
�sL
�
�

�������
We have already seen� in Eqs� ����� and ������� that this is the way the
s quark enters the weak interactions� The angle �c is the Cabibbo angle� as
de�ned in Eq� �������

The same set of arguments can be made for the theory with three genera�
tions� Here V is a general unitary �	� matrix� Such a matrix has � parameters�
Of these� � are rotation angles� this is the number of parameters of an O���
rotation� The remaining � parameters are phases� We can remove these phases
by making phase rotations of quark �elds as in �������� but the overall phase
is redundant� so we can remove only 
 of these phases� The �nal form of V
contains � angles� of which one is the Cabibbo angle� and one phase� After
all the transformations we have made� this one phase that makes some cou�
plings of the W� to quarks complex is the only remaining parameter that
violates CP �

We began this argument from a Lagrangian for the quark�Higgs boson
coupling that seemed to violate all possible �avor symmetries and all dis�
crete spacetime symmetries� However� by making changes of variables on the
fermion �elds� we have been able to dramatically simplify the form of the La�
grangian� If we keep only those terms involving the massless gauge bosons�
the photon and the gluons� plus the mass terms and interactions written
in �������� we see that this set of terms conserves P � C� T � and all �avor
symmetries� This dramatic simpli�cation occurs because the unbroken gauge
symmetry of Nature� the gauge symmetry of QCD and QED� is nonchiral and
can be written as acting on Dirac fermions� Since we have omitted only the
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Figure �
��� Higher�order diagrams that seem to give the leading contri�
butions to #avor�changing weak neutral current processes� �a� K� � �����
�b� K� � K

�
�

e�ects mediated by the massive W and Z bosons� this much of the analysis
already guarantees that Nature will appear� to a high degree of approxima�
tion� to respect the three separate discrete symmetries and all quark �avor
conservation laws� Notice that we did not assume any fundamental global sym�
metries� but depended only on the assignment of gauge quantum numbers in
the SU���	 SU���	 U�� gauge theory�

If we include the Z boson and the weak neutral current� we have a theory
that violates P and C through Z exchange but that respects CP � In addition�
this theory respects all �avor conservation laws� We describe this situation by
saying that there is no �avor�changing weak neutral current� The experimental
evidence for this statement is quite impressive� The best tests come from the
study of the neutral K� meson� which is an sd bound state and so could decay
by Z� exchange if this boson coupled to a �avor�changing current� In fact� the
decay K� � ���� is highly suppressed� to the level of the one�loop weak
interaction correction shown in Fig� �����a�� Similarly� the interconversion of

K� and K
�
� which could proceed directly if the Z� could change �avor� is

suppressed to the level of the contribution shown in Fig� �����b��
On the other hand� W bosons couple to currents that can change quark

�avor� in a pattern parametrized by the Cabibbo angle and the other angles
in the CKM matrix� Thus� heavy quark �avors decay by W boson exchange
processes� Since the W couples to a current that contains only left�handed
quarks� it mediates an interaction that violates P and C maximally� This
violation of discrete symmetries is concealed from our ordinary experience be�
cause the amplitude forW exchange is small� However� this P and C violation
is a dramatic qualitative feature of weak decays�

Since the coupling of the W to quarks contains an irreducible phase� these
couplings in principle can violate CP � However� we have seen that this phase
can be removed in a theory with only two generations� This means that the
phase of the CKM matrix can have physical consequences only in a process
that involves all three generations� Typically� this means that the CKM phase
can contribute only to weak interaction loop corrections or to complicated
exclusive decay processes� Thus the SU���	SU���	U�� theory can account
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for CP violation� and also explains why this e�ect is much weaker even than
the weak interactions� It is interesting to note that Kobayashi and Maskawa
originally proposed the existence of the third generation in order to provide a
mechanism for CP violation�y

On the other hand� at this moment there is no conclusive evidence that
the origin of CP violation is indeed the phase of the CKM matrix� All of the
arguments we have given in this section have used the simplest model of the
Higgs sector� in which this sector consists of a single scalar �eld� More general
models of the Higgs sector may leave behind a more complicated set of quark�
Higgs couplings than appear in �������� and some of these may violate CP �
In addition� there may be terms in the Higgs sector itself that lead to CP
violation� The origin of the observed CP violation is still an open problem
that needs both theoretical and experimental exploration�

Before leaving this subject� we must discuss one more aspect of this argu�
ment that is still mysterious� To simplify the Lagrangian of the gauge theory
of quarks to its �nal form� we needed to make chiral changes of variables in
the functional integral� We saw in Section ���� and we reviewed at the begin�
ning of this section� that such changes of variables produce the new P � and
T �violating terms written in Eq� �������� It can be shown� using the fact that
these terms are total derivatives� that the terms involving SU��� and U��
�eld strengths have no observable e�ects� However� the term involving QCD
�eld strengths can induce an electric dipole moment for the neutron� a T �
violating e�ect that has been searched for and excluded at an impressive level
of accuracy� Thus the P � and T �violating combination of QCD �eld strengths
cannnot be allowed to appear in the Lagrangian� On the other hand� if the
original up and down quark Higgs coupling matrices were of the most general
possible form� it seems that this cannot be avoided� This problem is known
as the strong CP problem� To solve this problem� one must either constrain
the Higgs coupling matrices� violating the spirit of the argument we have just
concluded� or one must add additional structure to the Higgs sector�z

Finally� let us discuss the general form and simpli�cation of the Higgs
boson couplings to leptons� When we wrote the Glashow�Weinberg�Salam La�
grangian in the previous section� we noted that no gauge �eld coupled to the
right�handed neutrino� Thus� we chose to eliminate this particle from the the�
ory� We might need right�handed components of the neutrinos to construct
neutrino mass terms� but at the moment there is no evidence for nonzero
neutrino masses� Thus� in the remainder of this section� we will assume that
there are no right�handed neutrinos and work out the consequences of this
assumption�!

yM� Kobayaski and T� Maskawa� Prog� Theor� Phys� �	� ��� ��	���
zThe strong CP problem� its proposed solutions� and their unexpected implica�

tions are reviewed by R� D� Peccei in CP Violation� C� Jarlskog� ed� �World Scienti�c�
�	
	��

�In generalizations of the SU��� � U��� model� neutrinos can acquire Majorana
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Generalizing Eq� �������� we can write the most general coupling of a
Higgs boson to three generations of leptons� Since there are no right�handed
neutrinos� the only possible coupling is

Lm � ��ij� E
i
L � 
 ejR � h�c� ����
��

To diagonalize this coupling� represent �� in the form

�� � U�D�W
y
� � ����
�

and eliminate the matrices U� and W� by the changes of variables

eiL � U ij
� e

j
L� �iL � U ij

� �
j
L� eiR �W ij

� ejR� ����
��

Since we are now making the same change of variables on the two components
of the weak doublet Ei

L� this change of variables commutes with the SU���
interactions in the covariant derivative� Thus the unitary matrices U� and W�

completely disappear from the theory� The result is a theory of leptons that
conservesCP exactly and also conserves the lepton number of each generation�
This last result is very accurately tested experimentally� For example� there
is no evidence for the generation�changing muon decay processes �� � e��
or �� � e�e�e�� the branching ratios for these processes are known to be
below �����

We have seen� then� that the SU��� 	 SU��� 	 U�� gauge theory of
quarks and leptons does an excellent job of accounting for the symmetries
and conservation laws that are observed in elementary particle phenomena�
It predicts which symmetries should be exact in Nature and which should be
approximate� For approximate symmetries� it gives an accurate estimate of
the level of symmetry violation� Most remarkably �except for the one issue
of the strong CP problem�� none of these predictions depend on any under�
lying global discrete or �avor symmetries in the fundamental equations� The
global symmetries that we observe in Nature follow only from gauge invari�
ance and the speci�c representation assignments that we made in constructing
our gauge theory description�

mass terms that are naturally very small� These models also respect the constraints
on lepton #avor mixing described in the next paragraph� For an introduction to these
ideas on neutrino mass� see P� Ramond� in Perspectives in the Standard Model� R� K�
Ellis� C� T� Hill� and J� D� Lykken� eds� �World Scienti�c� �		���
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Problems

�
�� Spontaneous breaking of SU���� Consider a gauge theory with the gauge
group SU���� coupled to a scalar �eld � in the adjoint representation� Assume that
the potential for this scalar �eld forces it to acquire a nonzero vacuum expectation
value� Two possible choices for this expectation value are

h�i � A

�BB�
�
�
�
�

��

�CCA and h�i � B

�BB�
�
�
�

�
�

�CCA �

For each case� work out the spectrum of gauge bosons and the unbroken symmetry
group�

�
�� Decay modes of the W and Z bosons�

�a� Compute the partial decay widths of the W boson into pairs of quarks and
leptons� Assume that the top quark mass mt is larger than mW � and ignore
the other quark masses� The decay widths to quarks are enhanced by QCD
corrections� Show that the correction is given� to order �s� by Eq� ����	�� Using
sin� �w � ���� �nd a numerical value for the total width of the W

��

�b� Compute the partial decay widths of the Z boson into pairs of quarks and
leptons� treating the quarks in the same way as in part �a�� Determine the total
width of the Z boson and the fractions of the decays that give hadrons� charged
leptons� and invisible modes ���

�
�� e�e� � hadrons with photon�Z� interference�

�a� Consider a fermion species f with electric charge Qf and weak isospin I
�
L for its

left�handed component� Ignore the mass of the f � Compute the di�erential cross
section for the process e�e� � ff in the standard electroweak model� Include
the e�ect of the Z� width using the Breit�Wigner formula� Eq� ������� Plot the
behavior of the total cross section as a function of CM energy through the Z�

resonance� for u� d� and ��

�b� Compute the forward�backward asymmetry for e�e� � ff � de�ned as

AfFB �
�
R �
�
�
R �
���d cos ��d	
d cos ��

�
R �
�
�
R �
���d cos ��d	
d cos ��

�

as a function of center of mass energy�

�c� Show that� just on the Z� resonance� the forward�backward asymmetry is given
by

AfFB �


�
AeLRA

f
LR�

�d� Show that the cross section at the peak of the Z� resonance is given by

	peak �
���

m�
Z

��Z� � e�e����Z� � ff�

��Z
�
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where �Z is the total width of the Z
�� Notice that both the total width of the

Z� and the peak height are a�ected by the presence of extra invisible decay
modes� Compute the shifts in �Z and 	peak that would be produced by a hy�
pothetical fourth neutrino species� and compare these shifts to the cross section
measurements shown in Fig� �����

�
�� Neutral�current deep inelastic scattering�

�a� In Eq� ������� we wrote formulae for neutrino and antineutrino deep inelastic
scattering with W exchange� Neutrinos and antineutrinos can also scatter by
exchanging a Z�� This process� which leads to a hadronic jet but no observable
outgoing lepton� is called the neutral current reaction� Compute d	
dxdy for
neutral current deep inelastic scattering of neutrinos and antineutrinos from
protons� accounting for scattering from u and d quarks and antiquarks�

�b� Next� consider deep inelastic scattering from a nucleus A with equal numbers
of protons and neutrons� For such a target� fu�x� � fd�x�� and similarly for
antiquarks� Show that the formulae in part �a� simplify in such a situation� In
particular� let R� � R�� be de�ned as

R� �
d	
dxdy��A� �X�

d	
dxdy��A� ��X�
� R�� �

d	
dxdy��A� �X�

d	
dxdy��A� ��X�
�

Show that R� and R�� are given by the following simple formulae�

R� �
�

�
� sin� �w � �

	
sin� �w�� � r��

R�� �
�

�
� sin� �w � �

	
sin� �w�� �

�

r
��

where

r �
d	
dxdy��A� ��X�

d	
dxdy��A� ��X�
�

These formulae remain true when R� and R�� are rede�ned to be the ratios of
neutral� to charged�current cross sections integrated over the region of x and y
that is observed in a given experiment�

�c� By setting r equal to the observed value say� r � ��� and varying sin� �w�
the relations of part �b� generate a curve in the plane of R� versus R�� that is
known as Weinberg�s nose� Sketch this curve� The observed values of R� � R�� lie
close to this curve� near the point corresponding to sin� �w � ����

�
�� A model with two Higgs elds�

�a� Consider a model with two scalar �elds �� and ��� which transform as SU���
doublets with Y � �
�� Assume that the two �elds acquire parallel vacuum
expectation values of the form ������ with vacuum expectation values v�� v��
Show that these vacuum expectation values produce the same gauge boson mass
matrix that we found in Section ����� with the replacement

v� � �v�� � v����

�b� The most general potential function for a model with two Higgs doublets is quite
complex� However� if we impose the discrete symmetry �� � ���� �� � ���
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the most general potential is

V ���� ��� � �����y��� � ����
y
��� � ����

y
����

� � ����
y
����

�

� ����
y
������

y
���� � ����

y
������

y
���� � ����

y
����

� � h�c���

Find conditions on the parameters �i and �i so that the con�guration of vac�
uum expectation values required in part �a� is a locally stable minimum of this
potential�

�c� In the unitarity gauge� one linear combination of the upper components of ��
and �� is eliminated� while the other remains as a physical �eld� Show that the
physical charged Higgs �eld has the form

�� � sin  ��� � cos  ��� �
where  is de�ned by the relation

tan  �
v�
v�
�

�d� Assume that the two Higgs �elds couple to quarks by the set of fundamental
couplings

Lm � ��ijd Q
i
L � ��djR � �iju Q

i
La�

y
�bu

j
R � h�c�

Find the couplings of the physical charged Higgs boson of part �c� to the mass
eigenstates of quarks� These couplings depend only on the values of the quark
masses and tan and on the elements of the CKM matrix�
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Quantization of Spontaneously

Broken Gauge Theories

In Chapter �� we saw that when a gauge symmetry is spontaneously broken�
the gauge bosons acquire mass� This phenomenon allowed us to construct a
realistic theory of the weak interactions� Up to this point� however� we have
discussed spontaneously broken gauge theories only in a simplistic way� To
isolate the physical degrees of freedom� we have used the device of going to the
unitarity gauge� However� it is not at all clear what the rules of perturbation
theory are in this gauge� or how the unitarity gauge constraint is maintained
when we compute Feynman diagrams� We have also seen that the Goldstone
bosons that are absorbed into the massive gauge bosons play an important
role in formal arguments about these theories� so we would like to quantize
these theories in a gauge that does not eliminate these particles from the
beginning�

In this chapter we will address these problems� by carrying out the for�
mal gauge��xing of theories with spontaneously broken gauge symmetry us�
ing the Faddeev�Popov method� We will de�ne a class of gauges� called the
R� gauges� almost all of which contain the Goldstone bosons of the original
spontaneous symmetry breaking� These particles cancel the e�ects of other
unphysical particles in the formalism to maintain the unitarity of the theory�
These cancellations are a more intricate version of the cancellations between
gauge and ghost degrees of freedom that we saw in Chapter �� However� we
will see in Section ��� that a theory does not forget that it contains Goldstone
bosons and that� under some circumstances� the properties of the Goldstone
bosons in the theory without gauge couplings can carry over to the theory
with massive gauge bosons�

Finally� having de�ned the perturbation theory and clari�ed the role of the
Goldstone bosons in spontaneously broken gauge theories� we will carry out
some explicit loop calculations of interest in the theory of weak interactions�
Here we will see applications of the ideas of Chapter � that a theory with
spontaneously broken symmetry can be renormalized with the counterterms
of the symmetric Lagrangian� In Section ��� we will show through some
examples that this result applies with equal force to gauge theories� and that
it endows the weak�interaction gauge theory with substantial predictive power�

���
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���� The R� Gauges

In our discussion of the low�energy e�ective Lagrangian for weak interactions�
we proposed in Eq� ������� the following expression for the propagator of a
massive gauge boson�

hA��p�A���p�i �
�

�ig��
p� �m�

� ����

This expression is a natural �rst guess� generalizing the Feynman�0t Hooft
gauge� However� it is unsatisfactory in a number of ways�

The most important of these defects concerns the treatment of gauge
boson polarization states� The propagator ���� contains four components�
corresponding to the transverse� longitudinal� and timelike polarizations� We
saw in Chapters 
 and � that� for massless gauge bosons� the unphysical
longitudinal and timelike components cancel in computations� For a massive
gauge boson� however� the longitudinal polarization state corresponds to a
real physical particle� we do not want it to cancel� Expression ���� does not
take this change into account�

An Abelian Example

To understand this and other formal problems that arise for gauge theories
with spontaneously broken symmetry� we need to carefully redo the Faddeev�
Popov quantization of these theories� To begin� we will quantize the sponta�
neously broken Abelian gauge theory introduced in Eq� ������

L � � �
� �F���

� �
��D�


��� � V �
�� �����

with D� � �� � ieA�� Here 
�x� is a complex scalar �eld� However� it will
be most convenient to analyze the model by writing 
 in terms of its real
components�


 �
p
�

�

� � i
�

�
� �����

Then the in�nitesimal local symmetry transformation is

�
� � �	�x�
�� �
� � 	�x�
�� �A� � �

e
��	� �����

Let us assume that V �
� forces the scalar �eld to acquire a vacuum ex�
pectation value�

�

�
�
� v� Then we should change variables by a shift�


��x� � v � h�x�� 
� � �� ���
�

The �eld 
� or � is the Goldstone boson� The Lagrangian ����� now takes
the form

L � � �
� �F�� �

� � �
�

�
��h� eA��

��
� �

�

�
���� eA��v � h�

�� � V �
�� �����
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This Lagrangian is still invariant under an exact local symmetry�

�h � �	�x��� �� � 	�x��v � h�� �A� � �

e
��	� �����

Thus� in order to de�ne the functional integral over the variables �h� ��A���
we must introduce Faddeev�Popov gauge �xing�

Starting from the functional integral

Z �

Z
DADhD� ei

R
L�A�h���� �����

we can introduce a gauge��xing constraint as we did in Section ���� Following
the steps leading from Eq� ���
�� to Eq� ���
��� we �nd

Z � C �
Z
DADhD� ei

R
L�A�h��� �

�
G�A� h� ��

�
det
��G
�	

�
� �����

where C is a constant proportional to the volume of the gauge group and
G�A� h� �� is a gauge��xing condition� Alternatively� we can introduce the
gauge��xing constraint as ��G�x� � �x�� and integrate over �x� with a
Gaussian weight� as in the derivation of Eq� ���
��� This gives

Z � C � �
Z
DADhD� exp

h
i

Z
d�x
�L$A� h� �%� �

� �G��
�i

det
��G
�	

�
� �����

The gauge��xing function G is arbitrary� but we can simplify our formalism
by choosing it appropriately�

An especially convenient choice of the gauge��xing function is

G �
p
�

�
��A

� � �ev�
�
� ����

When we form G�� the term quadratic in A� will provide the same gauge�
dependent addition to the gauge �eld action that we saw in the derivation
of Eqs� ���
�� and ������� In addition� the cross term between A� and � is
engineered to cancel the quadratic term of the form ���A

� coming from the
third term of ������ With this choice� the quadratic terms of the gauge��xed
Lagrangian �L � �

�G
�� are

L� � �

�
A�

�
�g���� � �� 

�

�
���� � �ev��g��

�
A�

�


�
���h�

� � 

�
m�
hh

� �


�
�����

� � �

�
�ev�����

�����

The mass term for the h �eld comes from the expansion of V �
�� as in �������
The mass term for the gauge �eld comes from the Higgs mechanism� that is�
from the third term of ������ Notice that the formalism also produces a mass
for the Goldstone boson ��

m�
� � ��ev�� � �m�

A� �����
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The fact that this mass is gauge�dependent is a signal that the Goldstone
boson is a �ctitious �eld� which will not be produced in physical processes�

To complete the Faddeev�Popov quantization procedure� we must derive
the Lagrangian of the ghosts� This Lagrangian depends on the gauge variation
of G� which can be computed by inserting ����� into ����� We �nd

�G

�	
�

p
�

�
�

e
�� � �ev�v � h�

�
� �����

The determinant of this operator can be accounted for by including a set of
Faddeev�Popov ghosts with the Lagrangian�

Lghost � c
h
��� � �m�

A

�
 �

h

v

�i
c� ���
�

where mA � ev as in Eq� ������ Since this is an Abelian gauge theory� the
ghost �eld does not couple directly to the gauge �eld� It does� however� couple
to the physical Higgs �eld� so it cannot be completely ignored as in QED�

+From the quadratic terms in the Lagrangians for A�� h� �� and the ghosts�
we can readily �nd the propagators for these �elds� All four propagators are
shown in Fig� ��� The only complicated case is that of the gauge �eld� The
term in ����� involving A� involves an operator whose Fourier transform is

g��k� � �� 

�

�
k�k� �m�

Ag
��

�
�
g�� � k�k�

k�

�
�k� �m�

A� �
�k�k�

k�

�
�
�k� � �m�

A��

�����

The inverse of this matrix gives the A� �eld propagator�

hA��k�A���k�i � �i
k� �m�

A

�
g�� � k�k�

k�

�
�

�i�
k� � �m�

A

�k�k�
k�

�
�

�i
k� �m�

A

�
g�� � k�k�

k� � �m�
A

�� ��
�
�

�����

Notice that the transverse components of the A �eld and the component h
of the Higgs �eld acquire the masses mA� mh that we found in Section ����
The unphysical components of A� the Goldstone bosons� and the ghosts all
acquire the same gauge�dependent mass

p
�mA�


 Dependence in Perturbation Theory

Because the parameter � was introduced only in the gauge �xing� we expect
it to cancel out of all computations of expectation values of gauge�invariant
operators and of S�matrix elements� This cancellation can be proved to all
orders in perturbation theory by using the BRST symmetry of the gauge�
�xed Lagrangian�! Here� however� we will simply illustrate the cancellation of
� in a simple example�

�See� for example� Taylor ��	����



���� The R� Gauges ���

Figure ����� Propagators of the gauge �eld� Higgs �elds� and ghosts in the
Abelian model with spontaneously broken symmetry�

Figure ����� Diagrams contributing to fermion�fermion scattering at lead�
ing order in the Abelian model with spontaneous symmetry breaking�

Consider coupling a fermion to the spontaneously broken gauge theory
through a chiral interaction�

Lf � �L�iD��L � �R�i���R � �f
�
�L
�R � �R


��L
�
� �����

with D� � �� � ieA� as before� This is a stripped�down� Abelian version of
the coupling of fermions to the weak interaction gauge theory� The fermion �
receives a mass

mf � �f
vp
�

�����

from the spontaneous symmetry breaking� �This theory has an axial vector
anomaly that would render loop calculations inconsistent� but we will analyze
it only at the level of tree diagrams��

In this theory� the leading�order diagrams contributing to fermion�fermion
scattering are those shown in Fig� ���� Notice that the contribution from the
exchange of the unphysical particle � must be included� since this particle
appears in the Feynman rules� The ghosts do not appear in this process until
the one�loop level� Since the propagator of the physical Higgs particle h is
independent of �� the cancellation of the � dependence must take place between
the transverse and longitudinal components of A� and the Goldstone boson ��
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The graph with exchange of the Goldstone boson has the value

iM� �
� �fp

�

��
u�p���u�p�

i

q� � �m�
A

u�k���u�k�� ������

The � dependence of this expression must be canceled by that of the gauge
boson exchange diagram�

iMA � ��ie��u�p����
���

�

�
u�p�

	 �i
q� �m�

A

�
g�� � q�q�

q� � �m�
A

����
�
u�k����

���
�

�
u�k��

�����
The � dependence of this term looks quite intricate� However� we can make
some simpli�cations by rewriting the gauge boson propagator as

�i
q� �m�

A

�
g�� � q�q�

m�
A

� q�q�
h 

m�
A

� 

q� � �m�
A

����
i�

�
�i

q� �m�
A

�
g�� � q�q�

m�
A

�
�

�i
q� � �m�

A

�q�q�
m�
A

�
� ������

The �rst term of ������ is ��independent� The second term can be simpli�ed
in ����� by using the identity

q�u�p����
���

�

�
u�p� �



�
u�p��

�
�p� p��� �p� p����u�p�

�


�
u�p��

�p�� � � p�u�p�
� mfu�p

���u�p��

������

and the analogous identity on the other fermion line� After making these
rearrangements and inserting the explicit values mf � �fv�

p
� and mA � ev�

the gauge boson exchange amplitude ����� takes the form

iMA ���ie��u�p����
���

�

�
u�p�

i

q��m�
A

�
g�� � q�q�

m�
A

�
u�k����

���
�

�
u�k�

�
� �fp

�

��
u�p���u�p�

�i
q� � �m�

A

u�k���u�k�� ������

The second term of ������ precisely cancels the Goldstone boson exchange
diagram ������� The terms that remain in the fermion�fermion scattering
amplitude are independent of ��

This demonstration merits two additional comments� First� throughout
this book� we have become accustomed to dotting the gauge boson momen�
tum into a gauge boson vertex and �nding zero or contact terms� However� in
spontaneously broken gauge theories� we typically �nd a di�erent result� The
fermionic current �������� is not conserved� with the nonconservation be�
ing proportional to the fermion mass� This allows the manipulation ������ to
contribute terms proportional to the Higgs boson vacuum expectation value�
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which interplay with the Goldstone boson contributions� We will discuss this
point further� and �nd a physical application of it� in Section ����

The second point concerns the �nal form of the gauge�invariant sum of
the gauge boson and Goldstone boson exchange diagrams� These give just the
result we would have found by neglecting the Goldstone boson and computing
the gauge boson exchange using the �rst term of ������ as the propagator�

hA��q�A� ��q�i � �i
q� �m�

A

�
g�� � q�q�

m�
A

�
� ����
�

The tensor structure represents a gauge boson polarization sum� To identify
what vectors are summed over� notice that� if the vector boson is on�shell� and
if we boost to its rest frame� this structure becomes precisely the projection
onto the three purely spatial directions� These are the three polarization states
of an on�shell massive vector particle� In a general frame� still for q� on�shell�
the tensor in ����
� remains the projection onto physical polarization states�X

��q�
�

����� � �
�
g�� � q�q�

m�
A

�
� ������

Thus� in the cancellation of the ��dependent parts of the gauge boson propa�
gator� we also �nd that the Goldstone boson diagram cancels the contribution
of the unphysical timelike polarization state of the gauge boson� leaving over
the required three physical polarizations�

The perturbation theory rules that we have developed have a very di�er�
ent character for di�erent values of �� Thus� it is even more true in the case of
spontaneously broken symmetry that we can �nd di�erent special simpli�ca�
tions by choosing di�erent values of this gauge parameter� For � � �� Lorentz
gauge� the Goldstone boson is massless and has exactly the couplings it has in
the ungauged model of symmetry breaking� while the gauge boson propagator
is purely transverse�

�
�i

k� �m�
A

�
g�� � k�k�

k�

�
� �

i

k�
� ������

This gauge is especially useful for analyzing models of symmetry breaking�
Both propagators have poles at k� � �� However� we know that there are no
corresponding physical particles� because these poles move away from k� � �
as we change �� while the S�matrix must be ��independent�

For � � � we recover the simple form of the gauge boson propagator given
in ����� This choice of the gauge boson propagator is not consistent� however�
unless we also include Goldstone boson exchanges in which the Goldstone
boson is also assigned the mass mA�

�
�ig��
k� �m�

A

� �
i

k� �m�
A

� ������
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This gauge� still called the Feynman�0t Hooft gauge� is the most convenient
one for general higher�order computations�

For any �nite value of �� the gauge boson and Goldstone boson propa�
gators fall o� as �k� and thus obey the general power�counting analysis of
Section ��� It follows that� in any one of these gauges� the perturbation the�
ory will be renormalizable� in the sense that the divergences are removed by
a �nite set of counterterms� Furthermore� the analysis of Section �� tells us
that the only counterterms required are those that are symmetric under the
original global symmetry of the theory� However� we should require one fur�
ther condition of our renormalization procedure� We should insist that the
counterterms preserve local gauge invariance� and� in particular� preserve the
property that S�matrix elements and the matrix elements of gauge�invariant
operators are independent of �� This result was proved to all orders in pertur�
bation theory by 0t Hooft and Veltman and by Lee and Zinn�Justin�y Thus�
in the gauge de�ned by any �nite value of �� we can� in principle� straightfor�
wardly compute a physical quantity to any order� The gauges de�ned by the
possible values of � are known as the renormalizability� or R� � gauges�

By taking the limit � � � of the R� gauges� we �nd a gauge with very
di�erent simplifying features� In this limit� the unphysical degrees of freedom�
which have masses proportional to

p
�� disappear from the theory� The gauge

boson and Goldstone boson propagators become�

�
�i

k� �m�
A

�
g�� � k�k�

m�
A

�
� � �� ������

The gauge boson propagator contains exactly the three spacelike polarization
states� In this gauge� the only singularities of Feynman diagrams correspond to
the propagation of physical intermediate states� Thus� the unitarity of the S�
matrix follows from the Cutkosky rules� as in the globally symmetric theories
considered in Section ���� without the need to worry about the cancellation
of unphysical states�z The � � � limit of the R� gauges thus gives the
quantum�mechanical realization of the unitarity �or U� gauge� introduced in
Eq� �������

It is not straightforward to prove renormalizability directly in the U gauge�
In this gauge� the gauge boson propagator falls o� more slowly than �k� at
large k� This signals trouble for the evaluation of loop diagrams� Typically� in
fact� individual loop diagrams will diverge as log � or worse as � ��� Still� the
gauge invariance of the S�matrix implies that these divergences must cancel
in the sum of all diagrams contributing to a given process� so that this sum
has a smooth limit as � � �� There is no di	culty of principle with the
fact that we use one gauge to prove the renormalizability of spontaneously

yG� .t Hooft and M� J� G� Veltman� Nucl� Phys� B�
� �
 ��	���� B� W� Lee and
J� Zinn�Justin� Phys� Rev� D�� ���� ��� ��� ��	���� D�� ���	 ��	���

zIn the more sophisticated language of Section ����� the crucial identity ��������
which is required for the unitarity of the S�matrix� is true manifestly�
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broken gauge theories and another gauge to prove their unitarity� In fact� this
method of argumentation makes natural use of the underlying symmetries of
the theory�

Non�Abelian Analysis

Now that we have thoroughly examined the R� gauges for an Abelian gauge
theory� we are ready to generalize to the non�Abelian case� There is no di	�
culty in being completely general� so let us consider a Yang�Mills gauge theory
with gauge group G� spontaneously broken by the vacuum expectation value
of a scalar �eld�

We will build on our classical analysis of this system following Eq� �������
As in that analysis� it will be most convenient to write the scalars as a mul�
tiplet 
i of real�valued �elds� Then the gauge transformation of the 
i takes
the form

�
i � �	a�x�T a
ij
j � ������

where the T a
ij are real� antisymmetric representation matrices of G� Similarly�

the transformation of the gauge �elds is

�Aa
� �



g
��	

a � fabc	bAc
� �



g
�D�	�

a� �����

�If the gauge group is not simple� the coupling g need not be the same for
every a�� The Lagrangian invariant under these gauge transformations is

L � � �
� �F

a
���

� � �
� �D�
�

� � V �
�� ������

with
D�
i � ��
i � gAa

�T
a
ij
j � ������

Assume that the potential V �
� is minimized at a point where some of
the components of 
 acquire vacuum expectation values� As in ������� de�ne

h
ii � �
��i� ������

We will expand 
i about this value�


i�x� � 
�i � �i�x�� ����
�

It will be convenient to divide the space of values �i into two subspaces�
The vectors T a
� correspond to symmetry transformations of the vacuum
expectation value of 
� The �eld �uctuations along these directions are the
Goldstone bosons� Let fnig be an orthonormal basis for this subspace� then
the unit vectors ni are in �to� correspondence with the Goldstone bosons�
The �eld �uctuations orthogonal to all of the vectors T a
� correspond to the
�massive� physical scalar �elds of the spontaneously broken gauge theory�

In the discussion to follow� the vectors T a
� will play an important role�
We should then recall the notation for these vectors that we introduced in
Eq� ����
��

F a
i � T a

ij
�j � ������
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The matrix F a
i is not generally square� it has one row for each gauge generator�

and one column for each component of 
� However� many of its elements are
zero� Its nonzero elements connect the spontaneously broken gauge generators
and the Goldstone bosons� In Eq� ����
��� we showed that the gauge boson
masses generated through the Higgs mechanism can be written

m�
ab � g�F a

jF
b
j � ������

To give a concrete example of a matrix F a
j � let us compute it in the GWS

electroweak theory� Following the conventions introduced in Eq� ������� we
should rewrite the Higgs �eld of the GWS model in terms of four real scalar
�elds� A convenient parametrization is


 �
p
�

� �i�
� � i
��
v � �h� i
��

�
� ������

The �elds 
i are the Goldstone bosons� and h is the massive Higgs boson� The
vacuum state is simply


� �
p
�

�
�
v

�
�

The real representation matrices are

T a � �i�a � �i�
a

�
� T Y � �iY � �i

�
�

A simple computation then shows� for instance� that T �
� equals v�� times
a unit vector in the 
� direction� Filling in the remaining components of F a

i�
with a � � �� �� Y and i � � �� �� we �nd

gF a
i �

v

�

�B�
g � �
� g �
� � g
� � g�

�CA � ������

We do not need to include the components of F a
i along the direction of the

physical Higgs �eld h� the vectors T a
� are all orthogonal to this direction�
If we insert ����
� into ������ as a change of variables� we �nd� for the

quadratic terms in the Lagrangian�

L� � � �
�A

a
�

��g���� � ����
�
Aa
� �

�
� �����

�

� g���iA
a
�F

a
i �

�
� �m

�
A�

abAa
�A

�b � �
�Mij�i�j �

������

where �m�
A�

ab is the gauge boson mass matrix ������ and

Mij �
��

�
i�
j
V �
�

���
��
� �����

We proved in Eq� ���� that

niMij � � ������
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for all possible directions ni in the subspace spanned by the T a
�� so the
Goldstone bosons are massless�

To study the quantum theory of this system we start with the functional
integral

Z �

Z
DAD� ei

R
L�A���� ������

Using the Faddeev�Popov gauge��xing procedure� we de�ne this integral� anal�
ogously to ������ as

Z � C � �
Z
DAD� exp

h
i

Z
d�x
�L$A��%� �

� �G��
�i

det
��G
�	

�
� ������

for an arbitrary gauge��xing function G�A���� The R� gauges are de�ned by
the choice

Ga �
p
�

�
��A

a� � �gF a
i�i
�
� ����
�

Note that G involves only the components of � that lie in the subspace of the
Goldstone bosons�

The gauge��xing term adds to the Lagrangian the following set of quad�
ratic terms�

�� �
�G

��� �
�
�A

a
�

�
�
��

���
�
Aa
� � g��A

a�F a
i�i � �

��g
�
�
F a

i�i
��
� ������

The term that mixes Aa
� and �i is arranged to cancel between ������ and

������� The �nal quadratic Lagrangian for the gauge and Goldstone boson
�elds is

L� � �

�
Aa
�

�h
�g���� � �� 

�

�
����

i
�ab � g�F a

iF
b
i

�
Ab
�

�


�
�����

� � 

�
�g�F a

iF
a
j�i�j � ������

The mass matrices of gauge bosons and Goldstone bosons in this La�
grangian are closely related to one another� The gauge boson mass matrix
is

�m�
A�

ab � g�F a
iF

b
i � g��FF T �ab� ������

In an R� gauge� the timelike components of the gauge bosons acquire the mass
matrix

�m�
A � �g��FF T �ab� ������

At the same time� the Goldstone bosons acquire the mass matrix

�m�
G�ij � �g�F a

iF
a
j � �g��F TF �ij � ���
��

The two matrices ������ and ���
�� have di�erent numbers of zero eigen�
values� but their nonzero eigenvalues are in �to� correspondence� This is
precisely the correspondence induced by the Higgs mechanism between the
massive gauge bosons and the Goldstone bosons that they absorbed to gain
mass�
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Finally� we must construct the ghost Lagrangian� This is found from the
gauge variation of the gauge��xing term Ga� Inserting ������ and ����� into
����
�� we �nd

�Ga

�	b
�

p
�

�
g
���D

��ab � �g�T a
�� � T b�
� � ��
�
� ���
�

Thus� the ghost Lagrangian is

Lghost � ca
�����D��ab � �g��T a
�� � T b�
� � ��

�
cb� ���
��

Notice that the ghosts have exactly the same mass matrix ������ as the
unphysical components of the gauge bosons� This Lagrangian also contains
both the familiar coupling of the ghosts to the gauge �elds and the coupling
to the physical Higgs �elds that we found in the Abelian case ���
��

We have now computed the kinetic energy terms for gauge �elds� scalar
�elds� and ghosts in an R� gauge� It is straightforward to convert these results
to the calculation of propagators for these �elds� the computations are exactly
the same as in the Abelian case� We �nd for the three propagators

�

� �i
k� � g�FF T

h
g�� � k�k�

k� � �g�FF T
����

i�ab
�

�

�
i

k� � �g�F TF �M�

�
ij

�

�

�
i

k� � �g�FF T

�ab
� ���
��

All of these equations involve the matrix F de�ned in Eq� ������� the appear�
ance of a matrix in the denominator should be interpreted as a matrix inverse�
The scalar �eld propagator also includes the mass matrix ����� of the physi�
cal Higgs bosons� There is no con�ict between this matrix and the mass matrix
of the Goldstone bosons� since they project onto orthogonal subspaces�

Although the preceding discussion has been extremely abstract� it is not
hard to specialize to a particular example� So consider� once again� the GWS
electroweak theory� for which the matrix F a

i is given by Eq� �������
The gauge boson mass matrix in the GWS theory is

g�FF T �
v�

�

�B�
g� � � �
� g� � �
� � g� �gg�
� � �gg� g��

�CA �

in agreement with Eq� �������� �The g on the left�hand side should be inter�
preted as g� for the fourth component of F �� Diagonalizing this matrix gives
the familiar relations �������� Thus� in the basis of mass eigenstates� the four
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gauge�boson propagators decouple to give simply

�
�i

k� �m�

h
g�� � k�k�

k� � �m�
����

i
� ���
��

where m� is m�
W � m�

Z � or� for the photon� zero� Notice that� for the photon�
this expression precisely reproduces Eq� ���
���

The mass matrix of the Goldstone bosons in the GWS theory is

g�F TF �
v�

�

�� g� � �
� g� �
� � g� � g��

�A �

These �elds therefore have the propagator

�
i

k� � �m�
� ���

�

with m� � m�
W for 
� and 
� �the bosons eaten by the W� and m� � m�

Z

for 
� �the boson eaten by the Z�� The �eld h�x�� which is the physical Higgs
�eld� propagates independently with a mass determined by the Higgs potential
�and no factor of � in the propagator��

Finally� there are four ghost �elds� According to Eq� ���
��� these have
the propagator

�
i

k� � �m�
� ���
��

with the same values of m� as the four gauge bosons�
The Feynman rules for the interaction vertices of these particles are com�

plicated to write out� due to the large number of possible combinations� How�
ever� it is quite straightforward to generate these rules by expanding the weak
interaction Lagrangian and reading o� the vertices term by term� We will
work out a few examples in the following section�!

���� The Goldstone Boson Equivalence Theorem

+From the results of the previous section� we see that perturbative calculations
in the R� gauges involve intricate cancellations among unphysical particles�
Sometimes� however� these unphysical particles can still leave their footprints
in physical observables� In this section we will see that� in the high�energy
limit� the unphysical Goldstone boson that is eaten by a massive gauge boson
still controls the amplitude for emission or absorption of the gauge boson in
its longitudinal polarization state�

�The complete Feynman rules for the weak�interaction gauge theory are given in
Appendix B of Cheng and Li ��	
���
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Figure ����� The Goldstone boson equivalence theorem� At high energy�
the amplitude for emission or absorption of a longitudinally polarized massive
gauge boson becomes equal to the amplitude for emission or absorption of
the Goldstone boson that was eaten by the gauge boson�

When we introduced the Higgs mechanism for vector boson mass genera�
tion� we pointed out that it involves a certain conservation of degrees of free�
dom� A massless gauge boson� which has two transverse polarization states�
combines with a scalar Goldstone boson to produce a massive vector parti�
cle� which has three polarization states� When the massive vector particle is
at rest� its three polarization states are completely equivalent� but when it
is moving relativistically� there is a clear distinction between the transverse
and longitudinal polarization directions� This suggests that a rapidly mov�
ing� longitudinally polarized massive gauge boson might betray its origin as a
Goldstone boson� The strongest version of this idea is expressed in Fig� ����
The amplitude for emission or absorption of a longitudinally polarized gauge
boson becomes equal� at high energy� to the amplitude for emission or ab�
sorption of the Goldstone boson that was eaten� Remarkably� this statement
is precisely correct� as a consequence of the underlying local gauge invari�
ance� This Goldstone boson equivalence theorem was �rst proved by Cornwall�
Levin� Tiktopoulos� and Vayonakis�y

Formal Aspects of Goldstone Boson Equivalence

The proof of the Goldstone boson equivalence theorem is based on the Ward
identities of the spontaneously broken gauge theory� To give a complete proof
of the theorem� we would have to construct and analyze these Ward identities
in some detail� However� it is possible to understand the idea of the proof by
examining the special case of the theorem in which a single massive vector
boson is emitted or absorbed in a scattering process� The analysis of this
special case requires only the relatively simple Ward identity satis�ed by a
current between on�shell states�z

yJ� M� Cornwall� D� N� Levin� and G� Tiktopoulos� Phys� Rev� D�
� ���� ��	����
C� E� Vayonakis� Lett� Nuov� Cim� ��� 
 ��	���� For an illuminating discussion of
the equivalence theorem� see B� W� Lee� C� Quigg� and H� Thacker� Phys� Rev� D���
���	 ��	����

zFor a careful derivation of the equivalence theorem� including processes involving
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To prepare for a discussion of longitudinal vector bosons� we need some
simple kinematics� A vector boson at rest has momentum k� � �m� �� �� ��
and a polarization vector that is a linear combination of the three orthogonal
unit vectors

��� � �� ��� ��� �� � ��� ��� �� �� �� ���
��

If we boost this particle along the )� axis� its momentum boosts to k� �
�Ek� �� �� k�� The three possible polarization vectors are now the three unit
vectors satisfying

��k� � �� �� � �� ���
��

Two of these are the �rst two vectors in ���
��� these give the transverse po�
larizations� The third vector satisfying ���
�� is the longitudinal polarization
vector

��L�k� �
� k
m
� �� ��

Ek
m

�
� ���
��

which is the boost of the third vector in ���
��� An important and somewhat
counterintuitive feature of ���
�� is that it becomes increasingly parallel to
k� as k becomes large� In fact� component by component�

��L�k� �
k�

m
�O�m�Ek� ������

as k � �� Since the components of k� are growing as k� this statement is
consistent with the requirement that �L � k � � while k � k � m��

With this kinematic situation in mind� let us analyze the Ward identity
satis�ed by a gauge current matrix element between on�shell states� It is sim�
plest to work in Lorentz gauge �� � ��� where the gauge��xing term ����
�
does not involve the Goldstone boson �elds� The Ward identity can then be
written as follows�

�����

In the last expression we have written the matrix element as the sum of two
pieces� First� the current can couple directly into a one�particle�irreducible
vertex function ,��k�� This gives the class of diagrams that contribute to the
scattering of a gauge boson from the external states� However� for a sponta�
neously broken gauge theory� there is an additional term� which is not one�
particle�irreducible� in which the current creates a Goldstone boson and it is
this particle that couples to the external states through a PI vertex ,�k��

Let us write the relation linking the gauge current and the Goldstone
boson state as

h�j J� j��k�i � �iFk�� ������

multiple absorptions and emissions of massive vector bosons� see M� S� Chanowitz and
M� K� Gaillard� Nucl� Phys� B���� �	 ��	
���
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as in Eq� �������� Then the argument leading to Eq� ����
�� tells us that the
gauge boson mass is given by

m � gF� ������

where g is the gauge boson coupling constant�
With these identi�cations� we can write the Ward identity that follows

from the conservation of the gauge current�

k� hJ�i � �� ������

between on�shell states� Writing each term shown in ����� in terms of the
appropriate one�particle�irredicible vertex function� we �nd

k�,
��k� � k�

�
igFk�

� i
k�

,�k� � �� ����
�

Thus�

k�,
��k� � m,�k�� ������

Now use this equation in the limit of large gauge boson momentum� Since the
gauge boson vertex is one�particle�irreducible� the momenta of propagators
inside the vertex are not� in general� collinear with k�� Then� according to
������� we may replace k��m by the longitudinal polarization vector� Notice
that this would not be permissible �but� also� is not necessary� in the second
term of ����
�� Our �nal result is

�L��k�,
��k� � ,�k�� ������

as k � �� with an error of order m��k�� That is� in the high�energy limit�
the couplings of longitudinal gauge bosons become precisely those of their
associated Goldstone bosons�

The equivalence theorem can be derived in another way� using the count�
ing of physical states in spontaneously broken gauge theories� which we dis�
cussed below Eq� ������� In the previous section� we saw that� at least at
the tree level� unitarity is maintained in spontaneously broken gauge theories
by the cancellation of diagrams that produce timelike�polarized gauge bosons
against diagrams that produce Goldstone bosons�

The situation is most clear in Feynman�0t Hooft gauge� There� the nu�
merator of the gauge boson propagator is �g�� � We can write this in terms
of polarization vectors as

�g�� �
X

i
�����

��i �k��
��
i �k�� k�k�

m�
� ������

The last term is the contribution from unphysical timelike polarization states�
The unitarity of the S�matrix requires that� when a Cutkosky cut through a
diagram puts a gauge boson propagator on�shell� the contribution of this piece
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Figure ����� Decay of a t quark into W� � b�

must be canceled by a Cutkosky cut that runs through a Goldstone boson line�
The required cancellation is

���k�
m

,��k�
��� � ��,�k���� � �� ������

or� diagrammatically�

Once again� since ,��k� is a one�particle�irreducible vertex� we can use ������
to replace �k��m� by the longitudinal polarization vector ��L�k� for a high�
energy gauge boson� Then ������ becomes just the square of �������

Through these formal arguments� we can see� at least to the tree level
in processes with single gauge boson emission� that the equivalence theorem
must be valid� However� it is much more illuminating to see the equivalence
theorem at work in explicit calculations for interesting physical processes� We
will now illustrate its in�uence in two examples�

Top Quark Decay

The �rst example is the weak decay of the top quark� This charge ���� quark
is su	ciently heavy that it can decay to a real W� through t�W�� b� The
diagram for this decay is given by the simple gauge vertex shown in Fig� ����

Let us �rst try to guess the magnitude of the top quark width� The squared
matrix element will contain a factor of g�� times some expression with dimen�
sions of mass� Since the width should be large if the top quark mass is heavy�
a �rst guess might be

, � g�

��
mt� ������

The correct expression� however� turns out to be enhanced by a factor of
�mt�mW ���

The amplitude for this decay can be read from Eq� ��������

iM �
igp
�
u�q���

���
�

�
u�p�����k�� �����
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�We set the relevant CKM factor equal to �� We will now turn this amplitude
into an expression for the decay rate of the top quark� For simplicity� we will
ignore the mass of the b quark in this computation�

Squaring the amplitude in ����� according to our standard methods�
and then averaging over initial and summing over �nal spins� we �nd

�
�

X
spins

jMj� � g�

�

�
q�p� � q�p� � g��q � p� X

polarizations

����k����k�� ������

We can sum explicitly over physical gauge boson polarizations by inserting
the expression ������ for the polarization sum� This gives

�
�

X
spins

jMj� � g�

�

�
q�p� � q�p� � g��q � p�h�g�� � k�k�

m�
W

i
�

g�

�

h
q � p� �

�k � q��k � p�
m�
W

i
�

������

For mb � ��

�q � p � �q � k � m�
t �m�

W � �k � p � m�
t �m�

W � ������

Then

�
�

X
spins

jMj� � g�

�

m�
t

m�
W

�
� m�

W

m�
t

��
 � �

m�
W

m�
t

�
� ����
�

After multiplying by phase space� we �nd

, �
g�

���

m�
t

m�
W

�
� m�

W

m�
t

���
 � �

m�
W

m�
t

�
� ������

This is larger than our initial estimate ������ by a factor �mt�mW ���
It is not di	cult to �nd the origin of this enhancement� by using the Gold�

stone boson equivalence theorem� In the gauge theory of weak interactions�
the top quark obtains its mass from its coupling to the Higgs sector� The re�
lation between the top�Higgs coupling �t and the top quark mass is written
in Eq� �������� The top quark can be heavy only if �t is large� But then the
amplitude for the top quark to decay to a Goldstone boson will be enhanced
above ������ by the factor

��t
g�

�
m�
t

�m�
W

� ������

which is in fact the enhancement we found in �������
To make the comparison more precise� we will now compute the prediction

of the equivalence theorem for the top quark decay rate into a longitudinally
polarized W� boson� Recall from ������ that the term in the weak interac�
tion Lagrangian that couples t and b to the Higgs �eld is

�L � ��t�abQLa

y
btR � h�c� ������
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Figure ����� Decay of a t quark into a Goldstone boson and a b quark�

Decompose the Higgs �eld as in ������� and write


 �
p
�
�
� � i
��� ������

These are the �elds of the charged Goldstone bosons that are eaten by the
W� Including the Goldstone boson in the theory adds a process t� 
�� b�
shown in Fig� ��
� This process is mediated by the Lagrangian term

�L � �tbL

�tR� ������

which leads to the decay amplitude

iM � i�tu�q�
���

�

�
u�p�� �����

From this expression� we easily �nd

�
�

X
spins

jMj� � ��t q � p� ������

If we now ignore the mass of the Goldstone boson� or� equivalently� consider
the limit mt 
 mW � we �nd for the top quark decay rate

, �
��t
���

mt �
g�

���

m�
t

m�
W

� ������

in agreement with the leading term of ������ in this limit� Our results imply
that only the production of the longitudinal polarization state of the W� is
enhanced� this is easily checked directly by substituting explicit polarization
vectors into �������

In our derivation of ������� we summed over the physical polarization
states of the emitted W�� one might say that we used the prescription of
the U gauge to sum over polarizations� We could equally well have used the
prescription of Feynman�0t Hooft gauge� replacingX

i

����k����k�� �g�� � ������

and also adding the contribution of the Goldstone boson emission diagram�
treating the Goldstone boson as a massive particle with massmW � With these
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prescriptions� the gauge boson matrix element gives

�
�

X
spins

jMj� � g�

�
��q � p� � g�

�
�m�

t �m�
W �� ����
�

The Goldstone boson emission diagram gives

�
�

X
spins

jMj� � ��t q � p �
g�

�

m�
t

m�
W

�m�
t �m�

W �� ������

The sum of these contributions indeed reproduces ����
� and thus gives the
same result ������ for the total decay rate� In Feynman�0t Hooft gauge� the
enhancement due to the large coupling of the top quark to the Higgs sector
shows up explicitly in the Goldstone boson emission contributions to the total
rate of W� production�

e�e� �W�W�

Our second example is more complicated� but also contains more interesting
physics� This is the reaction e�e� � W�W�� In this reaction� the equiv�
alence theorem does not lead to an enhancement of the cross section� but�
rather� directs a cancellation between Feynman diagrams� As we will see� this
cancellation is essential for the internal consistency of the theory�

In Problem ��� we computed the cross section for e�e� annihilation into
a pair of charged scalar particles� as in Fig� ����a�� and found the result

d�

d cos �
�e�e� � 
�
�� �

�	�

�s
������

at energies much larger than the scalar mass� Just as for e�e� annihilation to
fermion pairs� this cross section falls as �s at high energy� It can be shown
that this behavior is required by unitarity� Since the electron and positron
annihilate through a pointlike vertex� the annihilation takes place in only one
partial wave� Unitarity puts a limit on the amplitude in this partial wave�
requiring that M be bounded by a constant� and thus that � be bounded by
�s at high energy�!

The same unitarity argument applies to e�e� annihilation to vector
bosons� Here� however� it is much less obvious that Feynman diagrams ac�
tually produce a cross section consistent with unitarity� Consider the con�
tribution of Fig� ����b�� We would expect that the square of this diagram
should contain a contribution to the cross section of the form of the scalar
contribution ������ multiplied by the dot product of polarization vectors�

d�

d cos �
�e�e� �W�W�� � �	�

�s
� ����k�� � ��k������ ������

�Partial�wave analysis for relativistic collisions is discussed in Perkins ��	
���
Chapter ��
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Figure ����� Electron�positron annihilation through a virtual photon �a� to
charged scalar bosons� �b� to W bosons�

where k� and k� are the momenta of the outgoingW bosons� For transversely
polarizedW bosons� this term is well behaved� but for longitudinally polarized
W �s it leads to problems� Using the approximation ������ for the longitudinal
polarization vectors� we �nd

��k�� � ��k��� k� � k�
m�
W

� s

�m�
W

������

for s 
 m�
W � This leads to a cross section that grows much faster than is

allowed by unitarity� In principle� the cross section could be brought back down
to a proper behavior by the addition of contributions from higher orders in
perturbation theory� but this would be a most unpleasant resolution� It would
imply that the theory of W bosons becomes strongly coupled at energies such
that

s

�m�
W

�
� g�
��

���
� ������

corresponding to center�of�mass energies of order ��� GeV� But if the theory
of W bosons is strongly coupled at short distances� it is hard to understand
why� at large distances� it should become the simple� weak�coupling theory
that we observe�

Fortunately� there is another possible resolution of this problem� In the
weak interaction gauge theory� there are three Feynman diagrams that con�
tribute to the amplitude for e�e� � W�W� at the tree level� these are
shown in Fig� ���� Each diagram separately produces a cross section that
grows in the same manner as ������� However� it is possible that the badly
behaved terms might cancel among the three diagrams� leaving a more proper
high�energy behavior� If this miraculous cancellation were to occur� it would
allow the theory of W bosons to be consistently weakly coupled up to very
high energies�

Although such a cancellation seems unlikely at �rst sight� it is actually
required by the Goldstone boson equivalence theorem� The theorem states
that� at high energy� the cross section for producing longitudinal W bosons
should be equal to the cross section for producing the corresponding scalar
Goldstone bosons� But we know that scalar cross sections behave as �s� as
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Figure ����� Diagrams contributing to e�e� �W�W� in the weak inter�
action gauge theory�

indicated in ������� Thus� somehow� the gauge boson cross section must also
conspire to produce this result� We will now show this explicitly� We will see
that the required cancellations are directed by the Ward identities of the gauge
theory�

To prepare for this calculation� we need the Feynman rules for the vertices
shown in Fig� ���� The Feynman rules for the couplings of the electron to W �
Z� and � can be read directly from �������� The relative strengths of these
couplings are determined by the SU���	 U�� quantum numbers of the left�
and right�handed components of the electron� It is equally straightforward to
construct the couplings of the Goldstone bosons to Z and �� Since the boson

� has electric charge � the photon coupling is just that found in Problem ���
The Z coupling is determined with the additional information that the 
� has
I� � ���� All of these expressions are shown in Fig� ����

The three�gauge�boson vertices that appear in Fig� ��� arise from the
cubic terms in the gauge �eld action� Since the U�� �eld strength is linear in
gauge �elds� these come only from the kinetic term of the SU��� gauge �eld�
To identify the speci�c pieces we need� we must rewrite this cubic term in the
basis of mass eigenstates given by ������� and �������� This can be done as
follows�

� �
� �F

a
���

� � � �
� ���A

a
� � ��A

a
��g�

abcA�bA�c

� �g���A�
� � ��A

�
��A

��A�� � g���A
�
� � ��A

�
��A

��A��

� g���A
�
� � ��A

�
��A

��A��

� ig
�
���W

�
� � ��W

�
� �W ��A�� � ���W

�
� � ��W

�
� �W��A��

� �
� ���A

�
� � ��A

�
���W

��W �� �W��W ���
�
� �����

Finally� inserting A�
� � cos �wZ� � sin �wA� and g � e� sin �w� we �nd the

Feynman rules shown in Fig� ����
Before examining the amplitude for e�e� annihilation to vector boson
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Figure ����� Feynman rules of the weak�interaction gauge theory for elec�
trons and scalars coupling to photons and Z bosons�

Figure ���	� Feynman rules of the weak�interaction gauge theory forWW�
and WWZ vertices�

pairs� we will �rst work out the amplitude for production of a pair of charged
scalars� The equivalence theorem predicts that the amplitude for production
of two longitudinal W bosons should become equal to this amplitude at high
energy� Assembling vertices from Fig� ���� we �nd that� for an electron of
either helicity� the amplitude to annihilate to scalars through a virtual photon
is

iM�ee� �� � 
�
�� � ie�v��u


q�
�k� � k���� ������

where k�� k� are the momenta of the scalars and q � k� � k�� The cor�
responding amplitude for annihilation through a virtual Z� depends on the
e�e� helicities� Adding these contributions to the preceding expression� we
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�nd

iM�e�Le
�
R � 
�
�� � ie�vL��uL




q�
�

� ��� sin� �w�
�

sin� �w cos� �w



q��m�
Z

�
�k��k����

iM�e�Re
�
L � 
�
�� � ie�vR��uR




q�
� � ��� sin� �w�

cos� �w



q��m�
Z

�
�k��k����

������
Notice that� in the high�energy limit� the amplitude for the annihilation of
right�handed electrons cancels down to

iM�e�Re
�
L � 
�
��� i

e�

� cos� �w
vR��uR



q�
�k� � k���� ������

which is just the amplitude for an e�R� with Y � �� to couple to a 
��
with Y � ��� through the U�� gauge boson B� with coupling constant
g� � e� cos �w� This expression re�ects the fact that the e�R has no direct
coupling to the SU��� gauge bosons� Similarly� the amplitude for left�handed
electrons tends to

iM�e�Le
�
R � 
�
��� ie�




� cos� �w
�



� sin� �w

�
vL��uL



q�
�k� � k���

����
�
in the high�energy limit� This has the structure of a coherent sum of ampli�
tudes with B� and A�

� exchange� In just the way that we saw in Chapter �
the symmetry structure of a gauge theory with spontaneously broken symme�
try is recovered in the high�energy limit�

Now let us compare these results to a direct calculation of the W�W�

production amplitude in the weak interaction gauge theory� Begin with the
case of an initial e�R� Since the coupling of the electron to the W� is purely
left�handed� the third diagram of Fig� ��� vanishes in this case� so the com�
putation is a bit easier� The �rst two diagrams of Fig� ��� have exactly the
same structure and sum to

iM�e�Re
�
L �W�W�� � vR��uR


��ie��i

q�
�ie� �

ie sin �w
cos �w

�i
q��m�

Z

ie cos �w
sin �w

�
� �g���k��k��� � g����q�k��� � g���k��q�

�
�
����k���

�
��k���

������
This equation is valid in any of the R� gauges� since� if we ignore the electron
mass�

q�vR��uR � �� ������

The second line of Eq� ������ contains the enhancement for longitudinal
W bosons mentioned above� If we approximate the longitudinal polarization
vectors by ������ and drop terms that do not grow as s � �� this line
becomes�
g���k� � k��

� � g����q � k��� � g���k� � q��
� k��
mW

k��
mW
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�


m�
W

�
k� �k��k��k��� � �k� �k�k�� � �k� �k�k��

�
�O�� � �k��k���

�
s

�m�
W

�k��k��� � � � � � ������

On the other hand� the expression in brackets in the �rst line of ������ cancels
almost completely� to

�ie�
� 

q�
� 

q� �m�
Z

�
� �ie�

m�
Z

q��q� �m�
Z�
�

Using both of these simpli�cations� we �nd

iM�e�Re
�
L �W�

LW
�
L � � vR��uR

h
�ie��

m�
Z

s�

i s

�m�
W

�k� � k���� ������

By inserting the relation mW � mZ cos �w� we see that this amplitude is
identical to ������� as required by the equivalence theorem�

For the amplitude with an initial e�L � the computation is somewhat more
involved� Now all three diagrams of Fig� ��� contribute� and since the last
diagram has a di�erent kinematic structure� it will be less clear how the dia�
grams combine together� In what follows� we will demonstrate the cancellation
of the unitarity�violating enhanced terms� and we will indicate how the terms
one order smaller in m�

W �s assemble into the correct structure� However� we
will not account rigorously for all of these smaller terms� The full calculation
of these diagrams is the subject of Problem ����

For the case of an initial e�L � the �rst two diagrams of Fig� ��� sum to
the expression

� vL��uL


��ie��i

q�
�ie� �

ie�� �
��sin� �w�

sin �w cos �w

�i
q��m�

Z

ie cos �w
sin �w

�
� �g���k��k��� � g����q�k��� � g���k��q�

�
�
����k���

�
��k���

������
which di�ers from ������ only in the coupling of the electron to the virtual
Z�� For longitudinal W bosons� we can simplify this expression as we did
������� obtaining

� vL��uL�ie
��


m�
Z

s�s�m�
Z�
� 

� sin� �w



s�m�
Z

�
s

�m�
W

�k��k����

�����
The second term in brackets is a potentially dangerous contribution� which
must be canceled by the diagram with t�channel neutrino exchange� This
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diagram has the value

�
� igp

�

��
vL�

� i��� k��
��� k���

��uL����
�
��k���

�
��k��� ������

where � is the initial electron momentum� Approximating the longitudinal
polarization vectors as before� we have

� �ig
�

�
vL

k�
mW

��� k��
��� k���

k�
mW

uL���� ������

Now we manipulate this expression as if we were proving a Ward identity�
Using the fact that uL��� satis�es the Dirac equation�

��� k��k�uL��� � ���� k���uL��� � ���� k���uL���� ������

expression ������ reduces to

� i
g�

�
vL

k�
m�
W

uL���� ����
�

Finally� using Eq� ������� we can rewrite this expression as

� ie�


� sin� �w



�m�
W

vL��uL����k� � k���� ������

This term cancels the dangerous high�energy behavior of ������ To see
that the sum of diagrams has the correct high�energy limit� however� the
approximations that we have used are not quite adequate� In particular� the
correction to relation ������ for the polarization vectors is of order m�

W �s
and must be taken into account� When all of the corrections of order m�

W �s
are included� it turns out that the sum of the s�channel diagrams ����� is
unchanged� while the expression for the neutrino exchange diagram ������
is multiplied by the factor � � �m�

W �s�� Then the sum of all three diagrams
gives

iM�e�Le
�
R �W�

L W
�
L � � ie�vL��uL�k� � k���



s

�




� cos� �w
� 

� cos� �w sin� �w
�



� sin� �w

�
�

������

The middle term in brackets cancels half of each of the other two terms� to
give an expression that agrees precisely with Eq� ����
��
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Figure ����
� The di�erential cross section for e�Le
�
R � W�W�� in units

of R �Eq� �������� at Ecm � ���� GeV� The various curves show the contri�
butions to the total from individual helicity states ofW� andW�� these are
denoted �h�� h��� where each helicity takes the values ����� ��� The contri�
butions from the ����� and ����� states are too small to be visible� Notice
that both the W�

LW�
L cross section� denoted ��� ��� and the ����� cross

section become proportional to sin� � at very high energy�

The calculation of Problem ��� gives for the complete annihilation am�
plitude
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where � � � � �m�
W �s���� is the W boson velocity� The high�energy limit

of this expression indeed reproduces ������� The contributions to the dif�
ferential cross section for e�Le

�
R � W�W� from this and the other possible

helicity states are plotted in Fig� ����
These cancellations among the diagrams of Fig� ��� occur by virtue of

the Ward identities of the gauge theory� That is� they occur only because
the theory has an underlying local gauge invariance� At the beginning of our
discussion� we argued that these cancellations are necessary to insure that
the theory remains� in a consistent way� weakly coupled up to arbitrarily
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high energy� In Section ���� we showed that one can generate masses for
vector bosons by spontaneously breaking local gauge invariance� We have now
argued the converse of that result� that the only theories of massive vector
bosons that do not have violent high�energy behavior are those that result
from spontaneously broken gauge theories�y

���� One�Loop Corrections to the Weak�Interaction

Gauge Theory

The �nal topic in our study of spontaneously broken gauge theories is the
computation of one�loop corrections in the weak�interaction gauge theory�
As we discussed in Section ����� tree�level diagrams produce a number of
intricate predictions for the couplings of the Z� and the cross sections for
neutral current reactions� In general� these predictions are modi�ed by the
e�ects of one�loop diagrams� In this section we will study some examples of
these one�loop corrections�

As in any renormalizable �eld theory� the one�loop diagrams of the elec�
troweak gauge theory are typically ultraviolet divergent� These divergences
can be absorbed by adjusting the underlying parameters of the theory� These
adjustments de�ne a set of counterterms which� by renormalizability� render
the full set of one�loop diagrams of the theory �nite� Those amplitudes that
are not adjusted by hand then become predictions of the theory�

In Chapter � we saw that this general procedure� which applies to any
renormalizable �eld theory� gives especially rich information when applied to a
theory with spontaneous symmetry breaking� In a theory with spontaneously
broken symmetry� the amplitudes of the theory vary markedly for di�erent
particles in the same multiplet of the original symmetry� However� the coun�
terterms of the theory respect the symmetry relations� Thus� the adjustment
of an amplitude for one particle leads to de�nite predictions for other particles
that are not related by any manifest symmetry�

Theoretical Orientation� and a Speci�c Problem

At the end of Section ��� we presented a useful framework for organizing
calculations of the predictions of renormalizable theories with spontaneous
symmetry breaking� We de�ned a zeroth�order natural relation to be a rela�
tion among observable quantities in the theory that is true for any values of
the parameters in the Lagrangian� Since the counterterms of the theory shift
the values of the underlying parameters without adding new terms� a zeroth�
order natural relation will not be corrected by these counterterms� Thus� if the
theory is renormalizable� the one�loop corrections to a zeroth�order natural

yThis statement is proved systematically in the paper of Cornwall� Levin� and
Tiktopoulos cited at the beginning of this section�
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relation will be �nite� and will in fact be de�nite predictions from the quan�
tum structure of the �eld theory� Though we discussed this idea originally in
theories with spontaneously broken global symmetry� it applies equally well
to theories with spontaneously broken gauge symmetry� In this section� we
will apply this idea to derive �nite one�loop corrections to relations in the
weak�interaction gauge theory�

It is easy to �nd zeroth�order natural relations in the electroweak theory�
The leading�order predictions given in Section ���� involve a relatively small
number of free parameters� Many of these predictions are made for energies at
which the quark and lepton masses can be ignored� then they depend only on
the coupling constants g and g� and the vacuum expectation value v� which
sets the scale of spontaneous symmetry breaking� The remaining ingredients
of the weak�interaction theory are given in terms of these parameters� for
example�

mW � g
v

�
� mZ �

p
g� � g��

v

�
�

e �
gg�p
g� � g��

�
GFp
�
�

g�

�m�
W

�


�v�
�

������

Even in this set of quantities� we have four relations that depend on three
underlying parameters� so there is one relation of observable quantities that
is independent of the parameters of the Lagrangian�

Since many of the predictions of the weak interaction gauge theory are
determined by the parameter sin� �w� it is useful to de�ne sin� �w in terms
of observables and then use this de�nition as a basis for constructing natural
relations� In our discussion of the precision tests of electroweak theory in
Section ����� we used the de�nition

s�W � � m�
W

m�
Z

�����

as a standard for comparison of di�erent experiments� But since the three
most accurately known weak�interaction observables are 	� GF � and mZ � it is
useful to construct another physical de�nition of sin� �w based on these three
quantities� De�ne �� such that

sin ��� �
�

��	�p
�GFm�

Z

����
� ����

where 	� is the running coupling constant of QED evaluated at the scale Q� �
m�
Z � The renormalization group insists that it is the value of the electric charge

at the weak�interaction scale that enters precision electroweak predictions�
and this observation is con�rmed by summing radiative correction diagrams
involving light quarks and leptons� The current best values of the quantities
in Eq� ���� give

s�� � sin� �� � ������� �����
� �����
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Thus� this quantity provides a very accurate standard of reference�
Once Eq� ���� is taken to de�ne a reference value of sin� �w� the

equations of Section ���� that connect sin� �w to other observables become
zeroth�order natural relations� For example� the tree�level equations

m�
W

m�
Z

� cos� �w� Ae
LR �

� �� � sin� �w�
� � �sin� �w�

�

� �� � sin� �w�� � �sin� �w��
�����

are natural relations linking four observables of the weak interactions� The
corrections to these relations will be well�de�ned predictions of the theory�

In principle� we could now compute all of the one�loop diagrams that
correct the parameters mW � mZ � GF � 	� and Ae

LR� However� this is a very
complicated exercise� requiring an extensive technical apparatus�z In this sec�
tion we will focus on radiative corrections from one simple source that can
be considered independently� Aside from the question of anomalies� the elec�
troweak theory does not restrict the number of quark or lepton generations�
Thus� it is sensible� and gauge invariant� to compute the one�loop corrections
due to one quark or lepton doublet� For de�niteness� we consider the e�ects
of the �t� b� quark doublet�

By focusing on the radiative corrections due to heavy quarks� we dramat�
ically simplify the calculational task before us� The various observables of the
weak�interaction gauge theory are extracted from the measurement of scatter�
ing amplitudes with light fermions� leptons or quarks� in the initial and �nal
states� For example� GF is measured from the strength of a low�energy weak�
interaction process� usually chosen to be the rate of muon decay� �� ��e

��e�
For any such process� there are one�loop corrections of many kinds� as shown
in Fig� ��� In addition to corrections to the vector boson propagator� there
are vertex corrections� box diagrams� and diagrams with real photon emis�
sion� In general� the contributions of the various classes of diagrams are not
gauge invariant� rather� gauge invariance results from cancellations between
the classes of diagrams in Fig� ���b�� �c�� and �d�� However� since heavy
quarks do not couple directly to the light leptons� the �t� b� doublet contributes
only the single diagram shown in Fig� ���f�� which must be gauge invariant
by itself� This same conclusion applies to the �t� b� correction to other leptonic
weak interaction processes� If we ignore the CKM angles that mix the t and b
with other species� the conclusion extends also to weak�interaction processes
involving light quarks�

A similar situation occurs with other species of particles� such as those
of the Higgs sector� The coupling of Higgs sector particles to a light quark
or lepton is proportional to the fermion�s mass� which we can often ignore�
Thus the most important contributions from Higgs�sector particles are prop�
agator corrections� The case in which the spontaneous symmetry breaking is
produced by a single scalar �eld 
 is particularly straightforward to analyze�

zA detailed theoretical discussion of one�loop corrections to the electroweak theory
can be found in W� Hollik� Fortscr� d� Physik ��� ��� ��		���



��� One�Loop Corrections to the Weak�Interaction Gauge Theory ���

Figure ������ Examples of radiative corrections to � decay in the weak in�
teraction gauge theory� �a� lowest�order diagram� �b� propagator corrections�
�c� vertex diagrams� �d� box diagrams� �e� real photon corrections� �f� the
contribution of the �t� b� doublet�

this is done in Problem ���� Loop corrections from particles that do not cou�
ple directly to the external fermions are often termed oblique� since they enter
the low�energy weak interactions only indirectly�

In�uence of Heavy Quark Corrections

Our task� then� is to compute the corrections to relations ����� due to
the �t� b� doublet� These two relations depend on �ve observable quantities�
mZ � mW � Ae

LR� 	� and GF�with the last two parameters entering through
�w and Eq� ����� We will express these �ve quantities as functions of the
bare parameters g� g�� and v� with corrections proportional to combinations of
t and b vacuum polarization diagrams� The zeroth�order terms will naturally
cancel out when we compute the corrections to the relations ������

The loop amplitudes that we require are shown in Fig� ���� To deal
with these contributions most straightforwardly� we introduce a uniform no�
tation for vacuum polarization amplitudes� Denote the vacuum polarization
amplitude involving the gauge bosons I and J as

� i/��
IJ �q�� �����

where I and J may be �� W � or Z� When the gauge bosons are massive�
the vacuum polarization amplitudes need not be transverse by themselves� so
/��
IJ �q� need not vanish at q� � �� Thus� we will change our notation from the

case of QED and write the decomposition of /��
IJ �q� into tensor structures as

/��
IJ �q� � /IJ �q

��g�� ���q��q�q� � ���
�
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Figure ������ One�loop corrections from t and b to weak�interaction ob�
servables� �a� mZ � �b� mW � �c� �� �d� GF � �e� A

e
LR�

In all of the examples to follow� the factors q� will dot into currents of light
leptons� to give zero as in Eq� ������� Thus the form factor ��q�� will drop
out of our calculations� Our previous result that /���q� vanishes in QED at
q� � � appears in this formalism as the set of constraints

/����� � /�Z��� � �� �����

For the other amplitudes� our sign conventions are chosen so that a positive
value of /IJ �m

�� gives a positive mass shift to the gauge boson� Let us also
de�ne

/������ �
d/��

dq�

����
q�
�

� �����

this is the quantity we called /��� in Eq� �������
Now we use this notation to write the loop corrections to each of the �ve

observables� The �rst two diagrams in Fig� ��� are simply mass corrections�
and so� straightforwardly�

m�
Z � �g� � g���

v�

�
� /ZZ�m

�
Z��

m�
W � g�

v�

�
� /WW �m�

W ��

�����

Note that both vacuum polarization amplitudes are evaluated at the poles in
the respective propagators� To evaluate the shift of 	 by one�loop corrections�
we consider the e�ect of Fig� ����c� on the low�energy Coulomb potential�
The values of the leading�order propagator and the one�loop correction com�
bine to give the factors

�ie�
q�

�
 � i/���q

�� � �i
q�

�
� �����
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where� in this equation� e� is given in terms of bare variables as in �������
Thus� the observed value of 	� in the limit q� � �� is modi�ed according to
the relation

��	 �
g�g��

g� � g��
�
 � /������

�
� ������

In a similar way� the diagrams of Fig� ����d� give a modi�ed strength of
the ��fermion weak interaction process that leads to � decay� The leading and
one�loop diagrams sum to

g�

q� �m�
W

�
 � i/WW �q��

�i
q� �m�

W

�
� �����

Then the e�ective strength of the weak interaction vertex at q� � � is shifted
as follows�

GFp
�
�



�v�

�
� /WW ���

m�
W

�
� ������

Notice that� in the approximation of keeping only oblique corrections� the
strength of every low�energy weak interaction amplitude is corrected by this
same factor�

Finally� the polarization asymmetry Ae
LR is corrected by a �t� b� loop dia�

gram according to Fig� ����e�� The analogous diagram with an intermediate
Z� is summed into the Z� propagator and does not a�ect the form of the ver�
tex� At zeroth order� the coupling of the Z� to any left� or right�handed light
fermion is given� according to Eq� ������� byp

g� � g��
�
T � � g��

g� � g��
Q
�
� ������

The coe	cient of Q is the bare value of sin� �w� The loop diagram in Fig�
����e� adds to this a contribution

i/Z��q
��
�i
q�
� �ieQ�� ������

To discuss asymmetries at the Z� resonance� we set q� � m�
Z � The term

������ adds to the piece of ������ proportional to Q� thus it shifts the
bare value of sin� �w� When we include this correction� the Z� coupling takes
the form p

g� � g��
�
T � � s��Q

�
� ����
�

where

s�� �
g��

g� � g��
� ep

g� � g��
/�Z�m

�
Z�

m�
Z

� ������

The asymmetries at the Z� resonance discussed in Section ���� are computed
as ratios of these couplings� Thus� to include the oblique radiative correction
to Af

LR� for any light fermion species f � we reevaluate formula �������� using
s�� in place of the zeroth�order sin� �w�
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We might� in fact� say that s�� gives an additional way to de�ne sin� �w
from observable quantities� to be compared to the de�nitions s�W given in
����� and s�� given in ����� Speaking strictly� the value of sin� �w de�
termined by the asymmetries at the Z� depends on the quark or lepton quan�
tum numbers through vertex corrections that are not included in the analysis
above� However� these species�dependent corrections are small and can be
systematically subtracted to de�ne a universal s�� that determines the weak
interaction asymmetries of all fermion species�!

The three de�nitions of sin� �w all agree at zeroth order but receive di�er�
ent radiative corrections� If we include only the oblique corrections� it is easy
to produce compact formulae for the three quantities� From ������� we have

s�� �
g��

g� � g��
� sin �w cos �w

/�Z

m�
Z

� ������

In the prefactor of the one�loop correction� we can ignore the distinction be�
tween the bare and renormalized values of sin� �w� We can obtain a similar
expression for s�W by taking the ratio of the two formulae in ������

s�W �
g��

g� � g��
� 

m�
Z

�
/WW �m�

W �� m�
W

m�
Z

/ZZ�m
�
Z�

�
� ������

Finally� we can evaluate the oblique corrections to sin� �� de�ned by �����
This is most readily done by writing ��� for the di�erence between the true
and the bare value of ��� and then expanding ���� as follows�

� cos ��� ��� �


�
sin ���


�	

	
� �GF

GF
� �m�

Z

m�
Z

�
� ������

The shifts of 	� GF � andm
�
Z can be read from ������� ������� and ������

Then we can reconstruct

sin� �� �
g��

g� � g��
� � sin �� cos ��� ��� ������

Assembling the pieces and evaluating the coe	cients of the vacuum polariza�
tion diagrams to zeroth order� we obtain

sin� �� �
g��

g� � g��

�
sin� �w cos� �w

cos� �w � sin� �w


/������ �



m�
W

/WW ���� 

m�
Z

/ZZ�m
�
Z�

�
�

�����
It is not di	cult to discover that each of the equations ������� �������

and ����� contains ultraviolet divergences� However� if the weak interac�
tion gauge theory is renormalizable� these divergences should cancel when we

�This is explained clearly in D� Kennedy and B� W� Lynn� Nucl� Phys� B���� �
��	
	��
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compute the corrections to any zeroth�order natural relation� In the situa�
tion that we consider� renormalizability implies that the various de�nitions of
sin� �w should di�er only by expressions that are ultraviolet��nite�

We are now almost prepared to check this prediction explicitly� We can
clarify the structure of the ultraviolet divergences in our relations for the var�
ious quantities sin� �w by recasting the vacuum polarization amplitudes to
make more explicit the quantum numbers to which the gauge bosons cou�
ple� Recall from Eq� ������ that the Z boson couples to the combination of
SU��� and electromagnetic quantum numbers �T �� sin� �wQ�� Similarly� the
W bosons couple to T� or� equivalently� to T �� T �� It is useful to break up
the vacuum polarization amplitudes into terms that depend on these speci�c
quantum numbers� We will also extract the coupling constants indicated in
������� Thus we replace

/�� � e�/QQ�

/�Z �
� e�

sin �w cos �w

��
/�Q � sin� �w/QQ

�
�

/ZZ �
� e

sin �w cos �w

���
/�� � � sin� �w/�Q � sin� �w/QQ

�
�

/WW �
� e

sin �w

��
/���

������

where Q denotes the electric charge and � �� � denote the components of
weak�interaction SU����

A vacuum polarization amplitude can always be viewed as an expectation
value of a pair of currents� From this viewpoint� the quantities on the right�
hand side of ������ are expectation values of currents with de�nite quantum
numbers� For example� /�� is an expectation value of a pair of SU��� currents
J��� Acting on the standard fermions� J�a is a left�handed current and J�Q is
a vector current�

The ultraviolet divergences in the expectation values of currents in
������ have the form

/�� �
�
A�Bq�

�
log&��

/�� �
�
A�Bq�

�
log&��

/�Q �
�
Bq�
�
log&��

/QQ �
�
Cq�
�
log&��

������

We will demonstrate this explicitly later in this section� However� we can
understand this structure from the following rough argument� Since the sym�
metry of the theory should be recovered at large momentum� the amplitudes
/�� and /��� which di�er only by their orientation in the symmetry space�
should have the same ultraviolet divergences� The divergence in the slope
of /�Q should be related to that in the slope of /�� because Q � T � � Y
and /�Y is unimportant asymptotically since tr$T �Y % � �� We pointed out
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in Eq� ����� that /�Q and /QQ vanish at q� � �� thus they have no q��
independent divergences�

Now we will rewrite the two zeroth�order natural relations in ����� in
such a way that we can apply ������� To do this� we take the di�erences of
Eqs� ������� ������� and ����� to obtain

s�� � sin� �� �
sin� �w cos� �w

cos� �w � sin� �w

	
/ZZ�m

�
Z�

m�
Z

� /WW ���

m�
W

�/������

� cos� �w � sin� �w
sin �w cos �w

/�Z�m
�
Z�

m�
Z



�

s�W � s�� � �/WW �m�
W �

m�
Z

�
m�
W

m�
Z

/ZZ�m
�
Z�

m�
Z

� sin �w cos �w
/�Z�m

�
Z�

m�
Z

�

������
Inserting ������� and also using the relation mW � mZ cos �w in the coe	�
cients of terms already of one�loop order� we �nd after some algebra

s�� � sin� �� �
e�

�cos� �w � sin� �w�m�
Z

n�
/���m

�
Z��/������/�Q�m

�
Z�
�

� sin� �w cos� �w
�
/QQ�m

�
Z��m�

Z/
�
QQ���

�o
�

s�W � s�� �
e�

sin� �wm�
Z

�
/���m

�
Z��/���m

�
W �� sin� �w/�Q�m

�
Z�
�
�

����
�
If indeed the ultraviolet divergences of the vacuum polarization integrals have
the structure of ������� then the divergent part of each expression in brackets
in ����
� vanishes� and the weak interaction gives de�nite� �nite predictions
for the di�erences of s��� s

�
W � and sin� ���

Computation of Vacuum Polarization Amplitudes

We can verify the divergence structure ������ by computing the vacuum
polarization diagrams for t and b quarks explicitly� Rather than computing
these one by one� it is easiest to compute� once and for all� the most general
fermionic vacuum polarization amplitudes� and then to recover the amplitudes
required in the previous paragraph as special cases of these�

Consider� then� the two vacuum polarization amplitudes shown in Fig�
���� The diagrams are built from two fermion propagators with di�erent
masses m� and m�� linked by left� or right�handed currents� We call the vac�
uum polarization amplitude with two left�handed currents /��

LL�q�� and that
with one left and one right�handed current /��

LR�q�� Since the vacuum polar�
izations depend on only one momentum and two vector indices� there is no
way that they can contain an invariant involving ����� � Thus� the amplitudes
with other combinations of currents are related to these by

/��
RR�q� � /��

LL�q�� /��
RL�q� � /��

LR�q�� ������
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Figure ������ Elementary vacuum polarization amplitudes of fermionic cur�
rents�

In addition� there is no di	culty in regularizing these diagrams using dimen�
sional regularization with an anticommuting �� the regularization prescrip�
tion we endorsed at the end of Section ���� The vacuum polarization of a
vector current is reconstructed as

/��
V L�q� � /��

LL�q� � /��
RL�q�� ������

The vacuum polarization of purely left�handed currents is given by

� ���
Z

d�k

�����
tr


�i���

���
�

� i�k �m��

k� �m�
�

� �i���
���

�

� i�k � q �m��

�k � q�� �m�
�

�
� �
Z

d�k

�����
tr
�
�� k���k � q�

���
�

�� � 

�k� �m�
����k � q�� �m�

��
�

������
The prefactor ��� comes from the fermion loop� There is no possible tensor
structure antisymmetric in � and �� so we can now drop the � term� From
here� the calculation proceeds as in Section ��
� We combine denominators
using



�k� �m�
����k � q�� �m�

��
�

�Z
�

dx


��� ����
� ������

where

� � k � xq� � � xm�
� � ��x�m�

� � x��x�q�� ������

Then� integrating with dimensional regularization and following the steps
leading to Eq� ������� we �nd

� � �i

����d��

�Z
�

dx
,���d

� �

���d��
�
g��
�
x��x�q�

� �
� �xm

�
� � ��x�m�

��
�� x��x�q�q���

�����

Notice that both /��
LL and its �rst derivative with respect to q� are logarith�

mically divergent�
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The vacuum polarization amplitude /��
LR can be obtained in a very similar

fashion� From the Feynman rules�

� ���
Z

d�k

�����
tr


�i���

���
�

� i�k �m��

k� �m�
�

� �i���
���

�

� i�k � q �m��

�k � q�� �m�
�

�

� �
Z

d�k

�����
tr
h
��m��

�m�

���
�

�i 

�k� �m�
����k�q�

� �m�
��
�

������
From here� the same manipulations as in the previous paragraph lead to

� � �i

����d��

�Z
�

dx
,���d

� �

���d��
�
g��m�m�

�
� ������

As a check� we can use ������ ������� and ������� settingm� � m� � m�
to assemble the QED vacuum polarization of vector currents� We �nd

/��
V V �q� � e�

�
/��
LL �/��

LR �/��
RL �/��

RR

�
�

��ie�
����d��

�Z
�

dx
,���d

� �

���d��
�
x��x�q�g�� � x��x�q�q��� ������

where now � � m��x��x�q�� This coincides precisely with our result from
Section ��
�

As we argued below ���
�� only the terms in the vacuum polarization
amplitudes proportional to g�� will enter our expressions for weak�interaction
radiative corrections� Thus� we can summarize the calculation of the basic
vacuum polarization amplitudes by quoting the results for this leading form
factor�

/LL�q
�� � /RR�q

�� � � �

����d��

�Z
�

dx
,���d

� �

���d��
�
x��x�q�

� �
� �xm

�
� � ��x�m�

��
�
�

/LR�q
�� � /LR�q

�� � � �

����d��

�Z
�

dx
,���d

� �

���d��
�
m�m�

�
� ����
�
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From these terms� we can assemble any desired vacuum polarization of t and b
quarks in the weak�interaction gauge theory� To make use of these expressions
more easily� we will expand the quantities ����
� in the limit d � �� If we
set � � �� d� the integrands of the expressions above simplify according to



����d��
,���d

� �

���d�� �


�����

h�
�
� � � log����� log�

i
� ������

Let

E �
�

�
� � � log����� log�M��� ������

where M is an arbitrary subtraction scale� It is useful to de�ne

b���X� � b��m
�
��m

�
�� q

�
X� �

�Z
�

dx log
�
��m�

��m
�
�� q

�
X��M�

�
�

b���X� � b��m
�
��m

�
�� q

�
X� �

�Z
�

dx x log
�
��m�

��m
�
�� q

�
X��M�

�
�

b���X� � b��m
�
��m

�
�� q

�
X� �

�Z
�

dx x��x� log���m�
��m

�
�� q

�
X��M�

�
�

������
The abbreviated notation will prove useful below� In ������� X labels a
momentum scale� we will need qX � ��mW �mZ � Note that for equal masses�

b��X� � �
�b��X�� ������

With this notation�

/LL�q
�
X� � � �

�����

h�
�
�q

�
X � �

� �m
�
� �m�

��
�
E � q�Xb���X�

� �
�

�
m�

�b���X� �m�
�b���X�

�i ���
��

and

/LR�q
�
X � � � �

�����
�
m�m�E �m�m�b���X�

�
� ���
�

We can now reconstruct all of the speci�c vacuum polarization amplitudes
that appear in Eq� ����
� in terms of divergences proportional to E and
�nite parts proportional to the bi� The simplest is the expectation value of
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electromagnetic currents� which is given in our present notation by

/QQ�q
�
X� � �� � �

�����

h�
�
�

��� �
�q

�
XE � q�Xb��ttX�

�
�
�
�
�

��� �
�q

�
XE � q�Xb��bbX�

�i
�

���
��

The prefactor � is the trace over colors� As we expect from QED� ���
��
contains a divergence only in a term proportional to q�X � The divergent parts
of the other amplitudes are

/���q
�
X� � � �

�����
� ��
�
�
�q

�
X � �

� �m
�
t �m�

b�
�
E � � � � �

/���q
�
X� � � �

�����
� ��
�
�
�q

�
X � �

� �m
�
t �m�

b�
�
E � � � � �

/�Q�q
�
X� � � �

�����
� ��
�
�
�q

�
X

�
E � � � � �

���
��

These divergences indeed follow the pattern claimed in Eq� ������� and thus
the predictions of the weak interaction gauge theory given in ����
� are free
of ultraviolet divergences�

The E�ect of mt

Using the notation we have developed� we can write the �nite parts of the
relations ����
� in a compact form� The �rst relation becomes

s�� � sin� �� �
�	

��cos� �w � sin� �w�

n�
�
� � �

�

�
b��ttZ� �

�
�
� � �

�

�
b��bbZ�

� �
�

�m�
t

m�
Z

$b��ttZ�� b��bt��% �
m�
b

m�
Z

$b��bbZ�� b��tb��%
�

� � sin� �w cos� �w
�
�
� $b��ttZ�� b��tt���m�

Zb
�
��tt��%

� �
� $b��bbZ�� b��bb���m�

Zb
�
��bb��%

�o
� ���
��

Similarly� the second relation becomes

s�W � s�� �
�	

� sin� �w

n�
�
� � �

� sin
� �w
�
b��ttZ� �

�
�
� � �

� sin
� �w
�
b��bbZ�

� �
� cos

� �wb��tbW �

� �
�

�m�
t

m�
Z

$b��ttZ�� b��btW �% �
m�
b

m�
Z

$b��bbZ�� b��tbW �%
�o
�

���

�
Though it is now straightforward to work out the complete expressions

for the relations ���
�� and ���

�� we will content ourselves here with
identifying the most important term in the limit in which the t quark mass
becomes large� Notice that� in each of these expressions� there are terms with
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coe	cients proportional to m�
t�m

�
Z � These are easiest to understand within

the simpler combination of vacuum polarization amplitudes

/������/����� �
�

�����


�

h
m�
t

�
b��tt��� b��bt��

�
�m�

b

�
b��bb��� b��tb��

�i
�

�

���

�Z
�

dx
n
xm�

t log
m�
t

M�
� ��x�m�

b log
m�
b

M�

� �xm�
t � ��x�m�

b� log
xm�

t � ��x�m�
b

M�

o
� � �

���

�Z
�

dx
n
xm�

t log
xm�

t � ��x�m�
b

m�
t

�O�m�
b�
o

�
�

���
� 
�
m�
t �O�m�

b� ���
��

for mt 
 mb� If mt is also much greater than mZ � one can �nd a contri�
bution proportional to m�

t �m
�
Z in each of the relations ���
��� ���

� by

replacing the argument q�X � m�
Z with q�X � �� using ���
��� and ignoring

all other contributions� One can show� by detailed examination of ���
��
and ���

�� that this procedure gives the complete leading term in mt� The
result is

s�� � sin� �� � � �	

���cos� �w � sin� �w�

m�
t

m�
Z

� � � � �

s�W � s�� � � �	

�� sin� �w

m�
t

m�
Z

� � � � �
���
��

where the omitted terms are of order 	 with no enhancement�
The enhancement factor m�

t�m
�
Z is exactly the one that we found in our

study of top quark decay in Section ���� It re�ects the fact that some elec�
troweak couplings of the top quark are e�ectively proportional to �t� the top
quark coupling to the Higgs sector� instead of simply to the weak interaction
coupling g�

The complete numerical evaluation of the formulae for s�� and s
�
W is shown

in Fig� ���� To compare the results of this section to experiment� we have
included� in addition to the top quark e�ect� themt�independent one�loop cor�
rections from loops containing W and Z bosons and light quarks and leptons�
In the �gure� the predictions are compared to the value of s�� obtained from
the measurement of the Z� polarization and forward�backward asymmetries
and the value of s�W obtained from measurement of the W boson mass�

According to the �gure� the weak interaction gauge theory requires the top
quark mass radiative correction �or a similar radiative correction from some
other heavy particle� for its consistency with experiment� The top quark is
predicted to have a mass approximately equal to �� GeV� A recent analysis
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Figure ������ Dependence of s�� and s�W on the top quark mass� for �xed ��
GF � mZ � The three curves in each group correspond to three di�erent values
of the Higgs boson mass� ���� ��� ���� GeV from bottom to top� The curves
are compared to values of s�� and s�W � taken from the article of Langacker
and Erler quoted in Table ����� and the CDF�D� value of the top quark mass
given in Eq� ������	��

of all neutral current weak interaction data has given the predictiony

mt � ��� �� GeV� ���
��

Just as this book was being completed� the CDF and D� experiments at
Fermilab announced the observation of the production of top quark pairs in
proton�antiproton scattering� From kinematic �ts to events believed to contain
top quarks� these experiments reportedz

mt � ��� � GeV� ���
��

The discovery of the top quark in just the range required by precision elec�
troweak measurements is quite remarkable� We can only conclude that� in the
domain of weak interactions as well as those of electromagnetic� strong� and
scalar interactions that we have studied earlier� the �uctuations predicted by
quantum �eld theory make their imprint on the phenomena of Nature�

yP� Langacker and J� Erler� in Review of Particle Properties� Phys� Rev� D�
�
��� ��		���

zF� Abe� et� al�� Phys� Rev� Lett� ��� ���� ��		��� S� Abachi� et� al�� Phys� Rev�
Lett� ��� ��� ��		���
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Problems

���� Weak�interaction contributions to the muon g � �� The GWS model of
the weak interactions leads to two new contributions to the anomalous magnetic mo�
ments of the leptons� Because these contributions are proportional to GFm

�
� � they are

extremely small for the electron� but for the muon they might possibly be observable�
Both contributions are larger than the contribution of the Higgs boson discussed in
Problem ���

�a� Consider �rst the contribution to the muon electromagnetic vertex function that
involves a W �neutrino loop diagram� In the R� gauges� this diagram is accom�
panied by diagrams in which W propagators are replaced by propagators for
Goldstone bosons� Compute the sum of these diagrams in the Feynman�.t Hooft
gauge and show that� in the limit mW � m�� they contribute the following
term to the anomalous magnetic moment of the muon�

a���� �
GFm

�
�


��
p
�
� ��

�

�b� Repeat the calculation of part �a� in a general R� gauge� Show explicitly that
the result of part �a� is independent of ��

�c� A second new contribution is that from a Z�muon loop diagram and the corre�
sponding diagram with the Z replaced by a Goldstone boson� Show that these
diagrams contribute

a��Z� � �
GFm

�
�


��
p
�
�
�
�


�




sin� �w � ��


sin� �w

�
�

���� Complete analysis of e�e� �W�W��

�a� Using explicit polarization vectors� work out the amplitudes for e�e� �
W�W� from left� and right�handed electrons to states in which the W� and
W� have de�nite helicity� For the cases in which both W bosons have longi�
tudinal polarization� verify that Eq� ����		� gives the correct high�energy limit
for right�handed electrons� and verify the complete expression ������
� for left�
handed electrons� For the cases in which one W is longitudinally polarized and
the second is transversely polarized� show that the individual diagrams give con�
tributions to the amplitudes that grow like

p
s� but that the complete amplitudes

fall as �

p
s�

�b� Show that the contributions to e�Le
�
R � W�W� found in part �a� reproduce

Fig� ������ and that the di�erential cross section for e�Re
�
L �W�W� is about

� times smaller� How many of the qualitative features of the �gure can you
understand physically�

���� Cross section for du � W��� Compute the amplitudes for du � W��
for the various possible initial and �nal helicities� Ignore the quark masses� In this
approximation� only the annihilation amplitude from dLuR is nonzero� Show that the
scattering amplitudes for all �nal helicity combinations vanish at cos � � ��
� where
� is the scattering angle in the center�of�mass system� Compute the di�erential cross
section as a function of cos ��
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���� Dependence of radiative corrections on the Higgs boson mass�

�a� Consider the contributions to weak�interaction radiative corrections involving
the physical Higgs boson h� of the GWS model� The couplings of the h� were
discussed near the end of Section ����� Show that� if we ignore terms proportional
to the masses of light fermions� the Higgs boson contributes one�loop corrections
to the processes considered in Section ��� only through vacuum polarization
diagrams� It follows that the contributions to vacuum polarization amplitudes
that depend on the Higgs boson mass are gauge invariant�

�b� Draw the vacuum polarization diagrams in Feynman�.t Hooft gauge that involve
the Higgs boson� and compute the dependence of the various vacuum polarization
amplitudes on the Higgs boson mass mh�

�c� Show that� for mh � mW � the natural relations discussed in Section ��� receive
corrections

s�� � s�� �
�

cos� �w � sin� �w
�� � 	 sin� �w�

�
�
log

m�
h

m�
W

�

s�W � s�� � �
�

���
log

m�
h

m�
W

�

The e�ect of varying mh is displayed in Fig� ����� and is included as a theoretical
uncertainty in the prediction ������
�� More accurate experiments might allow
one to predict mh from its e�ect on electroweak radiative corrections�
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Decays of the Higgs Boson

At the end of Section ����� we discussed the mystery of the origin of sponta�
neous symmetry breaking in the weak interactions� The simplest hypothesis
is that the SU���	 U�� gauge symmetry of the weak interactions is broken
by the expectation value of a two�component scalar �eld 
� However� since
we have almost no experimental information about the mechanism of this
symmetry breaking� many other possibilities can be suggested�

Eventually� this problem should be resolved by experimental observa�
tion of the particles associated with the symmetry breaking� To form incisive
experimental tests� we should compute the properties expected for these par�
ticles� We saw in Section ���� that� if the symmetry is indeed broken by a
single scalar �eld 
� the symmetry�breaking sector contributes only one new
particle� a scalar h� called the Higgs boson� The mass mh of this particle is
unknown� However� the couplings of the h� to known fermions and bosons are
completely determined by the masses of those particles and the weak inter�
action coupling constants� Thus� it is possible to compute the amplitudes for
production and decay of the h� in some detail� More complicated models of
SU���	U�� symmetry breaking typically contain one or more particles that
share some properties with the h�� Thus� this study is a useful starting point
for the more general analysis of experimental tests of these models�

In this Final Project you will compute the amplitudes for the Higgs bo�
son h� to decay to pairs of quarks� leptons� and gauge bosons� The computa�
tions beautifully illustrate the working of perturbation theory for non�Abelian
gauge �elds� Those decays of the Higgs boson that involve quarks and gluons
bring in aspects of QCD� Thus� this exercise reviews all of the important tech�
nical methods of Part III� Except for a question raised at the end of part �a��
the problem relies only on material from unstarred sections of Part III� The
material in Chapter �� plays an essential role� Material from Chapter � en�
ters the analysis only in parts �b� and �f�� and the other parts of the problem
�except for the �nal summary in part �h�� do not rely on these� If you have
studied Section ��
� you will have some additional insight into the results of
parts �c� and �f�� but this insight is not necessary to work the problem�

Consider� then� the minimal form of the Glashow�Weinberg�Salam elec�
troweak theory with one Higgs scalar �eld 
� The physical Higgs boson h� of

���
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this theory was discussed in Section ����� and we listed there the couplings of
this particle to quarks� leptons� and gauge bosons� You can now use that in�
formation to compute the amplitudes for the various possible decays of the h�

as a function of its mass mh� You will discover that the decay pattern has a
complicated dependence on the mass of the Higgs boson� with di�erent decay
modes dominating in di�erent mass ranges� The dependences of the various
decay rates on mh illustrate many aspects of the physics of gauge theories
that we have discussed in Part III�

In working this exercise� you should consider mh as a free parameter� For
the other parameters of weak�interaction theory� you might use the following
values� mb � 
 GeV� mt � �
 GeV� mW � �� GeV� mZ � � GeV� sin� �w
� ����� 	s�mZ� � ����


a� Compute �rst the rate for h� � ff � where f is a quark or lepton of the
standard model� After a completely trivial computation� you should �nd

,�h� � ff� �
� 	mh

� sin� �w

�
� m

�
f

m�
W

�
� �m�

f

m�
h

����
�Nc�f��

where Nc�f� �  for leptons� � for quarks� If you have studied Chapter
�� you might improve this result for the case in which the fermion f
is a quark� by computing the leading�log QCD corrections for the case
mh 
 mq � Remember that the quark massmq is determined at the quark
threshold M� � m�

q �


b� If mh � �mW � the Higgs boson can decay to W�W�� if it is just a bit
heavier� it can also decay to Z�Z�� Compute the decay widths to these
�nal states� You can check your result in the following way� If mh 

mW � the dominant contribution to the decay comes from production of
longitudinally polarized W or Z bosons� and this contribution can be
estimated at follows�

,�h� �W�W�� � ,�h� � 
�
��� ,�h� � Z�Z�� � ,�h� � 
�
���

where 
� 
� are the Goldstone bosons of the Higgs sector and the quan�
tities on the right�hand sides of these relations are computed in the un�
gauged Higgs theory� Explain why this statement should be true� and
verify it explicitly�


c� The third important decay mode of the Higgs is the decay to � gluons�
The amplitude for this decay is generated by diagrams involving quark
loops� Compute these diagrams� using dimensional regularization� The di�
agrams will be �nite� but nevertheless there is a subtle contribution which
apparently depends on the regulator� Check that you have computed the
amplitude correctly by verifying that it is gauge invariant� Then square
the amplitude and construct the decay rate� You should �nd

,�h� � �g� �
� 	mh

� sin� �w

�
� m

�
h

m�
W

� 	
�
s

���
�
���X
q

I
�m�

h

m�
q

������
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where the sum runs over all quark species and I�m�
h�m

�
q� is a form factor

with the property that I�x� �  as x � � and I�x� � � as x � ��
This property implies that the dominant contribution to the decay rate
comes from very heavy quarks� You need not evaluate I�x� explicitly at
this stage� just leave it in the form of a Feynman parameter integral�


d� The existence of the process h� � �g implies the existence of the inverse
process g�g � h�� which is a mechanism for production of Higgs bosons
in proton�proton collisions� Using the parton model� derive a relation
between the partial width ,�h� � �g� and the total cross section for
pp� h� �X � Compute this cross section numerically �in nanobarns� for
a �� GeV Higgs for pp collisions of center of mass energy 3�� TeV� �
TeV � �� GeV�� For the purposes of this problem set �though this is
not actually a good approximation� you may ignore the Q� dependence
of the gluon distribution function and take simply

fg�x� � � � 
x
�� x���

You may also set I�m�
h�m

�
t � � � this is correct to about ���


e� The �nal decay mode that you should consider is h� � ��� Consider �rst
the contribution from the loop diagrams involving quarks and leptons�
Show that the result is simply expressed in terms of the form factor
I�m�

h�m
�� that you derived in part �c��


f� Next� compute the contribution to this decay amplitude from the loop
diagram involving W bosons� and the various diagrams one must add to
this to obtain a gauge�invariant result� It is easiest to work in Feynman�
0t Hooft gauge� Add this contribution to that of very heavy quarks and
leptons� each with electric charge Qf � Your result should reduce to the
following expression in the limit mh � mW �

,�h� � ��� �
� 	mh

� sin� �w

�
� m

�
h

m�
W

� 	�

���
�
���X
f

Q�
f Nc�f�� �

�

�����

g� Now work out the detailed behavior of the form factor I�x� de�ned in part

�c�� Reduce your expression from part �c� to a one�parameter integral�
then evaluate this integral numerically� Plot I�m�

h�m
�
t � over the range 
�

GeV � mh � 
�� GeV� and compute the decay width ,�h� � �g� numer�
ically �in keV� over this range� The computation of part �f� introduces
an addition form factor� compute this function in the same way�


h� Finally� put together all the pieces� Find the branching fraction of the
h� into each of its �ve major decay modes bb� tt� gg� W�W�� Z�Z�� for
Higgs bosons of mass 
� GeV 3 
�� GeV�
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Chapter ��

Quantum Field Theory at the Frontier

In this textbook we have surveyed the most important ideas of quantum �eld
theory� Working from the basic concepts that come from fusing relativity�
quantum mechanics� and �elds� we have built an elaborate structure� which
includes such remarkable elements as coupling constant renormalization and
non�Abelian gauge �elds� We have seen at many points that the strange and
abstract elements of this structure actually intersect with observation and even
produce explanations for unexpected aspects of the behavior of elementary
particles�

In the course of our study� we have arrived at a complete theory of the
strong� weak� and electromagnetic interactions of elementary particles� Each
element of this theory has been described as a quantum �eld theory� and
these quantum �eld theories have turned out to have very similar structure
as gauge theories coupled to fermions� At various points in our discussion� we
have noted that these theories have passed stringent quantitative experimental
tests� We have not had space to describe the wide variety of experiments
that contribute to our faith in these theories� but today almost all particle
physicists consider this SU���	SU���	U�� gauge theory as established� In
fact� most of these people refer to this theory condescendingly as 0the standard
model��

Though the best data to support the standard model have come from
experiments of the past �ve years� the ideas behind it are much older� Most
of the theoretical developments described in this book were concluded in the
���s� a generation removed from the current frontier of physics� But this
does not mean that quantum �eld theory is irrelevant to that frontier� any
more than quantum mechanics and electrodynamics have lost their relevance
after many years of exploration� On the contrary� the theory of elementary
particles�like other areas of physics that depend on quantum �uctuations in
continua�still holds deep mysteries� and quantum �eld theory remains the
principal tool for exploration of these questions�

In this �nal chapter� we will �ash forward to the present day and discuss
the relevance of quantum �eld theory to current questions in the physics
of the fundamental interactions� We will present what are� in our view� the
outstanding unsolved problems of elementary particle physics and describe
how quantum �eld theory is being used to confront these problems� Many of

���
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these applications involve aspects of quantum �eld theory that are beyond
the scope of this book� These include the use of quantum �eld theory in the
regime beyond the reach of perturbation theory and the use of quantum �eld
theory to explore the special properties of theories with higher spin and local
symmetry� In these areas our discussion will be mainly qualitative� but we will
give references that provide points of entry into each of these subjects�

It should be obvious that our discussion in this �nal chapter will express
our personal opinions and by no means represents the consensus of experts
in quantum �eld theory� In addition� any collection of 0current problems� in
a rapidly developing area of research should quickly become dated� In fact�
we hope the readers of this book will quickly make this chapter obsolete by
solving the problems that we highlight here�

���� Strong Strong Interactions

One paradoxical aspect of our discussion of the strong interactions is that all
of our concrete results were obtained by assuming that these interactions are
weak� At large momentum transfer� we argued� this assumption is actually
valid due to asymptotic freedom� Still� it is uncomfortable that we have left
the most obvious questions about strongly interacting particles�for example�
their masses and low�energy interactions�in a mysterious regime excluded
from our analysis�

To work with QCD in the region where the strong interactions are strong�
we need to answer three questions� First� how do we describe the forces that
bind quarks together into hadrons� Second� what is an appropriate description
of the quark�antiquark and three�quark systems bound by those forces� And
�nally� how do we compute scattering amplitudes and matrix elements of
currents using these bound states�

At this moment� there is no derivation of the complete force between
quarks from the QCD Lagrangian� Explicit calculations can be done only
in the limits of weak and strong coupling� In the weak�coupling limit� the
result is a Coulomb potential with an asymptotically free coupling constant�
The strong coupling limit� on the other hand� gives a linear potential which
con�nes color in the way that we described� but did not derive� at the end
of Section ��� The derivation of this result is quite unusual and brings in a
new set of mathematical methods�

So far in this book� we have not discussed a strong coupling approximation
to a quantum �eld theory� There is a simple reason for this� In a quantum
�eld theory in which the coupling g� is very large� the elementary particles or
their bound states typically acquire masses that grow with g�� For g� � ��
these masses become comparable to the cuto� & and the �eld theory ceases
to have a local continuum description�

Wilson proposed to solve this problem in a radical way� by replacing
spacetime with a lattice of discretely spaced points� Such a lattice is easiest
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to visualize in Euclidean spacetime� and so we can use a functional integral
over �elds on a lattice to approximate Euclidean Green�s functions� Such a
theory can have a well�de�ned strong coupling limit� A theory of this type is
very similar to a lattice model of a magnetic system�

In fact� we can understand this construction of a quantum �eld theory
by using the concepts of Chapter �� A lattice theory with �uctuating spin
variables at each lattice site is described in the large by a quantum �eld
theory of scalar �elds with the symmetry of the underlying spin variables�
Typically� the strong�coupling limit of the quantum �eld theory corresponds
to the high�temperature limit of the magnet� in which the correlation length
is much smaller than the lattice spacing� Decreasing the coupling constant
corresponds to decreasing the temperature� Eventually� the coupling constant
comes close to a �xed point of the renormalization group� and one can use
this �xed point to de�ne a limit of the lattice functional integral in which the
lattice spacing is taken to zero�

To build a lattice model of the strong interactions� one needs to �nd a set
of variables on the discrete lattice that correspond in the large to non�Abelian
gauge �elds� Wilson proposed that the fundamental variables for such a theory
should be the line elements from one lattice vertex v� to a neighboring vertex
v��

U�v�� v�� � P exp
h
ig

Z
dx� Aa

�t
a
i
� �����

To construct the lattice gauge theory with gauge group G� one should inte�
grate over a �nite group transformation U for each link of the lattice� Tak�
ing a product of these U matrices around a closed path� one can construct
gauge�invariant observables� just as we did in Section 
��� An appropriate
Lagrangian can also be constructed as a sum of gauge�invariant products of
the U matrices about elementary closed loops of the lattice�!

In a spin system� the de�ning property of the high�temperature phase is
the exponential decay of correlations

h�s��� � �s�x�i � exp
��jxj��� ������

as jxj � �� The analogous property of the gauge�invariant correlation func�
tion of U matrices around a closed path P isDY

P

U
E
� exp

��A����� ������

whereA is the area spanned by the path� This behavior is in fact seen explicitly
in the expansion of Wilson�s lattice gauge theory for strong coupling� A pair
of color sources that stand a distance R apart for a Euclidean time T are
represented by a large rectangular loop of width R and length T � For such a

�This construction was introduced by K� Wilson� Phys� Rev� D�
� ���� ��	����
The construction is described pedagogically in M� Creutz�Quarks� Gluons� and Lattices
�Cambridge University Press� Cambridge� �	
��
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loop� we can compare the result ������ to the expression for the energy of an
excited state in Euclidean time��

exp
��HET %

� � exp
��RT����� ������

Then we see that static sources of gauge charge� in the strong�coupling limit�
are attracted to one another by a potential energy

V �R� � R��� ����
�

at su	ciently large R� Similarly� when one introduces dynamical quarks into a
lattice gauge theory and studies their properties in the strong�coupling limit�
con�gurations with large separation of color sources are suppressed in the
Euclidean functional integral by factors of the form of ������� The strong�
coupling limit then predicts the permanent con�nement of quarks into color�
singlet bound states�

The argument we have just given applies equally well to gauge theories
based on Abelian or non�Abelian symmetry groups� But non�Abelian gauge
theories have the important additional property of asymptotic freedom� In this
context� that implies that a theory with weak coupling at short distances �ows
to a theory with strong coupling at large distances� If we imagine integrating
out short�distance degrees of freedom as we described in Section ��� and
if there is no zero of the � function or other barrier to the renormalization
group �ow� we should eventually arrive at an e�ective theory for which the
strong�coupling expansion is a good approximation� Thus� in the particular
case of non�Abelian gauge theories� asymptotic freedom allows us to connect
a short�distance picture based on free quarks and gluons to a large�distance
picture based on color con�nement�

It would be wonderful if the strong�coupling picture that we have de�
scribed led to mathematical equations in continuum spacetime describing the
motion of permanently con�ned quarks and antiquarks� Many authors have
tried to write such equations by imagining the area suppression of the Wilson
loop correlation function ������ to result from a physical surface that spans the
loop� For the large rectangular loop associated with color sources� this surface
can be interpreted physically as the lines of color electric �ux that run from
one source to the other �as in Fig� ���� swept out through Euclidean time�
At one moment of Euclidean time� this surface can be idealized as an abstract
one�dimensional excitation� often called a string� Unfortunately� the quantum
properties of an idealized string turn out to be very complicated� since each
small element of the string must be considered as an independent quantum
degree of freedom� The only systems of string equations that have actually
been solved have bizarre features� including unwanted massless particles� Up
to now� no one has succeeded in writing an equation for the quark�con�ning
string that is useful for quantitative calculations of quark bound states�y

yFor one approach to color con�nement from a picture involving Wilson loops and
strings� see A� A� Migdal� Phys� Repts� �
�� �		 ��	
��
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However� the lattice regularization of a non�Abelian gauge theory suggests
another approach to quantitative calculations in strong�interaction theory� By
approximating QCD by a lattice gauge theory with a nonzero lattice spacing
and a �nite spacetime volume� we reduce the functional integral to a �nite
number of bounded integrations� that is� an integral over SU��� group matri�
ces for each of the �nite number of links in the lattice� A lattice of size� for
example� ��� allows the lattice spacing to be smaller than the size of a hadron
while the full size of the lattice is much larger than a hadronic radius� Then
one can compute correlation functions by evaluating the integrals numerically�
by the Monte Carlo method� Since the functional integral with a �nite lattice
spacing is related to the original functional integral with zero lattice spacing
by integrating out short�distance degrees of freedom� the lattice approxima�
tion can be systematically improved by computing the short�distance e�ects
perturbatively� using asymptotic freedom to justify a weak�coupling analysis�z

This numerical method has now become the principal theoretical tool for
quantitative calculations in hadron physics� This method currently gives the
masses of the low�lying mesons and baryons to accuracies of �3���� it also
allows the calculation of weak interaction matrix elements of hadrons at the
�
� level� As computers become more powerful� this numerical method can
be pushed to higher accuracy�

Eventually� it will be interesting to ask whether these nonperturbative
numerical calculations are consistent with our precision knowledge of the per�
turbative region of QCD� At the time of this writing� the �rst such comparison
has been made� We have listed in Table �� a value of 	s from � and 2 spec�
troscopy� In this calculation� the experimentally determined masses of cc and
bb bound states are compared to values computed numerically with lattice reg�
ularization� The comparison of these values gives the required bare coupling
constant of the lattice theory� which can be converted to a value of 	s�mZ�
in the convention of the table� The resulting estimate for 	s�mZ� does agree
reasonably well with purely perturbative determinations�

What is the future of nonperturbative calculations in hadron physics� On
the one hand� we expect to see further development of numerical lattice meth�
ods� These methods have hardly begun to address problems of hadron�hadron
scattering and multiparticle matrix elements� and this seems an important di�
rection for the future� In addition� these methods should eventually supply an
engineering understanding of hadrons at the percent level or better� On the
other hand� we hope also to see a quantitative continuum approach to hadron
structure� in which dynamical quarks interact with some appropriate type of
string degrees of freedom�

zFor an introduction to numerical lattice gauge theory� see From Actions to An�
swers� T� DeGrand and D� Toussaint� eds� �World Scienti�c� Singapore� �		���
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���� Grand Uni�cation and its Paradoxes

If we put aside our questions about the low�energy� nonperturbative behavior
of QCD� the SU���	SU���	U�� gauge theory gives an apparently complete
description of elementary particle interactions at those energies that we have
probed experimentally� But what happens beyond our current reach� Does
this theory need modi�cation� or could it continue to be valid at much higher
energies�

The SU���	SU���	U�� gauge theory contains three independent gauge
coupling constants� and the observed values of these couplings are larger for
the larger components of the gauge group� This pattern can be explained by a
bold hypothesis about the behavior of the gauge couplings at very high energy�
If at some very large energy scale� these three couplings were equal� the values
of the SU��� and SU��� couplings would increase at smaller momentum scales
due to their asymptotically free renormalization group equations� while the
value of the U�� coupling would decrease� resulting in the observed pattern of
couplings at low energies� An even bolder hypothesis would be that the three
gauge symmetries are subgroups of a single large symmetry group� which is
spontaneously broken at very high energy scales� The simplest choice for this
larger symmetry is SU�
�� In that theory� the coupling constants of SU���	
SU���	U�� have the following relation to the underlying SU�
� coupling at
the scale of SU�
� breaking�

g � g� � g �

r



�
g�� ������

The idea that the SU���	SU���	U�� gauge group is embedded in a larger
simple group is known as grand uni�cation� the particular choice of SU�
� as
the unifying group is due to Georgi and Glashow�! The observed quarks and
leptons can be seen to �t neatly into an anomaly�free chiral representation of
SU�
�� this embedding leads to a natural explanation of the fractional charges
of quarks�y

Within this framework� we can extrapolate the values of the three coupling
constants from the energy scale ofmZ upward� The result of this extrapolation
is shown as the solid lines in Fig� ���� The coupling constants do come close
together at very high energies� though they do not actually meet� The dashed
lines in the �gure show the evolution with a modi�ed set of renormalization
group equations� to be explained in Section ����� with this choice� the three
couplings meet accurately within their current uncertainties� In any event�
the evolution of coupling constants occurs on a logarithmic scale in energy� so
grand uni�cation cannot be achieved without assuming an enormous value�of
order ��� GeV�for the symmetry�breaking scale�

�H� Georgi and S� L� Glashow� Phys� Rev� Lett�� ��� �
 ��	���� The remarkable
hubris of this paper makes it required reading for every student�

yFor a pedagogical introduction to grand uni�cation� see Ross ��	
���
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Figure ����� Extrapolation in energy of the coupling constants of the
SU�� � SU��� � U��� gauge model� g�� g� and

p
�
g�� The solid lines are

plotted using the  functions corresponding to the known set of elementary
particles� the dashed lines are plotted using the  functions corresponding to
a supersymmetric multiplet of particles�

The idea of a grand uni�cation at such enormous energies raises many
di	cult questions� but it also suggests a wonderful opportunity� There is an�
other enormous energy scale in quantum �eld theory� the scale at which the
gravitational attraction of elementary particles becomes comparable to their
strong� weak� and electromagnetic interactions� Conventionally� one de�nes
the Planck scale as the energy for which the gravitational interaction of par�
ticles becomes of order �

mPlanck � �GN� hc�
���� � ��� GeV� ������

However� already at energies of order ��� GeV� the gravitational attraction
of particles is comparable to the gauge force due to the vector bosons of a
grand uni�ed theory� Though this scale is still slightly higher than the scale
at which the standard model coupling constants meet� it is not unreasonable
to hope that grand uni�cation is somehow related to the uni�cation of gravity
with the forces of elementary particle physics�

On the other hand� the introduction of this large scale into physics leads
to a number of conceptual problems� The �rst of these problems� which one
meets immediately upon suggesting this extension of the standard model� is
the Higgs boson mass� In our discussion at the end of Section ����� we came
to a somewhat ambiguous conclusion about the nature of the Higgs boson� As
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a part of the gauge theory of weak interactions� we need some new sector that
will cause the spontaneous breaking of SU���	U��� This might be supplied
by the vacuum expectation value of a scalar �eld� or by the more complicated
dynamics of a new sector of particles� At this moment� we do not know which
hypothesis is to be preferred�

If SU���	U�� is broken by the vacuum expectation value of an elemen�
tary scalar �eld� that scalar �eld should be part of the grand uni�cation� This
leads to a serious conceptual problem� In order to produce a vacuum expec�
tation value of the right size to give the observed W and Z boson masses� the
Higgs scalar �eld must obtain a negative mass term� of the size

��� � ���� GeV��� ������

Unfortunately� the �mass�� of a scalar �eld receives additive renormalizations�
In a theory with cuto� scale &� �� can be much smaller than &� only if the
bare mass of the scalar �eld is of order �&�� and this value is canceled down
to ��� by radiative corrections� If we envision that our theory of Nature
contains the very large scales of grand uni�cation� we must take seriously the
idea that the appropriate value to take for & in this discussion is ��� GeV or
larger� This seems to require dramatic and even bizarre cancellations in the
renormalized value of ���

We met a situation of this type in the theory of phase transitions� At zero
temperature� a ferromagnet typically has a spin expectation value of the order
of the underlying atomic parameters� As the temperature is raised� or as some
other variable in the system is changed� the magnetization decreases� Finally�
by �ne adjustment of the temperature� we can arrive at a situation where the
system approaches a critical point� In the very near vicinity of this point� the
expectation value of the spin �eld is much smaller than the value predicted
from atomic parameters� and the system is described by an approximately
massless continuum scalar �eld theory�

In statistical mechanics� this picture of the light scalar �eld makes sense
because there is an experimenter sensitively adjusting a dial� In the theory of
weak interactions� there is no one obviously making a �ne adjustment that
gives the �mass�� of the Higgs boson a value �� orders of magnitude or more
below its natural value� Thus� it is a mystery why the Higgs boson mass should
be so small compared to the grand uni�cation scale� Particle physicists refer
to this question as the gauge hierarchy problem�

How can one naturally arrange a Higgs �eld mass term to be so much
smaller than the underlying mass scale of the fundamental interactions� One
possible strategy would be to arrange for a symmetry of the fundamental
Lagrangian that forbids the Higgs boson mass term and that is very weakly
broken� This idea turns out to be very di	cult to implement� To build a theory
of this type� one would need to create a scalar �eld theory in which additive
radiative corrections to the Higgs boson mass must cancel to any foreseeable
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order in perturbation theory� But the Higgs mass term is very simple in form�

�L � ��j
j�� ������

and it is hard to imagine any principle that would keep this term from being
generated by radiative corrections� There is one proposal for a symmetry
with this property� but it requires the introduction of a profound principle
called supersymmetry that entails deep modi�cations of fundamental physics�
In particular� it requires a large number of new elementary particles� some
of which should have masses below ��� GeV� within the reach of the next
generation of accelerators� We will discuss this possibility further in Section
�����

In this discussion� the problem of the Higgs mass stemmed from the hy�
pothesis that the Higgs boson was an elementary particle� An alternative view�
point� already suggested at the end of Section ����� is that the Higgs boson is
a composite state bound by a new set of interactions� This idea also leads to
observable experimental consequences� since the mass scale of these new in�
teractions must be close to the weak interaction mass scale� In the simplest
theories of this type� the symmetry breaking of the Higgs sector is modeled
on the dynamical chiral symmetry breaking of the strong interactions� which
we discussed in Section ���� The new strong interactions required by the the�
ory lead to a spectrum of new particles with masses of about ��� GeV�z

Thus� the two con�icting hypotheses on the nature of the sector that breaks
SU���	U�� both lead to new phenomena observable at future accelerators�
and possibly even at present ones�

Just as these two di�erent theories of the Higgs sector present com�
pletely di�erent answers to the question of why the weak�interaction symmetry
SU���	U�� should be spontaneously broken� they also imply completely dif�
ferent answers to the question of the origin of the quark and lepton masses� In
a model in which the Higgs �eld is elementary� the quark and lepton masses
are derived from the renormalizable couplings of fermions to the Higgs �eld�
These couplings would presumably be part of the grand uni�cation and could
be predicted only by theories that made explicit reference to the grand uni��
cation scale� In principle� the knowledge of these couplings could give us clues
as to the details of the grand uni�cation� Even if the Higgs �eld is compos�
ite� we cannot avoid the fact that the generation of masses for the quarks and
leptons requires the breaking of SU���	 U��� Thus� these mass terms must
arise from couplings of the quarks and leptons to the Higgs sector of interac�
tions� In this class of models� the interactions leading to the quark and lepton
masses must arise at energies close to the scale of the Higgs sector strong
interaction and may eventually be observable experimentally�

From either viewpoint� it is still mysterious why the spectrum of quarks

zThe properties of these models of the Higgs sector� known to specialists as tech�
nicolor models� are described in R� Kaul� Rev� Mod� Phys� ��� ��	 ��	
� and K� D�
Lane� in The Building Blocks of Creation� S� Raby� ed� �World Scienti�c� �		��
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and leptons covers 
 orders of magnitude� from the electron at ��
 MeV to
the top quark at �
 GeV� It is also not understood what gives rise to the
pattern of quark mixings encoded in the CKM matrix and the magnitude of
CP violation� Even with detailed con�rmation of the standard model� these
questions seem today very far from solution�

The enormous mass scale of grand uni�cation can also enter one more
physical quantity� one that poses an even greater paradox than that of the
Higgs boson mass� When we �rst quantized a �eld in Section ���� we discovered
that the energy density of the vacuum in free scalar �eld theory received an
in�nite positive contribution from the zero�point energies of the various modes
of oscillation� With a cuto� scale &� this zero�point energy is given roughly
by

h�jH j�i � &�� ������

At many other points in our discussion� we found similarly large contributions
to the vacuum energy� The �lling of the Dirac sea in the quantization of the
free fermion theory led to a downward shift in the vacuum energy with a
similar ultraviolet divergence� Spontaneous symmetry breaking gives a �nite
but still possibly large shift in the vacuum energy density�

� h�jH j�i � �cv�� �����

with dimensionless c� for a �eld vacuum expectation value v� The spontaneous
breaking of the weak interaction SU���	U�� symmetry and of the strong in�
teraction chiral symmetry both would be expected to shift the vacuum energy
density in this way�

In elementary particle physics experiments� this shift of the vacuum en�
ergy is unobservable� Experimentally measured particle masses� for example�
are energy di�erences between the vacuum and certain excited states ofH � and
the absolute vacuum energy cancels out in the calculation of these di�erences�
However� there is a way that the absolute vacuum energy could potentially
be observed� through the coupling of the vacuum energy to gravity� Accord�
ing to Einstein� the energy�momentum tensor of matter 5�� is the source of
the gravitational �eld� A vacuum energy density h�jH j�i � � contributes to
this source a term

5�� � N
�
5��
�
� �g�� � ������

where the �rst term on the right is subtracted to have zero vacuum expecta�
tion value� The vacuum energy term has the form of Einstein�s cosmological
constant and thus potentially a�ects the expansion of the universe�

In fact� measurements of the cosmological expansion exclude a large cos�
mological constant� The current limit is

� � ���� g�cm� � ����� GeV��� ������

We have no understanding of why � is so much smaller than the vacuum
energy shifts generated in the known phase transitions of particle physics�
and so much again smaller than the underlying �eld zero�point energies� The
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discrepancy in � between the experimental bound ������ and naive intuition
is �� orders of magnitude- The solution to this problem may come from one
of many sources� It may be that the formalism of the quantum �eld theory
of gravity requires that the vacuum energy be subtracted from the energy�
momentum tensor that appears in Einstein�s equations of gravity� It may be
that there is a new physical mechanism coming from particle physics or from
gravity itself that sets the total vacuum energy to zero� Or it may be that
the overall scale of energy�momentum is genuinely ambiguous and is set by a
cosmological boundary condition� At this moment� all of these possibilities are
just guesses� All we know for certain is that the uni�cation of quantum �eld
theory and gravity cannot be straightforward� that there is some important
concept still missing from our current understanding�!

���� Exact Solutions in Quantum Field Theory

From the idea of grand uni�cation� with its great promise and mystery� we
turn to the study of model quantum �eld theories that are so simple that they
can be solved exactly� Throughout this book� we have stressed the intrinsic
complexity of quantum �eld theory and the importance of using perturbation
theory as a replacement for exact knowledge� But there are a variety of quan�
tum �eld theories for which exact solutions are known� In this section� we will
describe some of these and review the insights we have gained from them�

In searching for exact solutions to quantum �eld theory models� there
is no reason to restrict our attention to four�dimensional spacetime� In fact�
we have seen examples of two�dimensional theories with similar complexity of
renormalization and short�distance behavior� At the same time� these theories
occupy a one�dimensional space� and their degrees of freedom can be visualized
as links in a chain� This allows some powerful simpli�cations�

In our discussion of the axial anomaly in two dimensions in Section ���
we showed that the photon of two�dimensional massless QED becomes a mas�
sive boson� More detailed examination of this theory shows that this boson
is a noninteracting particle� The theory is originally formulated in terms of
fermions� interacting through Coulomb forces� However� it is possible to ex�
actly rewrite the theory as a theory of a scalar �eld that creates and destroys
fermion�antifermion pairs� Heuristically� a particle and an antiparticle moving
down the light�cone in one�dimensional space do not separate and therefore
comprise one bosonic degree of freedom� In a wide class of models� the bosonic
theories rewritten in this way are free��eld theories� A remarkable model of
this type is the Thirring model�

L � �i �� � g

�
��������� ������

�The cosmological constant problem and a variety of unsuccessful solutions are
reviewed in S� Weinberg� Rev� Mod� Phys� ��� � ��	
	��
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in two dimensions� In this model� the replacement of the fermion �eld by a
boson �eld leads to a free �eld theory� Using this �eld theory� one can com�
pute correlation functions of fermion bilinears explicitly and show directly
that these operators have anomalous dimensions� In renormalization�group
language� the model contains a line of �xed points parametrized by the cou�
pling constant g�y

A more general class of two�dimensional models can be solved by visu�
alizing them in a Hamiltonian picture as a one�dimensional chain of coupled
�eld operators� The prototype of this method is a problem in the statistical
mechanics of magnets� the one�dimensional chain of coupled spins� Consider a
long chain of N discrete sites� with a spin��� system at each site� The Pauli
sigma matrices �i act on the two�dimensional Hilbert space at the site i� The
Hamiltonian for the spin chain is then

H �
X
i

��J�i � �i���� ����
�

Since
�i � �i�� � ����i �

�
i�� � ��i �

�
i��� � ��i �

�
i��� ������

this Hamiltonian conserves the number of up spins� The state with all spins
down is an eigenstate of the Hamiltonian� and the states with one spin up in a
state of de�nite momentum are also eigenstates� In ���� Bethe analyzed the
problem of two spins up and computed their S�matrix� He then discovered an
amazing fact� that by multiplying the S�matrices for the two�spin problem� he
could �nd the exact eigenstates of the Hamiltonian for any number of spins up�
By considering N�� spins up� he found the ground state of the system� This
technique� now known as Bethe�s ansatz� has been used to solve a wide variety
of one�dimensional problems in condensed matter physics and quantum �eld
theory� For example� this technique has been used by Andrei and Lowenstein
to solve the Gross�Neveu model presented in Problem �� and to demonstrate
that the spectrum of this model has the properties expected from asymptotic
freedom�z

Even where it is not possible to solve a model for all values of its parame�
ters� it is sometimes possible to �nd exact information about two�dimensional
models at points where they contain massless �elds� It is well known that a va�
riety of classical two�dimensional partial di�erential equations can be solved by
exploiting techniques of complex variables� For example� the two�dimensional
Laplace equation r�
 � � is invariant to conformal mappings z � w�z��

yFor an introduction to these models� see S� Coleman� Phys� Rev� D��� ��


��	���� Ann� Phys� �
�� �	 ��	����

zFor an introduction to Bethe�s ansatz and its generalizations� see N� Andrei� K�
Furuya� and J� H� Lowenstein� Rev� Mod� Phys� ��� � ��	
�� L� D� Faddeev� in
Recent Advances in Field Theory and Statistical Mechanics� J� B� Zuber and R� Stora�
eds� �North�Holland� Amsterdam� �	
��� and R� J� Baxter� Exactly Solved Models in
Statistical Mechanics �Academic Press� London� �	
���
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where z � x � iy� Two�dimensional quantum �eld theories with massless
particles often have this conformal symmetry at the classical level� though
generically it is anomalous� In special systems� however� these anomalies van�
ish and the quantum theory is invariant to conformal mapping� These theories
typically contain operators with anomalous dimensions� indicating that each
such theory is a new� nontrivial �xed point of the renormalization group� The
conformal symmetry of the theory can be used to compute these anomalous
dimensions�

As an example of this class of theories� consider the two�dimensional non�
linear sigma model in which the basic �eld is not a unit vector� as we discussed
in Section ���� but rather a unitary matrix of a Lie group G� The Lagrangian
of this theory is

L �


�g�

Z
d�x tr

�
��U

y��U
�
� ������

Like the theory of Section ���� this model is asymptotically free� However�
Witten has shown that� by adding to this Lagrangian a particular perturbation
of a rather complicated form �rst written by Wess and Zumino� one can �nd a
�xed point of the renormalization group with manifest G	G global symmetry�
This theory is conformally invariant� and all operator correlation functions can
be computed using the conformal symmetry�!

One result of the nonperturbative exploration of quantum �eld theory
was the realization that �eld theories can contain particle states that are not
simply related to the quanta of the original �elds� In the weak�coupling limit
of a quantum �eld theory� such new states can appear as new solutions of the
classical �eld equations� Consider� for example� 
� theory in two dimensions
in the broken�symmetry phase� The equation of motion is

��

�t�

� ��

�x�

� ��
� �
� � �� ������

Treating this equation as a classical partial di�erential equation� we can �nd
the time�independent solution


�x� �
�p
�
tanh

x�p
�
� ������

This is a �eld con�guration that begins in one well of the potential at x � ��
and crosses over to the other well as x � ��� This solution has an energy
of order ���� larger by a factor of �� than the mass of a 
 quantum� Since
the original equation ������ was Lorentz�covariant� the boosts of this solution
must also be solutions to the classical partial di�erential equation� It is natural
to suggest that� in the 
� quantum �eld theory� these solutions form a new
set of massive particles� Such solutions� and the particles corresponding to

�For an introduction to comformally invariant two�dimensional quantum �eld
theories� see P� Ginsparg� in Fields� Strings� Critical Phenomena� E� Brezin and J�
Zinn�Justin� eds� �North�Holland� Amsterdam� �	
	��
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them� are often called solitons� borrowing a more specialized term from the
literature on two�dimensional partial di�erential equations�y

Many examples are now known of particles that are associated in this
way with classical solutions of a quantum �eld theory� In theories with spon�
taneously broken symmetry� the appearance of such particles is often related
to the topology of the set of vacuum states� the 
� theory above gives a simple
example of this relation� These examples are not limited to two dimensions
but can also occur in theories that are potentially realistic� Such solutions
can have magical properties� One interesting example is found in the SU���
gauge theory with a Higgs scalar �eld in the vector representation� the Georgi�
Glashow model considered in Section ���� 0t Hooft and Polyakov showed that
this theory has a classical solution in which the Higgs �eld 
a has the form


a�x� � f�jxj�xa� �������

They showed that� when the gauge theory is interpreted as a uni�ed model of
weak and electromagnetic interactions� this solution is a magnetic monopole-
In addition� particles that arise as heavy classical states in the weak coupling
limit can have a more intricate relation to the dynamics of the theory when the
coupling is increased� For example� in theories of the type of two�dimensional
QED or the Thirring model in which fermions can be replaced by bosons� a
weak�coupling limit is obtained by adding to the theory a large fermion mass�
Then the original fermions are recovered from the bosonic representation of
the theory as classical solutions very similar to that given in �������

In some theories� one can �nd classical solutions of the Euclidean �eld
equations� These solutions� called instantons� are localized in Euclidean time
as well as in space� Thus� they are interpreted as quantum processes that
modify the e�ective Hamiltonian of a quantum �eld theory� The most famous
example of an instanton is found in four�dimensional non�Abelian gauge theo�
ries� It was shown by 0t Hooft that this �eld con�guration leads to a quantum
process that violates the conservation of the U�� axial current in QCD� We
have explained in Section ��� that this violation of current conservation is
exactly what is needed to explain the spectrum of light mesons in QCD�

There is probably much more to be learned� especially about the strong�
coupling behavior of gauge theories� by deeper analysis of the classical solu�
tions to the �eld equations� and of the interrelations of the many exactly or
partially solvable two�dimensional �eld theories�

yFor an introduction to the use of solutions of the classical �eld equations in the
analysis of problems in �eld theory� see S� Coleman ��	
��� Chaps� � and �� and R�
Rajaraman� Solitons and Instantons �North�Holland� Amsterdam� �	
���
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���� Supersymmetry

Among the properties that a quantum �eld theory might possess to make it
more beautiful or more mathematically tractable� there is one higher sym�
metry with particularly far�reaching implications� This is a symmetry that
relates fermions and bosons� known �without hyperbole� as supersymmetry�
In this section� we will introduce some of the purely mathematical conse�
quences of supersymmetry� and then discuss the question of whether the true
�eld equations of Nature could be supersymmetric�

A generator of supersymmetry is an operator that commutes with the
Hamiltonian and converts bosonic into fermionic states� Such an operator must
carry half�integer spin� in the simplest case spin ��� Let Q�� with 	 � � ��
be the left�handed spinor components of this operator� Their Hermitian con�
jugates� Qy	� form a right�handed spinor� The anticommutator fQ�� Q

y
	g is

a � 	 � matrix with positive diagonal elements� thus it cannot vanish� This
matrix commutes with H but transforms nontrivially under Lorentz transfor�
mations� A Lorentz�covariant expression for this anticommutator is�

Q�� Q
y
	

�
� ����	P

�� ������

where P� is a conserved vector quantity� Such quantities are severely re�
stricted� a theorem of Coleman and Mandula states that� if a quantum �eld
theory in more than two dimensions has a second conserved vector quantity
in addition to the energy�momentum ��vector� the S�matrix equals  and no
scattering is allowed� Thus the only possible choice for P� in Eq� ������ is the
total energy�momentum� The Coleman�Mandula theorem also rules out any
higher�spin conservation laws� This eliminates the possibility that a supersym�
metry generator could have spin ��� or higher� The most general possibility
is a collection of spin��� operators with the anticommutation relations�

Qi
�� Q

jy
	

�
� ��ij���	P

�� �������

with i� j � � � � � � N � In the following discussion� we will mainly consider only
the simplest case� N � �z

The algebra ������� of conserved quantities has profound conseqences for
the theory� Since the right�hand side of ������� is the total energy�momentum�
it involves every �eld in the theory� To reproduce this algebra� the left�hand
side must also involve every �eld� The representations of this algebra pair
every bosonic state with a fermionic state at the same energy� and vice versa�
If supersymmetry is an exact symmetry of the quantum �eld theory� it must
act on every sector of the theory� In a realistic model� even the gravitational
�eld must have a fermionic partner� This means that Einstein�s equations of
gravity must be generalized to a new set of geometrical equations that involve
a fermionic �spin����� �eld�

zAn excellent introduction to the formalism of supersymmetry is J� Wess and J�
Bagger� Supersymmetry and Supergravity �Princeton University Press� �	
��
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The �rst consequences of making a quantum �eld theory supersymmetric
are easy to understand� For every �complex� scalar �eld� one must introduce
a chiral fermion �eld� The self�interactions of the bosonic �elds are related
to the interactions of these �elds with the fermions� for example� a possible
interaction Lagrangian with coupling constant � is

�L � ���j
j� � �
���

T���� �������

We have written a more general supersymmetric Lagrangian in Problem ��
�
Similarly� for every gauge �eld� one must introduce a chiral fermion in the
adjoint representation of the gauge group� This fermion� called the gaugino�
mediates interactions of the scalar �elds with their fermionic partners whose
strength is given by the gauge coupling g�

The special relation between the bosonic and fermionic interactions leads
to great simpli�cations in the renormalization of supersymmetric theories�
Some of these simpli�cations can be anticipated� Since supersymmetry re�
quires that each scalar particle have a fermionic partner of the same mass�
these particles must have the same mass renormalization� But we have seen
that the fermion mass is multiplicatively renormalized and thus is only log�
arithmically divergent� while a scalar mass term is additively renormalized
and thus can be quadratically divergent� Supersymmetry must imply that
the quadratic divergences of scalar mass terms automatically vanish� In fact�
these cancellations occur in every order of perturbation theory� with loop dia�
grams involving bosons canceling against diagrams with virtual fermions� To
see another simpli�cation required by supersymmetry� take the vacuum ex�
pectation value of the anticommutation relation ������� The vacuum state
has zero momentum� P i j�i � �� If the vacuum state is supersymmetric�

Q� j�i � Qy	 j�i � �� Then Eq� ������ implies

h�jH j�i � �� �������

We have noted already that bosonic �elds give positive contributions to the
vacuum energy through their zero�point energy� and fermionic �elds give neg�
ative contributions� We now see that� in a supersymmetric model� these con�
tributions cancel exactly� not only at the leading order but to all orders in
perturbation theory�

Deeper examination of supersymmetric theories leads to additional� and
quite unexpected� cancellations in renormalization theory� For example� one
can show that the coupling constants in scalar�fermion self�interactions� such
as � in �������� are renormalized only through �eld strength renormalizations�
Thus the relative size of two di�erent scalar interactions remains unchanged�
If a particular type of renormalizable interaction is omitted� it cannot be gen�
erated by renormalization� in contrast to the case in ordinary �eld theory�
The simplest supersymmetry does not constrain the renormalization of gauge
couplings� but higher supersymmetries can have a profound e�ect� In N � �
supersymmetric models� the � function vanishes if the leading�order term is
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arranged to be zero� In N � � supersymmetric models� this cancellation is au�
tomatic and ��g� � � exactly� These models give examples of four�dimensional
quantum �eld theories with no ultraviolet divergences�!

Supersymmetry thus endows a quantum �eld theory with remarkable�
even magical properties� But is it possible that the true equations of Nature
could possess such a high degree of symmetry� Since we are certain that
there is no charged boson with the same mass as the electron� we know that
supersymmetry cannot be an exact symmetry of Nature� But it is tempting
to guess that it might be a spontaneously broken symmetry of the underlying
equations�

In fact� this conjecture has fruitful consequences for the grand uni�ed the�
ories that we discussed in Section ����� The problem of the Higgs boson mass
that we highlighted in that section has an elegant solution in supersymmetry
models� In a supersymmetric version of the standard model� the Higgs �eld
is one of a large number of scalar �elds with various SU��� 	 SU��� 	 U��
quantum numbers� For all of these scalar �elds� the mass terms get only a
logarithmic multiplicative renormalization� If supersymmetry were broken in
such a way as to give mass di�erences of a few hundred GeV between the ob�
served fermionic quarks and leptons and their scalar partners� one would also
�nd a Higgs boson �mass�� of the correct size� There are good reasons� which
follow from more detailed properties of the theory� why it is the Higgs �eld�
rather than some other scalar �eld� that obtains a vacuum expectation value�y

If this set of ideas is correct� the scalar partners of quarks and leptons
would be light enough to be discovered experimentally in the near future� In
that case� these scalar particles and the fermionic partners of gauge bosons
would a�ect the renormalization of coupling constants between present en�
ergies and the grand uni�cation scale� This might potentially disturb the
prospects for grand uni�cation� but� instead� it improves them� the dashed
lines of Fig� ���� with a more impressive meeting of the three coupling con�
stants� were generated by replacing the conventional � functions with ones
including the supersymmetric partners�

The last of the problems discussed in Section ���� is also ameliorated by
the introduction of supersymmetry� In a grand uni�ed theory with broken
supersymmetry� those momentum scales that are much larger than the mass
di�erences of supersymmetry partners give no contribution to the vacuum
energy� Thus the natural size of the cosmological constant in these theories
is � � ��� GeV��� This reduces the cosmological constant problem to a
discrepancy of 
� orders of magnitude�but this is not nearly enough�

�Supersymmetric models with vanishing  function are reviewed by P� West� in
Shelter Island II� R� Jackiw� N� N� Khuri� S� Weinberg� and E� Witten� eds� �MIT
Press� Cambridge� �	
���

ySupersymmetric models of quarks and leptons� and their observable conse�
quences� are reviewed in H� P� Nilles� Phys� Repts� ��
� � ��	
��� and in H� E� Haber
and G� L� Kane� Phys� Repts� ���� �� ��	
���
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It is an exciting prospect that supersymmetric partners of the particles of
the standard model might soon be seen in experiments� What we anticipate� in
any event� is that the experiments of the next generation will make a de�nite
choice between this hypothesis for the nature of the Higgs sector and the other
possibilities discussed in Section ����� Either way� we will have advanced our
knowledge one step toward the truly fundamental equations�

���� Toward an Ultimate Theory of Nature

What are these fundamental equations� Do they involve quantum �eld theory�
or some very di�erent organizing principle� Any answer to this question must
be completely speculative� Nevertheless� there are some principles� and an
example� that can guide this search�

For all the attention we have given in this book to the basic interactions
of particle physics� we have given very little attention to gravity� In part�
this is because the quantum theory of gravity has no known observational
consequences� But it is also true that the quantum theory of gravity is still
ill�formed and uncertain� If gravity is treated as a weak�coupling �eld the�
ory with Feynman diagrams� one quickly �nds that the divergences of these
diagrams render the theory nonrenormalizable� This is no surprise� because
gravity is a theory in which the coupling constant has inverse mass dimen�
sions� with the mass scale mPlanck given by ������� In our general philosophy
of renormalization� all of the complexity of this theory should be concentrated
at the scale mPlanck�

At the scale where quantum �uctuations of the gravitational �eld are im�
portant� we must expect profound changes in physics� If these changes occur
within the context of quantum �eld theory� they will at the least entail �uc�
tuating spacetime geometry and topology� But it seems equally probable that
quantum �eld theory will actually break down at this scale� with continuous
spacetime replaced by a new discrete or nonlocal geometry�

One particular model for the behavior of spacetime at very small dis�
tances is string theory� the dynamics of abstract one�dimensional extended
objects� In Section ���� we mentioned that such objects seemed to occur
naturally in attempts to describe quark con�nement in QCD� but that the
detailed properties of these objects made them unsuitable for strong inter�
action phenomenology� Among the disappointing properties of these systems
were the appearance of massless spin�� states of the string� and a constraint
that the dimension of spacetime must be increased unless the spectrum of the
theory contained many massless spin� states� In ���� Scherk and Schwarz
made the remarkable suggestion that string theory was a correct mathemat�
ical description of a di�erent problem� the uni�cation of elementary particle
interactions with gravity� They interpreted the spin�� quantum as the gravi�
ton and the spin� quanta as gauge bosons of a gauge theory�z A decade later�

zJ� Scherk and J� H� Schwarz� Nucl� Phys� B��� ��
 ��	����
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Green and Schwarz put this conjecture on a �rmer footing by showing that
a particular string theory could be interpreted as a grand uni�ed theory in
ten spacetime dimensions� with all gravitational and gauge Ward identities
automatically satis�ed and all anomalies automatically canceling� Since that
time� many other solutions to the constraint equations of string theory have
been found� some of which correspond to uni�ed models of gauge interactions
and gravity in four dimensions� These models can naturally incorporate su�
persymmetry and� under that condition� give ultraviolet��nite results for all
scattering amplitudes� including those of gravitons�!

String theories solve the ultraviolet divergence problems of quantum �eld
theory by rejecting the idea that elementary particles are pointlike objects
with contact interactions� Rather� in string theory� quarks� leptons� gauge
bosons� and gravitons are extended loops of string excitation which thus in�
teract nonlocally� Since particles cannot be de�nitely localized� spacetime it�
self takes on a nonlocal character� In some sense� distances much less than
the Planck length �mPlanck do not exist in the string description of grav�
ity� As yet� it is not clear how to understand intuitively the sort of geometry
that string theory requires� This mathematical problem is now being actively
investigated�

If indeed the truly fundamental geometry of Nature is nonlocal� discrete�
or discontinuous in some other way� then the grand program for the fun�
damental interactions that we have set forth in this book must be altered
in an essential way� The most elementary equations of Nature will not be
gauge�invariant quantum �eld theories� but instead theories built from very
di�erent elements� Even the principles of model construction will be di�er�
ent from those based on gauge and Lorentz invariance that we have discussed
here�

On the other hand� quantum �eld theory will still play an essential role in
the interpretation of this structure� All of the processes we now observe� even
the elementary particle processes at the highest energies currently accessible�
occur over distances 
 orders of magnitude larger than the sizes of the strings
or other �uctuating structures that appear in the underlying equations� The
relation of experimental observations to these fundamental structures is thus
very similar to the relation of macroscopic observations to the underlying
atomic structure of matter� In the study of matter� we use a classical� New�
tonian description of atoms to bridge this gap and to relate the properties of
gases� liquids� and solids to underlying atomic properties� We might say that
the quantum theory of atoms gives rise to a set of e�ective Newtonian equa�
tions that is extremely powerful in the macroscopic domain� Especially in the
theory of gases� this Newtonian description was also used as a tool to realize
the existence of atoms and to derive their properties�

�A technical introduction to string theory and its use in building uni�ed models
has been given by M� B� Green� J� H� Schwarz� and E� Witten� Superstring Theory� �
vols� �Cambridge University Press� �	
���
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Similarly� whatever the nature of Planck�scale physics� it leads to some
e�ective continuum quantum �eld theory� This quantum �eld theory might
well be an accurate approximation to the underlying physics already at dis�
tances of �� Planck lengths� corresponding to momenta of ��� GeV� From
here to the scale of weak interactions� and from there up to the wavelength
of light� and from there to the size of the universe� quantum �eld theory can
be treated as the basic framework for the equations of physics� By recogniz�
ing the symmetries of the particular set of �eld equations that Nature has
provided us� we can learn to compute all of the details of physical processes
over this whole enormous domain� And� by contemplating the origin of these
symmetries� perhaps we will also be able to see through to the next level and
unlock the true structure of spacetime�



Appendix

Reference Formulae

This Appendix collects together some of the formulae that are most commonly
used in Feynman diagram calculations�

A�� Feynman Rules

In all theories it is understood that momentum is conserved at each vertex� and
that undetermined loop momenta are integrated over�

R
d�p������� Fermion

�including ghost� loops receive an additional factor of ���� as explained on
page ��� Finally� each diagram can potentially have a symmetry factor� as
explained on page ���

�� theory� L �


�
���
�

� � 

�
m�
� � �

�-

�

Scalar propagator� �
i

p� �m� � i�
�A��


� vertex� � �i� �A���

External scalar� �  �A���

�Counterterm vertices for loop calculations are given on page ��
��

Quantum Electrodynamics� L � ��i� �m�� � �
� �F���

� � e����A�

Dirac propagator� �
i�p�m�

p� �m� � i�
�A���

Photon propagator� �
�ig��
p� � i�

�A�
�

�Feynman gauge� see page ��� for generalized Lorentz gauge��

�
�
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QED vertex� � iQe�� �A���

�Q � � for an electron�

External fermions�
� us�p� �initial�

� us�p� ��nal�

�A���

External antifermions�

� vs�p� �initial�

� vs�p� ��nal�
�A���

External photons�

� ���p� �initial�

� ����p� ��nal�

�A���

�Counterterm vertices for loop calculations are given on page �����

Non�Abelian Gauge Theory�

L � ��i� �m�� � �
� ���A

a
� � ��A

a
��

� � gAa
���

�ta�

� gfabc���A
a
��A

�bA�c � �
�g

��feabAa
�A

b
���f

ecdA�cA�d�

The fermion and gauge boson propagators are the same as in QED� times
an identity matrix in the gauge group space� Similarly� the polarization of
external particles is treated the same as in QED� but each external particle
also has an orientation in the group space�

Fermion vertex� � ig��ta �A���

��boson vertex� �

gfabc
�
g���k � p��

� g���p� q��

� g���q � k��
� �A��

��boson vertex� �

�ig��fabefcde�g��g���g��g���
� facef bde�g��g���g��g���
� fadef bce�g��g���g��g����

�A���



A�� Polarizations of External Particles �
�

Ghost vertex� � �gfabcp� �A���

Ghost propagator� �
i�ab

p� � i�
�A���

�Counterterm vertices for loop calculations are given on pages 
�� and 
����

Other theories� Feynman rules for other theories can be found on the fol�
lowing pages�

Yukawa theory page �

Scalar QED page ��

Linear sigma model page �
�

Electroweak theory pages ��� ���� �
�

A�� Polarizations of External Particles

The spinors us�p� and vs�p� obey the Dirac equation in the form

� � � p�m�us�p� � us�p��p�m�

� �p�m�vs�p� � vs�p��p�m��
�A�
�

where p � ��p�� The Dirac matrices obey the anticommutation relations

f��� ��g � �g�� � �A���

We use a chiral basis�

�� �

�
� ��

�� �

�
� � �

�� �
� 

�
� �A���

where

�� � ����� �� � ������ �A���

In this basis the normalized Dirac spinors can be written

us�p� �

�p
p � � �sp
p � � �s

�
� vs�p� �

� p
p � � �s

�pp � � �s
�
� �A���

where � and � are two�component spinors normalized to unity� In the high�
energy limit these expressions simplify to

u�p� �
p
�E

� �
� �� )p � ���s
�
� � � )p � ���s

�
� v�p� �

p
�E

� �
� �� )p � ���s

� �
� � � )p � ���s

�
� �A����
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Using the standard basis for the Pauli matrices�

�� �

�
� 
 �

�
� �� �

�
� �i
i �

�
� �� �

�
 �
� �

�
� �A���

we have� for example� �s �
�
�
�

�
for spin up in the z direction� and �s �

�
�
�

�
for

spin down in the z direction� For antifermions the physical spin is opposite to
that of the spinor� �s �

�
�
�

�
corresponds to spin down in the z direction� and

so on�
In computing unpolarized cross sections one encounters the polarization

sums X
s

us�p�us�p� � p�m�
X
s

vs�p�vs�p� � p�m� �A����

For polarized cross sections one can either resort to the explicit formulae
�A��� or insert the projection matrices�

 � �

�

�
�

�
� �

�

�
� �A����

which project onto right� and left�handed spinors� respectively� Again� for
antifermions� the helicity of the spinor is opposite to the physical helicity of
the particle�

Many other identities involving Dirac spinors and matrices can be found
in Chapter ��

Polarization vectors for photons and other gauge bosons are convention�
ally normalized to unity� For massless bosons the polarization must be trans�
verse�

�� � ��� ��� where p � � � �� �A����

If p is in the �z direction� the polarization vectors are

�� �
p
�
��� � i� ��� �� �

p
�
��� ��i� ��� �A��
�

for right� and left�handed helicities� respectively�
In computing unpolarized cross sections involving photons� one can re�

place X
polarizations

����� �� �g�� � �A����

by virtue of the Ward identity� In the case of massless non�Abelian gauge
bosons� one must also sum over the emission of ghosts� as discussed in Sec�
tion ���� In the massive case� one must in addition include the emission of
Goldstone bosons� as discussed in Section ���
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�

A�� Numerator Algebra

Traces of � matrices can be evaluated as follows�

tr��� � �

tr�any odd 1 of ��s� � �

tr������ � �g��

tr���������� � ��g��g�� � g��g�� � g��g���

tr��� � �

tr������� � �

tr����������� � ��i�����

�A����

Another identity allows one to reverse the order of � matrices inside a trace�

tr��������� � � �� � tr�� � � ���������� �A����

Contractions of � matrices with each other simplify to�

���� � �

������ � ����
�������� � �g��

���������� � ��������
�A����

�These identities apply in four dimensions only� see the following section��
Contractions of the � symbol can also be simpli�ed�

��	���	� � ���
��	����	�� � �����
��	����	�� � ��������� � ����

�
�

� �A����

In some calculations� it is useful to rearrange products of fermion bilinears
by means of Fierz identities� Let u�� � � � � u� be Dirac spinors� and let uiL �
�
� � � ��ui be the left�handed projection� Then the most important Fierz
rearrangement formula is

�u�L�
�u�L��u�L��u�L� � ��u�L��u�L��u�L��u�L�� �A���

Additional formulae can be generated by the use of the following identities
for the �	 � blocks of Dirac matrices�

�����	����� � �����	� �����	����� � �����	� �A����

In non�Abelian gauge theories� the Feynman rules involve gauge group
matrices ta that form a representation r of a Lie algebra G� The symbol G
also denotes the adjoint representation of the algebra� The matrices ta obey

$ta� tb% � ifabctc� �A����
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where the structure constants fabc are totally antisymmetric� The invariants
C�r� and C��r� of the representation r are de�ned by

tr$tatb% � C�r��ab� tata � C��r� � �� �A����

These are related by

C�r� �
d�r�

d�G�
C��r�� �A��
�

where d�r� is the dimension of the representation� Traces and contractions of
the ta can be evaluated using the above identities and their consequences�

tatbta � $C��r�� �
�C��G�%tb

facdf bcd � C��G��ab

fabctbtc � �
� iC��G�ta

�A����

For SU�N� groups� the fundamental representation is denoted by N � and
we have

C�N� �


�
� C��N� �

N� � 

�N
� C�G� � C��G� � N� �A����

The following relation� satis�ed by the matrices of the fundamental represen�
tation of SU�N�� is also very helpful�

�ta�ij�t
a�k� �



�

�
�i��kj � 

N
�ij�k�

�
� �A����

A�� Loop Integrals and Dimensional Regularization

To combine propagator denominators� introduce integrals over Feynman pa�
rameters�



A�A� � � �An
�

�Z
�

dx� � � � dxn ��
P
xi��

�n� �-�
x�A� � x�A� � � � �xnAn

�n �A����

In the case of only two denominator factors� this formula reduces to



AB
�

�Z
�

dx
�

xA� ��x�B�� � �A����

A more general formula in which the Ai are raised to arbitrary powers is given
in Eq� �������

Once this is done� the bracketed quantity in the denominator will be a
quadratic function of the integration variables p�i � Next� complete the square
and shift the integration variables to absorb the terms linear in p�i � For a
one�loop integral� there is a single integration momentum p�� which is shifted
to a momentum variable ��� After this shift� the denominator takes the form



A�� Loop Integrals and Dimensional Regularization �
�

������n� In the numerator� terms with an odd number of powers of � vanish
by symmetric integration� Symmetry also allows one to replace

���� � 

d
��g�� � �A���

�������� � 

d�d���
�����
�
g��g�� � g��g�� � g��g��

�
� �A����

�Here d is the spacetime dimension�� The integral is most conveniently evalu�
ated after Wick�rotating to Euclidean space� with the substitution

�� � i��E� �� � ���E � �A����

Alternatively� one can use the following table of d�dimensional integrals in
Minkowski space�Z

dd�

����d


��� ���n
�

���n i
����d��

,�n�d
� �

,�n�

� 
�

�n�d
�

�A����

Z
dd�

����d
��

��� ���n
�

���n�� i
����d��

d

�

,�n�d
���

,�n�

� 
�

�n�d
��

�A��
�

Z
dd�

����d
����

��� ���n
�

���n�� i
����d��

g��

�

,�n�d
���

,�n�

� 
�

�n�d
��

�A����

Z
dd�

����d
�����

��� ���n
�

���n i
����d��

d�d���

�

,�n�d
����

,�n�

� 
�

�n�d
���

�A����

Z
dd�

����d
��������

��� ���n
�

���n i
����d��

,�n�d
����

,�n�

� 
�

�n�d
���

	 

�

�
g��g�� � g��g�� � g��g��

�
�A����

If the integral converges� one can set d � � from the start� If the integral
diverges� the behavior near d � � can be extracted by expanding

� 
�

���d
�
� � ���d

� � log� � � � � � �A����

One also needs the expansion of ,�x� near its poles�

,�x� �


x
� � �O�x� �A�
��

near x � �� and

,�x� �
���n
n-

� 

x� n
� � �  � � � �� 

n
�O�x� n�

�
�A�
�
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near x � �n� Here � is the Euler�Mascheroni constant� � � ��
���� The
following combination of terms often appears in calculations�

,���d
� �

����d��

� 
�

���d
�
�



�����

�
�

�
� log�� � � log���� �O���

�
� �A�
��

with � � �� d�
Notice that � is positive if it is a combination of masses and spacelike mo�

mentum invariants� If � contains timelike momenta� it may become negative�
Then these integrals acquire imaginary parts� which give the discontinuities
of S�matrix elements� To compute the S�matrix in a physical region� choose
the correct branch of the function by the prescription� 

�

�n�d
� �

� 

�� i�

�n�d
�
� �A�
��

where �i� �not to be confused with � in the previous paragraph-� gives a tiny
negative imaginary part�

Traces in Eq� �A���� that do not involve � are independent of dimen�
sionality� However� since

g��g�� � ��� � d �A�
��

in d dimensions� the contraction identities �A���� are modi�ed�

���� � d

������ � ��d�����
�������� � �g�� � ���d�����

���������� � �������� � ���d�������
�A�

�

A�� Cross Sections and Decay Rates

Once the squared matrix element for a scattering process is known� the dif�
ferential cross section is given by

d� �


�EA�EB jvA�vBj
�Q

f

d�pf
�����



�Ef

�
	 ��M�pA� pB � fpfg�

��� ����������pA�pB �P pf ��

�A�
��

The di�erential decay rate of an unstable particle to a given �nal state is

d, �


�mA

�Q
f

d�pf
�����



�Ef

���M�mA � fpfg�
��� ����������pA �P pf �� �A�
��

For the special case of a two�particle �nal state� the Lorentz�invariant phase
space takes the simple form�Q

f

Z
d�pf
�����



�Ef

�
����������

P
pi �
P

pf � �

Z
d�cm

��



��

� �jpj
Ecm

�
� �A�
��
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where jpj is the magnitude of the ��momentum of either particle in the center�
of�mass frame�

A�� Physical Constants and Conversion Factors

Precisely known physical constants�

c � �����	 ��� cm�s

 h � ��
��	 ���� MeV s

e � �����	 ���� C

	 �
e�

�� hc
�



�����
� �������

GF

� hc��
� ���	 �� GeV��

The values of the strong and weak interaction coupling constants depend on
the conventions used to de�ne them� as explained in Sections ��� and ����
For the purpose of estimation� however� one can use the following values�

	s�� GeV� � ���

	s�mZ� � ���

sin� �w � ����

Particle masses �times c���

e � ��
� MeV

� � �
�� MeV

� � ��� MeV

W � ���� GeV

Z� � ��� GeV

p � ����� MeV

n � ����� MeV

� � ���� MeV

�� � �
�� MeV

Useful combinations�

Bohr radius� a� �
 h

	mec
� 
����	 ��� cm

electron Compton wavelength�  � �
 h

mec
� �����	 ���� cm

classical electron radius� re �
	 h

mec
� ����	 ���� cm

Thomson cross section� �T �
��r�e
�

� ����
� barn

annihilation cross section�  R �
��	�

�E�
cm

�
���� nbarn

�Ecm in GeV��
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Conversion factors�

� GeV��c� � ����	 ���� g

� GeV���� hc� � �����	 ���� cm � ����� fm�

� GeV���� hc�� � ������	 ���� cm� � ������ mbarn

 barn � ���� cm�

� volt�meter��e hc� � ����	 ��� GeV�

� tesla��e hc�� � 
���	 ���� GeV�

A complete� up�to�date tabulation of the fundamental constants and the prop�
erties of elementary particles is given in the Review of Particle Properties�
which can be found in a recent issue of either Physical Review D or Physics
Letters B� The most recent Review as of this writing is published in Physical

Review D��� �� ������
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